From long-range interaction to collective behaviour and from

Coulomb’05 High intensity beam dynamics
September 12 - 16, 2005 – Senigallia (AN), Italy
From long-range interactions
to collective behaviour
and from hamiltonian chaos
to stochastic models
Yves Elskens
umr6633 CNRS — univ. Provence
Marseille
http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=IP464
Senigallia, September 2005
1
•
•
•
•
1. Effective dyn., collective deg. freedom
2. Kinetic concepts
3. Vlasov
4. Limitations, extensions : macroparticle,
granularity (N<), entropy production...
• 5. Boltzmann, Landau, Balescu-Lenard
• 6. Quasilinear limit : transport
Senigallia, September 2005
2
1. Long range yields collective
degrees of freedom
• Ex. mollified Coulomb (Fourier truncated) :
H(q,p) = i pi2/(2m)
- k n i,j kn-2 cos kn.(qi-qj)
dt2 qj = (1/m) n En(qj)
En(x) = - k j kn-1 sin kn.(x-qj)
 r,n Ar,n(t) sin (kn.x - wr,nt)
with envelopes A varying slowly
Antoni, Elskens & Sandoz, Phys. Rev. E 57 (1998) 5347
Senigallia, September 2005
3
1 wave and 1 particle
• Integrable system
• Locality in velocity : p-wj/kj 2 ~ 4 kj Ij1/2
Senigallia, September 2005
4
Beam-plasma paradigm
Underlying plasma
electrostatic modes
(Langmuir, Bohm-Gross)
Senigallia, September 2005
5
M waves and N particles
• Effective lagrangian
• Effective hamiltonian
H(p, q, I, f)
= i pi2/2 + j wj Ij - i,j kj Ij1/2 cos (kjqi-fj)
coupling type mean field (global), 2 species
constants : H, P = i pi + j kj Ij
Senigallia, September 2005
6
Effective hamiltonian
• Dynamical reduction to an effective
lagrangian and hamiltonian (“good chaos”
vs quasi-constants of motion) N0 >> M + N1
Ex. : N0 particles, Coulomb
 M modes (collective, principal)
+ N1 particles (resonant or test)
Effective dynamics & thermodynamics
Elskens & Escande, Microscopic dynamics of plasmas and chaos
(IoP, 2002)
Senigallia, September 2005
7
2. micro- < ... < macroscopic :
Kinetic concepts
• Phase space for the dynamics : R6N
Instantaneous state : x = ((q1,p1), ...,
(qN,pN))
Probability distribution : f(N)(x,t) dNx
Realization : f(N)(y,t) = Pj=1N d(yj-xj(t))
Evolution (Liouville) : df/dt = -[H,f]
tf + Sj (pj/m).fSenigallia,
/qjSeptember
+ Sj 2005
Fj(x).f /pj = 0
8
Kinetic concepts
• Observations : m space (Boltzmann) R6
Instantaneous state : {(q1,p1), ..., (qN,pN)}
Marginal distribution :
f(1)(q1,p1,t) dq1dp1
= .. f(N)(q1,p1,t) Pj=2N dqjdp1
... symmetrized :
f(1s)(q,p,t) = N-1 Sj f(1)(qj,pj,t)
Senigallia, September 2005
9
Kinetic concepts
• Realization : f(1s)(y,t) = N-1 Sj=1N d(yj-xj(t))
Evolution (BBGKY) :
tf(1) + (p/m).qf(1) + F(q,p).pf(1) = 0
with F(q,p) = F[f (N)] = ...
Senigallia, September 2005
10
Kinetic concepts
• Fluid moments :
n(q,t) = N  f(1s)(q,p,t) dp
n u(q,t) = N  (p/m) f(1s)(q,p,t) dp
...
• Conservation laws by integration and
closure
Senigallia, September 2005
11
Kinetic concepts
• Weak coupling : molecular independence
approximation
f(N)(q,p,t)  Pj f(1)(qj,pj,t)
... coherent with Liouville ? No !
... supported by dynamical chaos ?
... good approximation ?
Senigallia, September 2005
12
3. Vlasov
• Coupling of mean field type :
F1(q,p) = F1[f (N)] = N-1 Sj=2N F1j(qj-q1)
and for N :
F1(q,p)   F1j(q’-q1) f (1s) (q’,p’) dq’dp’
if the force is smooth enough (not pure
Coulomb – OK if mollified)
then : Vlasov
Spohn, Large scale dynamics of interacting particles (Springer, 1991)
Senigallia, September 2005
13
Vlasov
• Estimates for separation of solutions
 f(1s)(y,t) - g(1s)(y,t) 
<  f(1s)(y,0) - g(1s)(y,0) elt 
l : majorant for Liapunov exponent in R6N
idea : test particles
norm .  weak enough for Dirac
Senigallia, September 2005
14
Vlasov
• Ex. : g(1s)(y,0) “smooth”
f(1s)(y,0) = N-1 Sj=1N d(yj-xj(0))
 f(1s)(y,0) - g(1s)(y,0) < c N-1/2
• limN limt  limt limN
Firpo, Doveil, Elskens, Bertrand, Poleni & Guyomarc'h, Phys. Rev. E
64 (2001) 026407
Senigallia, September 2005
15
4. M waves and N particles
• Effective hamiltonian
mean field, 2 species
H(p, q, I, f)
= i pi2/2 + j wj Ij - i,j kj Ij1/2 cos (kjqi-fj)
• for M fixed, N : Vlasov
• M=1 : free electron laser, CARL, ...
Senigallia, September 2005
16
4.1. Cold beam instability
Senigallia, September 2005
17
Cold beam instability
Senigallia, September 2005
18
Cold beam instability
Senigallia, September 2005
19
Cold beam instability
Senigallia, September 2005
20
4.2. Instability and damping
Warm beam : gL = c df/dv
Senigallia, September 2005
21
Warm beam instability
Senigallia, September 2005
22
Warm beam instability
Senigallia, September 2005
23
Warm beam instability
N2 : gLt = 200
Senigallia, September 2005
24
Warm beam instability
N2 : gLt = 200
particles initially in range
0.99 < v < 1.00
1.03 < v < 1.04
Senigallia, September 2005
25
Vlasov
• Casimir invariants
dt f(1s)(q,p,t) = 0
 dt  F[f(1s)(q,p,t)] dq dp = 0 (if exists)
conserve all entropies !
• Trend to equilibrium ? No hamiltonian
attractor !... but weak convergence
 g(q,p) f(1s)(q,p,t) dq dp (for any g)
via filamentation
Senigallia, September 2005
26
Warm beam instability
Senigallia, September 2005
27
4.3. Thermalization (M=1)
Dynamics : non-linear regimes (trapping)
Canonical ensemble : phase transition
Firpo & Elskens, Phys. Rev. Lett. 84 (2000) 3318
Senigallia, September 2005
28
Thermalization (M>>1)
Y. Elskens & N. Majeri (2005)
Senigallia, September 2005
29
4.4. Chaos & entropy production
• Chaos : Liapunov exponents > 0
l1 = sup limt ln dx(t) / dx(0) 
l1+l2 = sup limt ln da12(t) / da12(0) 
da12(t) = dx1(t)  dx2(t)
...
Senigallia, September 2005
30
Chaos & entropy production
• Hamilton
 Poincaré-Cartan : dt Sj=13N dpj  dqj = 0
 symmetric spectrum l6N-j = -lj
 Liouville : dt Pj=13N dpjdqj = 0
 sum Sj=16N lj = 0
 no attractor !
Senigallia, September 2005
31
Chaos & entropy production
• Dynamical complexity : entropy production
per time unit
dSmacro/dt < kB hKS ~ kB Sj lj+
Arnold & Avez, Problèmes ergodiques de la mécanique classique
(Gauthier-Villars, 1967)
Pesin, Russ. Math. Surveys 32 n°4 (1977) 55
Elskens, Physica A 143 (1987) 1
Dorfman, An introduction to chaos in nonequilibrium statistical
mechanics (Cambridge, 1999)
Senigallia, September 2005
32
5. Kinetic approach :
Boltzmann and variations
• Forces with short range (collisions), dilution
Boltzmann Ansatz :
tf(1s) + (p/m).qf(1s) + Fext(q,p).pf(1s)
= Q[f(2s)]
(BBGKY)
 Q[f(1s)  f(1s)] (non-local in p)
=   (f+(1s) f*+(1s) - f(1s) f*(1s)) b(w, p*-p) dw dp*
Senigallia, September 2005
33
Boltzmann
• Valid with probability 1 in Grad limit :
N , Nr2 = cst
for 0 < t < tfree/5
or for expansion in vacuum...
 longer time ? open problem !
Spohn, Large scale dynamics of interacting particles (Springer, 1991)
Senigallia, September 2005
34
Boltzmann
• Entropy :
n sBoltzmann(q,t)
= - kB  f(1s)(q,p,t) ln (f(1s)(q,p,t)/f0) dp
• H theorem : dsBoltzmann/dt > 0
and = iff f(1s) locally maxwellian ; then
sBoltzmann[f(1s)] = smicrocan[n,e]
Senigallia, September 2005
35
Boltzmann
• Irreversibility... byproduct of symmetry
(microreversibility) of collisions
• H theorem : tool for existence and regularity
of solutions
Friedlander & Serre, eds, Handbook of mathematical fluid dynamics
(Elsevier, 2001,... )
Senigallia, September 2005
36
Landau,
Balescu-Lenard-Guernsey
• Forces with long range and collisions
tf(1s) + (p/m).qf(1s) + Fext(q,p).pf(1s)
= - p. kU.(p* - p) (f(1s) f*(1s)) dp*
U =  (...)dk (Coulomb, Fourier)
Senigallia, September 2005
37
Landau,
Balescu-Lenard-Guernsey
• H theorem, maxwellian equilibria
• Diagrammatic derivation... “challenge for
the future”
Balescu, Statistical dynamics (Imperial college press, 1997)
Spohn, Large scale dynamics of interacting particles (Springer, 1991)
Senigallia, September 2005
38
6. M waves and N particles
(weak Langmuir turbulence)
Senigallia, September 2005
39
M waves and N particles
• Effective hamiltonian
H(p, q, I, f)
= i pi2/2 + j wj Ij - i,j kj Ij1/2 cos (kjqi-fj)
mean field type coupling, 2 species
constants : H, P = i pi + j kj Ij
Senigallia, September 2005
40
1 wave and 1 particle
• Integrable system
• Locality in velocity : p-wj/kj 2 ~ 4 kj Ij1/2
Senigallia, September 2005
41
1 particle in 2 waves
• Resonance overlap
s = [2(k1I11/2)1/2+2(k2I21/2)1/2] /
/ w1/k1 - w2/k2 
Senigallia, September 2005
42
1 particle in M waves
Bénisti & Escande, Phys. Plasmas 4 (1997) 1576
Senigallia, September 2005
43
Quasilinear limit
• 0 < tcorr ~ M-1 < t < tQL (gas : cf. tfree)
dt q = v
dt v = j kj kj Ij1/2 sin (kjq - fj)
~ white noise
tQL > J-1/3 ln s4/3
(or larger)
• t > tbox : dynamical independence
tbox ~ J-1/3
Senigallia, September 2005
44
Stochasticity in parameters
 dynamical chaos
(1 particle in M waves)
Senigallia, September 2005
45
Stochasticity in parameters
 dynamical chaos
Senigallia, September 2005
46
Quasilinear limit
resonance box (Bénisti & Escande)
Senigallia, September 2005
47
Quasilinear limit :
M (s), fj random
• Dense wave spectrum vj+1-vj = Dvj ~ M-1 :
“particle diffusion” (Smoluchowski-FokkerPlanck)
t f = v (2 a J v f )
• Coupling coefficients
a(v) = a(wj/kj) = p N kj2/4
• Waves : J(v) = J(wj/kj) = kj Ij /(N Dvj)
Senigallia, September 2005
48
Quasilinear limit :
M (s), N
• Dense wave spectrum vj+1-vj = Dvj ~ M-1 :
t f = v Q
• Many particles, poorly coherent :
induced and spontaneous emission
t J = Q
• Reciprocity of wave-particle interactions
Q = 2 a J v f – Fspont f
Fspont(v) = - 2 a /(N Dvj)
Senigallia, September 2005
49
Quasilinear limit
• H theorem
S = -  [f ln (f /f0) + (2a)-1 Fspont ln J] dv
• No Casimir invariants for f(v,t)
• Phenomenological equations of markovian
type : regeneration of instantaneous
stochasticity by “good dynamical chaos”
Senigallia, September 2005
50
Conclusion
• Long-range  mean field, collective
degrees of freedom + fewer particles
• Smooth  Vlasov (+ macroparticle)
• Mean field (e.g. charged particles) simpler
than short range (gas) for H-theorem and
kinetic eqn
• limN limt  limt limN
• N<  finite grid
Senigallia, September 2005
51
Senigallia, September 2005
52
Landau damping
(non dissipative)
Senigallia, September 2005
53
Landau damping
Senigallia, September 2005
54
Landau damping
Senigallia, September 2005
55
Landau damping
Dynamics : non-linear regimes (trapping)
Canonical ensemble : phase transition
Firpo & Elskens, Phys. Rev. Lett. 84 (2000) 3318
Senigallia, September 2005
56