HOMEWORK #1 – SOLUTIONS Page 623 8) 2n + 1 ∞ 2n + 1 ; lim an = ⇒ lim = lim n→∞ n→∞ n ∞ n→∞ n 2n + 1 2n + 1− 2n −2 <ε ⇒ <ε ⇒ n n an = 2+ 1 1 1 1 <ε ⇒ <ε ⇒n> n n ε 10) 4 4 ; lim =0 n + 1 n→∞ n + 1 4 4 4 −0 <ε ⇒ <ε ⇒ <ε ⇒ n +1 n +1 n +1 16 16 < ε2 ⇒ n > 2 −1 n +1 ε an = 1 5n − 1 5n − 1 n3 = 5 an = 3 ; lim 3 = lim 2n + 1 n→∞ 2n + 1 n→∞ 2 + 1 2 n3 3 12) 22) 3 5− 1 n =2 3n 3n 1 3n 1 ⎛ 3 ⎞ n n an = n ; e + 1 < 2e ⇒ n > ⋅ = ⋅⎜ ⎟ e +1 e + 1 2 en 2 ⎝ e ⎠ n 1 ⎛ 3⎞ lim ⋅ ⎜ ⎟ = ∞ n→∞ 2 ⎝ e ⎠ n ⎛ 3⎞ ⎜⎝ ⎟⎠ > 1 e 3n ∴lim n = ∞ ⇒ diverges n→∞ e + 1 26) an = n 2 + n − n lim n→∞ ( ⎛ n2 + n + n ⎞ n + n − n ⋅⎜ ⎟= 2 ⎝ n + n + n⎠ 2 ) ⎛ ⎞ n lim ⎜ ⎟ n→∞ ⎝ n2 + n + n ⎠ 30) ⎛ ⎞ ⎜ ⎟ 1 1 = lim ⎜ ⎟= n→∞ 1 ⎜ 1+ + 1 ⎟ 2 ⎜⎝ ⎟⎠ n cos nπ ; − 1 ≤ cos nπ ≤ 1 ⇒ n2 −1 cos nπ 1 ≤ ≤ 2 n2 n2 n cos nπ ⎛ −1 ⎞ ⎛ 1⎞ lim ⎜ 2 ⎟ = 0 = lim ⎜ 2 ⎟ ⇒ lim =0 n→∞ ⎝ n ⎠ n→∞ ⎝ n ⎠ n→∞ n2 an = by the Squeeze Theorem. 34) ( n + 1) − 1 n − 1 an+1 ( n + 1) + 1 n2 + n an = ; = = > 1 (n ≥ 2) ( n − 1) n 2 + n − 2 n + 1 an ( n + 1) Therefore, the sequence is increasing. 36) n! a an = n ; n+1 = 5 an n +1 > 1, n ≥ 5 5 ( n + 1)! 5 n+1 n! 5n = n +1 ≤ 1, n = 1, 2, 3, 4 5 Therefore, the sequence is neither increasing nor decreasing. 40) an = 6n − 1 6n − 1 6n + 18 ; an = < =6 n+3 n+3 n+3 Hence, the sequence is bounded. 48) 1 n 1 ⋅ 2 = 2 n−1; x3 = ⋅ 2 n−1 = 2 n−2 ; 2 2 1 1 1 xn = xn−1 = ⋅ 2 n−( n−2 ) = ⋅ 2 2 = 2 2 2 2 1 1 xn+1 = ⋅ xn = ⋅ 2 = 1 2 2 x1 = 2 n ⇒ x2 =
© Copyright 2026 Paperzz