Oscillation in Biological Systems School of Mathematics, University of Tehran. School of Mathematics, IPM. [email protected] [email protected] 1. Mechanism of Oscillation in One Dimensional Systems 2. Example of Oscillations in One dimensional Systems Mechanisms of Oscillation in One Dimensional Systems • • • • time-dependent systems delayed systems Hysteresis Bifurcations Mechanisms of Oscillation in One Dimensional Systems time-dependent systems System under real time control System under force System under slowly time varying nature System under time dependent perturbation x = f ( x) + u (t ) x = f ( x) + g ( x, t ) x = f ( x) + h( x, a (t )) x = f ( x) + εF ( x, t , ε ) Mechanisms of Oscillation in One Dimensional Systems delayed systems Discrete delay Continuous delay Dirac function, strong kernels, weak kernels x = rx(1 − w ∗ x) Mechanisms of Oscillation in One Dimensional Systems Hysteresis Memory Residual Energy Mechanisms of Oscillation in One Dimensional Systems Bifurcations Hopf Bifurcation caused by delay Cusp Bifurcation Multistability x parameter Mechanisms of Oscillation in two Dimensional Systems • Three dimensional centre manifold of Hopf bifurcation • Predator-Pray Kuznetsov Y..A. Elements of applied bifurcation theory, Springer, 1998. Mechanisms of Oscillation in two Dimensional Systems • Homoclinic bifurcation Kuznetsov Y.A. Elements of applied bifurcation theory, Springer, 1998. Mechanisms of Oscillation in two Dimensional Systems • Slow fast Dynamics Murrar, J. D., Mathematical Biology I, Springer, 2003. Mechanisms of Oscillation in two Species Systems • Slow fast Dynamics Murrar, J. D., Mathematical Biology I, Springer, 2003. Mechanisms of Oscillation in two Species Systems • Slow fast Dynamics (eg. BZ) f c1 < f < f c2 Murrar, J. D., Mathematical Biology I, Springer, 2003. Other methods • • • • • • Poincare – Bendixon theorem La’Sall Invariant Principle Shil’nikov Poincare method Averaging KAM Other Kind of Oscillation • Oscillation in phase shifting equation(BZ) χ = ψ 1 −ψ 2 Murrar, J. D., Mathematical Biology I, Springer, 2003. A practical example Dynamics of Thyroid Dynamics of Thyroid • Definition of terms • Invariant region of the whole system • Fixed Point Problem • Subsystems Rokni Lamooki, et al. (2011)-(2012) • Input Iodide 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0 100 200 300 400 Rokni Lamooki, et al. (2011)-(2012) 500 600 700 800 900 1000 • Relaxation oscillation of blood iodine 20 18 16 14 12 10 8 6 4 2 0 0 500 1000 1500 2000 Rokni Lamooki, et al. (2011)-(2012) 2500 3000 3500 4000 4500 5000 • Oscillation of T3 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 4 x 10 Rokni Lamooki et al. (2011)-(2012) • Oscillation of T4 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 4 x 10 Rokni Lamooki et al. (2011)-(2012) • Oscillation of TSH 3 2.5 2 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 4 x 10 Rokni Lamooki et al. (2011)-(2012) • Projection on (T3,T4)-space 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 Rokni Lamooki et al. (2011)-(2012) 0.4 0.5 0.6 0.7 0.8 0.9 1
© Copyright 2026 Paperzz