MIN-Fakultät Fachbereich Informatik Universität Hamburg Introduction to Control Theory Introduction to Control Theory PID and Fuzzy Controllers Ahmed Elsafty Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik Technische Aspekte Multimodaler Systeme 08. December 2014 A. Elsafty 1 MIN-Fakultät Fachbereich Informatik Universität Hamburg Introduction to Control Theory Contents 1. Basics of Control Theory State of the system The need for Control 2. PID Control Design Tuning Limitations 3. FLC Where are the fuzzy systems? What the fuzz?! Defuzzification techniques Pros and Cons A. Elsafty 2 MIN-Fakultät Fachbereich Informatik Universität Hamburg Introduction to Control Theory Motivation “...hark, now hear the sailors cry, smell the sea, and feel the sky ...” A. Elsafty 3 MIN-Fakultät Fachbereich Informatik Universität Hamburg Basics of Control Theory - State of the system Introduction to Control Theory State of the system Structure of the system I I I I I I A. Elsafty System: Something that changes over time Control: Influence that changes system behavior State: control variable (e.g percentage) Reference: what we want the system to do Output: Measuring some aspects of the system Feedback: Mapping from output to input 4 MIN-Fakultät Fachbereich Informatik Universität Hamburg Basics of Control Theory - State of the system Introduction to Control Theory State of the system Structure of the system I I I I I I A. Elsafty System: Something that changes over time Control: Influence that changes system behavior State: control variable (e.g percentage) Reference: what we want the system to do Output: Measuring some aspects of the system Feedback: Mapping from output to input 4 MIN-Fakultät Fachbereich Informatik Universität Hamburg Basics of Control Theory - State of the system Introduction to Control Theory State of the system Structure of the system I I I I I I A. Elsafty System: Something that changes over time Control: Influence that changes system behavior State: control variable (e.g percentage) Reference: what we want the system to do Output: Measuring some aspects of the system Feedback: Mapping from output to input 4 MIN-Fakultät Fachbereich Informatik Universität Hamburg Basics of Control Theory - State of the system Introduction to Control Theory State of the system Structure of the system I I I I I I A. Elsafty System: Something that changes over time Control: Influence that changes system behavior State: control variable (e.g percentage) Reference: what we want the system to do Output: Measuring some aspects of the system Feedback: Mapping from output to input 4 MIN-Fakultät Fachbereich Informatik Universität Hamburg Basics of Control Theory - State of the system Introduction to Control Theory State of the system Structure of the system I I I I I I A. Elsafty System: Something that changes over time Control: Influence that changes system behavior State: control variable (e.g percentage) Reference: what we want the system to do Output: Measuring some aspects of the system Feedback: Mapping from output to input 4 MIN-Fakultät Fachbereich Informatik Universität Hamburg Basics of Control Theory - State of the system Introduction to Control Theory State of the system Structure of the system I I I I I I A. Elsafty System: Something that changes over time Control: Influence that changes system behavior State: control variable (e.g percentage) Reference: what we want the system to do Output: Measuring some aspects of the system Feedback: Mapping from output to input 4 MIN-Fakultät Fachbereich Informatik Universität Hamburg Basics of Control Theory - The need for Control Introduction to Control Theory Control Theory: How to pick a proper Input signal while achieving A. Elsafty I Stability I Tracking I Robustness I Disturbance rejection I Optimality 5 MIN-Fakultät Fachbereich Informatik Universität Hamburg PID Control Design Introduction to Control Theory PID Control Design Maintaining Speed I State: velocity (v) I Input: Pedal on/off (u) F = cu I Relating Input to State: F = ma, ma = cu, A. Elsafty (1) dv c = a, v̇ = u dx m (2) 6 MIN-Fakultät Fachbereich Informatik Universität Hamburg PID Control Design I I Introduction to Control Theory Control signal should handle errors ( e = control Input Output) Error handling criteria: I I I Small error = small Input Control Input should not be jerky Control Input should be dynamic Brainstorming! A. Elsafty 7 MIN-Fakultät Fachbereich Informatik Universität Hamburg PID Control Design Introduction to Control Theory Z u(t) = KP ∗ e(t) + KI t e(t)dt + KD 0 I P: Reduce rising time (stability), doesn’t eliminate S-S error I I: slow response, S-S eliminated, overshoots I D: stabilize system, eliminates overshooting, noise sensitivity P I D A. Elsafty δe(t) δt Rise time decreases decreases small change Overshooting increases increases decreases settling time small change increases decreases S-S error decreases eliminates no-change 8 MIN-Fakultät Fachbereich Informatik Universität Hamburg PID Control Design - Tuning Introduction to Control Theory Trail and Error A. Elsafty I Increase P until it oscillates ”the push” I Increase I to decrease rise time and eliminate S-S I Increase D to decrease overshoots, after testing with noise I Calibration may take days I Not Reusable/Practical 9 MIN-Fakultät Fachbereich Informatik Universität Hamburg PID Control Design - Tuning Introduction to Control Theory Ziegler–Nichols method I Heuristic tuning method I Only P is set ”Simple” I Creates quarter Wave Decay I Works perfectly in a sluggish, laggy environment I May cause vigorous overshoots Control Type P PI PID I I A. Elsafty Kp 0.5Kc 0.45Kc 0.6Kc Ki 1.2Kp/Tu 2Kp/Tu Kd KpTu/8 Kp is increased until it oscillates with constant amplitude At constant oscillations, Kp = Kc and Tu is oscillation period 10 MIN-Fakultät Fachbereich Informatik Universität Hamburg PID Control Design - Tuning Introduction to Control Theory Computerized Software I Collects Data, Builds a model and suggest Gains I Robustness issues. Neuro-PID Controlling I Output is feedback to the neural network in a recurrent way. I Adaptive to changes. Others: Fuzzy PID controller, Neuro-Fuzzy PID controller A. Elsafty 11 MIN-Fakultät Fachbereich Informatik Universität Hamburg PID Control Design - Limitations Introduction to Control Theory Limitations A. Elsafty I PID can be represented as an observer I Linearity I Noise in D ( Filtering) I Windup: Large change of setpoints occurs, I accumulates error during rise, thus overshoots. ( Limit it) I Not useful in a system with fragile actuators 12 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Where are the fuzzy systems? Introduction to Control Theory Fuzzy Logic Controller ”Fuzzy theory is wrong, wrong, and pernicious. What we need is more logical thinking, not less. The danger of fuzzy logic is that it will encourage the sort of imprecise thinking that has brought us so much trouble. Fuzzy logic is the cocaine of science.” - Prof. Kahan, University of California, Berkeley A. Elsafty 13 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Where are the fuzzy systems? Introduction to Control Theory Where are the Fuzzy systems? I Shifting gears in automatic transmissions in cars I Focussing your camera and camcorder I Running the cruise controls I Controlling dishwashers and washing machines I Heaters and many more. The plan? I Design a fuzzy controller using: I I I A. Elsafty Fuzzification ... Membership functions for our controlled variable, A Rule Base Defuzzification ... Get a control signal 14 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Where are the fuzzy systems? Introduction to Control Theory Where are the Fuzzy systems? I Shifting gears in automatic transmissions in cars I Focussing your camera and camcorder I Running the cruise controls I Controlling dishwashers and washing machines I Heaters and many more. The plan? I Design a fuzzy controller using: I I I A. Elsafty Fuzzification ... Membership functions for our controlled variable, A Rule Base Defuzzification ... Get a control signal 14 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! Introduction to Control Theory To be or not to be A. Elsafty I A statement is either True or False I A thing is either living or dead I A person is either funny or not I This Statement is False I A virus is neither living or dead I Fun is relative non measurable feature I Robert is tall 15 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! Introduction to Control Theory To be or not to be A. Elsafty I A statement is either True or False I A thing is either living or dead I A person is either funny or not I This Statement is False I A virus is neither living or dead I Fun is relative non measurable feature I Robert is tall 15 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! Introduction to Control Theory To be or not to be A. Elsafty I A statement is either True or False I A thing is either living or dead I A person is either funny or not I This Statement is False I A virus is neither living or dead I Fun is relative non measurable feature I Robert is tall 15 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! I Fuzzy logic permits degrees of truth. I We can’t accept the sharp classification I Our concept of tallness is Fuzzy. Introduction to Control Theory 50 shades of truth A. Elsafty I Robert can be tall by 0.9 truth value I The sky is a member of the set of cloudy skies by a truth value of 0.7 16 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! I Fuzzy logic permits degrees of truth. I We can’t accept the sharp classification I Our concept of tallness is Fuzzy. Introduction to Control Theory 50 shades of truth A. Elsafty I Robert can be tall by 0.9 truth value I The sky is a member of the set of cloudy skies by a truth value of 0.7 16 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! Introduction to Control Theory Fuzzification Tip: smooth == expensive A. Elsafty 17 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! A. Elsafty Introduction to Control Theory 18 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! Introduction to Control Theory Temperature is 80 A. Elsafty I It’s 0.67 room is okay I 0.33 room is hot 19 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - What the fuzz?! Introduction to Control Theory Rule Base I I I A. Elsafty If room is Cold, set the Heater on High mode If room is Okay, set the Heater on medium mode If room is Warm, set the Heater on Low mode 20 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Defuzzification techniques A. Elsafty I Centroid I Max-membership principal I Center of sums I Center of Largest area and More Introduction to Control Theory 21 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Defuzzification techniques Introduction to Control Theory Centroid (center of gravity) R c(z).zdz Z = R c(z)dz ∗ A. Elsafty 22 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Defuzzification techniques Introduction to Control Theory Weighted Average A. Elsafty 23 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Defuzzification techniques Introduction to Control Theory Mean Max Z∗ = A. Elsafty a+b 2 24 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Defuzzification techniques Introduction to Control Theory Center of Sums A. Elsafty 25 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Defuzzification techniques Introduction to Control Theory Conditions A. Elsafty I Each membership function overlaps only the nearest neighbouring membership functions. I Membership values in all relevant fuzzy sets should sum up to 1 (approximately) I Dis-ambiguity, Computational-Complexity should be considered when choosing a defuzzification method. 26 MIN-Fakultät Fachbereich Informatik Universität Hamburg FLC - Pros and Cons Introduction to Control Theory Pros: I Behavior based ( not Model based) I Simple, intuitive for starters I Can work as a nonlinear controller (without the need for linearization) Cons: A. Elsafty I May not scale well to large rulesets I Difficult to estimate the membership function 27 MIN-Fakultät Fachbereich Informatik Universität Hamburg Conclusion Introduction to Control Theory Conclusion A. Elsafty I Structure of the feedback system I How to mitigate errors I PID design and components I Gains’ tuning I Fuzzy logic I (De)fuzzification & fuzzy rules 28 MIN-Fakultät Fachbereich Informatik Universität Hamburg References Introduction to Control Theory References A. Elsafty I Speed control of separately excieted DC motor using neurofuzzy technique, Sanjeev Kumar,National Institute of Technology Rourkela Rourkela-769008, Orissa I Tuning of a neuro-fuzzy controller by Genetic Algorithms with an application to a coupled-tank liquid-level control system, Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia I Quadrocopter Fuzzy Flight Controller, Muhammad Saad Shaikh, Technology Studies from the Department of Technology at Örebro University, örebro 2011 29 MIN-Fakultät Fachbereich Informatik Universität Hamburg References Introduction to Control Theory References I I I I A. Elsafty Comparison of PID Controller Tuning Methods, Mohammad Shahrokhi and Alireza Zomorrodi, Department of Chemical & Petroleum Engineering Sharif University of Technology An Adaptive Neuro PID for controlling the altitude of quadcopter robot, M. Fatan, Islamic Azad university of Qazvin, Qazvin, Iran Neural Networks for Self Tuning of PI- and PID-Controllers, www.caba.org, IS 2005-42 Adaptive System Control with PID Neural Networks, F. Shahraki a , M.A. Fanaei b , A.R. Arjomandzadeh, Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan,Iran. 30 MIN-Fakultät Fachbereich Informatik Universität Hamburg References Introduction to Control Theory References I A. Elsafty Fuzzy-PID Controllers vs. Fuzzy-PI Controllers, M. Santos, S. Dormido, J. M. de la Cruz, Dpto. de Informática y Automática. Facultad de Fı́sicas. 31
© Copyright 2026 Paperzz