Coulomb’05 High intensity beam dynamics September 12 - 16, 2005 – Senigallia (AN), Italy From long-range interactions to collective behaviour and from hamiltonian chaos to stochastic models Yves Elskens umr6633 CNRS — univ. Provence Marseille http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=IP464 Senigallia, September 2005 1 • • • • 1. Effective dyn., collective deg. freedom 2. Kinetic concepts 3. Vlasov 4. Limitations, extensions : macroparticle, granularity (N<), entropy production... • 5. Boltzmann, Landau, Balescu-Lenard • 6. Quasilinear limit : transport Senigallia, September 2005 2 1. Long range yields collective degrees of freedom • Ex. mollified Coulomb (Fourier truncated) : H(q,p) = i pi2/(2m) - k n i,j kn-2 cos kn.(qi-qj) dt2 qj = (1/m) n En(qj) En(x) = - k j kn-1 sin kn.(x-qj) r,n Ar,n(t) sin (kn.x - wr,nt) with envelopes A varying slowly Antoni, Elskens & Sandoz, Phys. Rev. E 57 (1998) 5347 Senigallia, September 2005 3 1 wave and 1 particle • Integrable system • Locality in velocity : p-wj/kj 2 ~ 4 kj Ij1/2 Senigallia, September 2005 4 Beam-plasma paradigm Underlying plasma electrostatic modes (Langmuir, Bohm-Gross) Senigallia, September 2005 5 M waves and N particles • Effective lagrangian • Effective hamiltonian H(p, q, I, f) = i pi2/2 + j wj Ij - i,j kj Ij1/2 cos (kjqi-fj) coupling type mean field (global), 2 species constants : H, P = i pi + j kj Ij Senigallia, September 2005 6 Effective hamiltonian • Dynamical reduction to an effective lagrangian and hamiltonian (“good chaos” vs quasi-constants of motion) N0 >> M + N1 Ex. : N0 particles, Coulomb M modes (collective, principal) + N1 particles (resonant or test) Effective dynamics & thermodynamics Elskens & Escande, Microscopic dynamics of plasmas and chaos (IoP, 2002) Senigallia, September 2005 7 2. micro- < ... < macroscopic : Kinetic concepts • Phase space for the dynamics : R6N Instantaneous state : x = ((q1,p1), ..., (qN,pN)) Probability distribution : f(N)(x,t) dNx Realization : f(N)(y,t) = Pj=1N d(yj-xj(t)) Evolution (Liouville) : df/dt = -[H,f] tf + Sj (pj/m).fSenigallia, /qjSeptember + Sj 2005 Fj(x).f /pj = 0 8 Kinetic concepts • Observations : m space (Boltzmann) R6 Instantaneous state : {(q1,p1), ..., (qN,pN)} Marginal distribution : f(1)(q1,p1,t) dq1dp1 = .. f(N)(q1,p1,t) Pj=2N dqjdp1 ... symmetrized : f(1s)(q,p,t) = N-1 Sj f(1)(qj,pj,t) Senigallia, September 2005 9 Kinetic concepts • Realization : f(1s)(y,t) = N-1 Sj=1N d(yj-xj(t)) Evolution (BBGKY) : tf(1) + (p/m).qf(1) + F(q,p).pf(1) = 0 with F(q,p) = F[f (N)] = ... Senigallia, September 2005 10 Kinetic concepts • Fluid moments : n(q,t) = N f(1s)(q,p,t) dp n u(q,t) = N (p/m) f(1s)(q,p,t) dp ... • Conservation laws by integration and closure Senigallia, September 2005 11 Kinetic concepts • Weak coupling : molecular independence approximation f(N)(q,p,t) Pj f(1)(qj,pj,t) ... coherent with Liouville ? No ! ... supported by dynamical chaos ? ... good approximation ? Senigallia, September 2005 12 3. Vlasov • Coupling of mean field type : F1(q,p) = F1[f (N)] = N-1 Sj=2N F1j(qj-q1) and for N : F1(q,p) F1j(q’-q1) f (1s) (q’,p’) dq’dp’ if the force is smooth enough (not pure Coulomb – OK if mollified) then : Vlasov Spohn, Large scale dynamics of interacting particles (Springer, 1991) Senigallia, September 2005 13 Vlasov • Estimates for separation of solutions f(1s)(y,t) - g(1s)(y,t) < f(1s)(y,0) - g(1s)(y,0) elt l : majorant for Liapunov exponent in R6N idea : test particles norm . weak enough for Dirac Senigallia, September 2005 14 Vlasov • Ex. : g(1s)(y,0) “smooth” f(1s)(y,0) = N-1 Sj=1N d(yj-xj(0)) f(1s)(y,0) - g(1s)(y,0) < c N-1/2 • limN limt limt limN Firpo, Doveil, Elskens, Bertrand, Poleni & Guyomarc'h, Phys. Rev. E 64 (2001) 026407 Senigallia, September 2005 15 4. M waves and N particles • Effective hamiltonian mean field, 2 species H(p, q, I, f) = i pi2/2 + j wj Ij - i,j kj Ij1/2 cos (kjqi-fj) • for M fixed, N : Vlasov • M=1 : free electron laser, CARL, ... Senigallia, September 2005 16 4.1. Cold beam instability Senigallia, September 2005 17 Cold beam instability Senigallia, September 2005 18 Cold beam instability Senigallia, September 2005 19 Cold beam instability Senigallia, September 2005 20 4.2. Instability and damping Warm beam : gL = c df/dv Senigallia, September 2005 21 Warm beam instability Senigallia, September 2005 22 Warm beam instability Senigallia, September 2005 23 Warm beam instability N2 : gLt = 200 Senigallia, September 2005 24 Warm beam instability N2 : gLt = 200 particles initially in range 0.99 < v < 1.00 1.03 < v < 1.04 Senigallia, September 2005 25 Vlasov • Casimir invariants dt f(1s)(q,p,t) = 0 dt F[f(1s)(q,p,t)] dq dp = 0 (if exists) conserve all entropies ! • Trend to equilibrium ? No hamiltonian attractor !... but weak convergence g(q,p) f(1s)(q,p,t) dq dp (for any g) via filamentation Senigallia, September 2005 26 Warm beam instability Senigallia, September 2005 27 4.3. Thermalization (M=1) Dynamics : non-linear regimes (trapping) Canonical ensemble : phase transition Firpo & Elskens, Phys. Rev. Lett. 84 (2000) 3318 Senigallia, September 2005 28 Thermalization (M>>1) Y. Elskens & N. Majeri (2005) Senigallia, September 2005 29 4.4. Chaos & entropy production • Chaos : Liapunov exponents > 0 l1 = sup limt ln dx(t) / dx(0) l1+l2 = sup limt ln da12(t) / da12(0) da12(t) = dx1(t) dx2(t) ... Senigallia, September 2005 30 Chaos & entropy production • Hamilton Poincaré-Cartan : dt Sj=13N dpj dqj = 0 symmetric spectrum l6N-j = -lj Liouville : dt Pj=13N dpjdqj = 0 sum Sj=16N lj = 0 no attractor ! Senigallia, September 2005 31 Chaos & entropy production • Dynamical complexity : entropy production per time unit dSmacro/dt < kB hKS ~ kB Sj lj+ Arnold & Avez, Problèmes ergodiques de la mécanique classique (Gauthier-Villars, 1967) Pesin, Russ. Math. Surveys 32 n°4 (1977) 55 Elskens, Physica A 143 (1987) 1 Dorfman, An introduction to chaos in nonequilibrium statistical mechanics (Cambridge, 1999) Senigallia, September 2005 32 5. Kinetic approach : Boltzmann and variations • Forces with short range (collisions), dilution Boltzmann Ansatz : tf(1s) + (p/m).qf(1s) + Fext(q,p).pf(1s) = Q[f(2s)] (BBGKY) Q[f(1s) f(1s)] (non-local in p) = (f+(1s) f*+(1s) - f(1s) f*(1s)) b(w, p*-p) dw dp* Senigallia, September 2005 33 Boltzmann • Valid with probability 1 in Grad limit : N , Nr2 = cst for 0 < t < tfree/5 or for expansion in vacuum... longer time ? open problem ! Spohn, Large scale dynamics of interacting particles (Springer, 1991) Senigallia, September 2005 34 Boltzmann • Entropy : n sBoltzmann(q,t) = - kB f(1s)(q,p,t) ln (f(1s)(q,p,t)/f0) dp • H theorem : dsBoltzmann/dt > 0 and = iff f(1s) locally maxwellian ; then sBoltzmann[f(1s)] = smicrocan[n,e] Senigallia, September 2005 35 Boltzmann • Irreversibility... byproduct of symmetry (microreversibility) of collisions • H theorem : tool for existence and regularity of solutions Friedlander & Serre, eds, Handbook of mathematical fluid dynamics (Elsevier, 2001,... ) Senigallia, September 2005 36 Landau, Balescu-Lenard-Guernsey • Forces with long range and collisions tf(1s) + (p/m).qf(1s) + Fext(q,p).pf(1s) = - p. kU.(p* - p) (f(1s) f*(1s)) dp* U = (...)dk (Coulomb, Fourier) Senigallia, September 2005 37 Landau, Balescu-Lenard-Guernsey • H theorem, maxwellian equilibria • Diagrammatic derivation... “challenge for the future” Balescu, Statistical dynamics (Imperial college press, 1997) Spohn, Large scale dynamics of interacting particles (Springer, 1991) Senigallia, September 2005 38 6. M waves and N particles (weak Langmuir turbulence) Senigallia, September 2005 39 M waves and N particles • Effective hamiltonian H(p, q, I, f) = i pi2/2 + j wj Ij - i,j kj Ij1/2 cos (kjqi-fj) mean field type coupling, 2 species constants : H, P = i pi + j kj Ij Senigallia, September 2005 40 1 wave and 1 particle • Integrable system • Locality in velocity : p-wj/kj 2 ~ 4 kj Ij1/2 Senigallia, September 2005 41 1 particle in 2 waves • Resonance overlap s = [2(k1I11/2)1/2+2(k2I21/2)1/2] / / w1/k1 - w2/k2 Senigallia, September 2005 42 1 particle in M waves Bénisti & Escande, Phys. Plasmas 4 (1997) 1576 Senigallia, September 2005 43 Quasilinear limit • 0 < tcorr ~ M-1 < t < tQL (gas : cf. tfree) dt q = v dt v = j kj kj Ij1/2 sin (kjq - fj) ~ white noise tQL > J-1/3 ln s4/3 (or larger) • t > tbox : dynamical independence tbox ~ J-1/3 Senigallia, September 2005 44 Stochasticity in parameters dynamical chaos (1 particle in M waves) Senigallia, September 2005 45 Stochasticity in parameters dynamical chaos Senigallia, September 2005 46 Quasilinear limit resonance box (Bénisti & Escande) Senigallia, September 2005 47 Quasilinear limit : M (s), fj random • Dense wave spectrum vj+1-vj = Dvj ~ M-1 : “particle diffusion” (Smoluchowski-FokkerPlanck) t f = v (2 a J v f ) • Coupling coefficients a(v) = a(wj/kj) = p N kj2/4 • Waves : J(v) = J(wj/kj) = kj Ij /(N Dvj) Senigallia, September 2005 48 Quasilinear limit : M (s), N • Dense wave spectrum vj+1-vj = Dvj ~ M-1 : t f = v Q • Many particles, poorly coherent : induced and spontaneous emission t J = Q • Reciprocity of wave-particle interactions Q = 2 a J v f – Fspont f Fspont(v) = - 2 a /(N Dvj) Senigallia, September 2005 49 Quasilinear limit • H theorem S = - [f ln (f /f0) + (2a)-1 Fspont ln J] dv • No Casimir invariants for f(v,t) • Phenomenological equations of markovian type : regeneration of instantaneous stochasticity by “good dynamical chaos” Senigallia, September 2005 50 Conclusion • Long-range mean field, collective degrees of freedom + fewer particles • Smooth Vlasov (+ macroparticle) • Mean field (e.g. charged particles) simpler than short range (gas) for H-theorem and kinetic eqn • limN limt limt limN • N< finite grid Senigallia, September 2005 51 Senigallia, September 2005 52 Landau damping (non dissipative) Senigallia, September 2005 53 Landau damping Senigallia, September 2005 54 Landau damping Senigallia, September 2005 55 Landau damping Dynamics : non-linear regimes (trapping) Canonical ensemble : phase transition Firpo & Elskens, Phys. Rev. Lett. 84 (2000) 3318 Senigallia, September 2005 56
© Copyright 2025 Paperzz