Deriving South America seasonal rainfall from upper level circulation predictions Caio A. S. Coelho Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) Instituto Nacional de Pesquisas Espaciais (INPE) [email protected] 1st EUROBRISA workshop, Paraty, 17-19 March 2008 Conceptual framework Data Assimilation “Forecast Assimilation” p( y i | x i ) p( x i ) p( x i | y i ) p( y i ) p( x f | y f ) p( y f ) p( y f | x f ) p( x f ) Stephenson et al. (2005) Calibration and combination experiment y: observed rainfall (GPCP, Adler et al. 2003) x: predicted upper level (200 hPa) circulation Use two EUROSIP model predictions: • ECMWF System 3 • UK Met Office Common hindcast period: 1987-2005 (19 years) Target season: DJF Start date: November (i.e. 1-month lead predictions for DJF) NCEP/NCAR Reanalysis (Kalnay et al. 1996) is used to verify predicted upper level circulation Upper level circulation V ( u , v) v u u: zonal wind v: meridional wind : stream function d d v u dx dy ' : zonal mean of ': perturbed (eddy) stream function Observed perturbed stream function ECMWF perturbed stream function UKMO perturbed stream function Perturbed stream function verification Observed perturbed stream function anomaly El Niño Observed perturbed stream function anomaly La Niña Observed perturbed stream function anomaly El Niño La Niña ECMWF perturbed stream function anomaly El Niño ECMWF perturbed stream function anomaly La Niña ECMWF perturbed stream function anomaly El Niño La Niña UKMO perturbed stream function anomaly El Niño UKMO perturbed stream function anomaly La Niña UKMO perturbed stream function anomaly El Niño La Niña Perturbed stream function anomaly verification Calibration and combination procedure: Matrices Forecast Assimilation X : n p Stephenson et al. (2005) p( X | Y ) p(Y ) p(Y | X ) p( X ) X: circulation predictions (ECMWF + UKMO) Y: DJF rainfall Prior: Y : nq Yb : 1 q C : qq S : p p Ya : n q D : qq Y ~ N(Yb , C) Likelihood: X | Y ~ N(G(Y Yo ), S) Posterior: Y | X ~ N (Ya , D) Forecast assimilation uses first three leading MCA modes of the matrix YT X. Forecast Assimilation: First MCA mode Forecast Assimilation: Second MCA mode Forecast Assimilation: Third MCA mode Correlation between predicted and observed anomalies ECMWF UKMO Forecast Assimilation Upper level circulation derived predictions obtained with forecast assimilation have comparable level of skill to indiv. model predictions Issued: November, Valid for DJF, Hindcast period: 1987-2005 Ranked Probability Skill Score (tercile categories) ECMWF UKMO Forecast Assimilation Issued: November, Valid for DJF, Hindcast period: 1987-2005 Gerrity Score (tercile categories) ECMWF UKMO Forecast Assimilation Issued: November, Valid for DJF, Hindcast period: 1987-2005 ROC Skill Score (positive or negative anomaly) ECMWF UKMO Forecast Assimilation Issued: November, Valid for DJF, Hindcast period: 1987-2005 Reliability diagram (positive or negative anomaly) ECMWF UKMO Forecast Assimilation Forecast assimilation improves prediction reliability Issued: November, Valid for DJF, Hindcast period: 1987-2005 ROC plot (positive or negative anomaly) ECMWF UKMO Forecast Assimilation Issued: November, Valid for DJF, Hindcast period: 1987-2005 Summary • Forecast assimilation is a useful framework for exploring atmospheric teleconnections in seasonal forecasts • ENSO atmospheric teleconnections is the main source of skill for South America rainfall predictions • Combined and calibrated circulation derived predictions obtained with forecast assimilation have comparable level of skill to single model rainfall prediction • Additional skill improvements can be investigated by including humidity predictions in the forecast assimilation procedure
© Copyright 2026 Paperzz