Lateral-Directional Approximation Models State-Space Form (Straight & Level) U0 Y Ixz p r I xx L Ixz p r N I zz 0 Yp Yr U 0 Lp Lr Np Nr 1 tan 0 g cos 0 Y a 0 p L a 0 r N a 0 0 Y r L r a N r r 0 Rearrange the left hand side 00 U 0 U0 0 0 1/ Ixz Ixz 0 0 1 1 IIxxxx p p r r IxzIxz 11 0 0 I zzI zz 0 0 0 0 00 1 00 Y cos0 0 YY Y YYp p YY UU0 0 ggcos r a YY r a r r 00 LL LLp p LLr r 00 pp LL a a LL r r a a N r N N 0 r N N N N 0 r N Npp r a N r r r a 00 r tan0 0 00 11 tan 00 00 00 11 State-Space Form (Straight & Level) 1 Y U0 1 L Ixz N p D I xx r 1 Ixz D L I N zz 0 Where 𝐷 = 1 Yp U0 1 Yr U 0 U0 1 Ixz Np Lp D I xx 1 Ixz Nr Lr D I xx 1 Ixz Np Lp D I zz 1 Ixz Nr Lr D I zz 1 tan 0 1 𝐼𝑥𝑧2 1−𝐼𝑥𝑥 𝐼𝑧𝑧 1 1 g cos 0 Y a U0 U0 1 Ixz 0 N a p L a I xx r D 1 Ixz L a 0 N a I zz D 0 0 1 Ixz N r a L r D I xx r 1 Ixz N r L r D I zz 0 1 Y r U0 Lateral-Directional Eigenvalues Lateral-Directional Eigenvectors (phasor diagram format) Roll Mode Approximation The approximation is based on the following observations: • Dominant in roll rate • Side slip and yaw rate have no components and can be assumed to be constant zeros Thus, roll mode approximation is obtained by ignoring side slip and yaw rate dynamics (deleting β 𝑎𝑛𝑑 𝑟) 1 1 Ixz Ixz p Lp N p 0 p L a N a I xx I xx D D 0 1 0 1 Ixz L N a a a D I xx r 0 1 Ixz 1 Ixz 1 Ixz p Lp N p p L a N a a L r N r r D I xx D I D I xx xx A roll damper thus provides augmentation from the aileron to increase the roll damping Dutch Roll Mode Approximation The approximation is based on the following observations: • Dominant in side slip, yaw rate, and roll rate • The vehicle bank angle has no components and can be assumed to be zero Thus, Dutch roll mode approximation is obtained by ignoring vehicle roll angle (deleting 𝜑) 1 Y U 0 Ixz 1 p L N D I xx r 1 L Ixz N D I zz 1 Yp U0 1 Ixz Np Lp D I xx 1 Ixz Np Lp D I zz 1 1 Y a Yr U 0 U0 U 0 1 Ixz 1 Ixz N r p L a N a Lr D I xx I xx r D 1 Ixz 1 L Ixz N N r Lr a D a I zz D I zz a 1 Ixz N r L r D I xx r 1 Ixz N r L r D I zz 1 Y r U0 Dutch Roll Mode Approximation Now we also know that the roll rate is dominated by the roll mode Thus, in the Dutch roll mode approximation the roll rate derivative should be set to zero (by singular perturbation theory) 1 Y U 0 1 Ixz 0 D L I N xx r L' 1 Ixz N L I zz D ' N 1 Yp U0 1 Ixz Np Lp D I xx L'p 1 Ixz Np Lp D I zz N 'p 1 1 Y a Yr U 0 U0 U 0 1 1 Ixz Ixz L N N a r L a r p D I xx I xx r D L'r L' a Ixz 1 Ixz 1 L N N r a a Lr D I zz D I zz ' ' Na Nr 1 Y r U0 a 1 Ixz L N r r D I xx r L' r 1 Ixz N r L r D I zz ' Nr Solving the algebraic equation, we get the following relation between roll rate, sideslip and yaw rate 1 p ' L' L'r r L' a a L' r r Lp Dutch Roll Mode Approximation Substitute for the roll rate to obtain the Dutch-roll approximation 1 L' 1 Y Y p ' U0 Lp U 0 L' r ' ' N N p ' Lp 1 1 L'r Yr U 0 Yp ' U0 U0 Lp r ' ' ' Lr Nr N p ' Lp 1 L' a 1 U Y a U Y p L' 0 0 p ' ' ' L a N a N p ' Lp L' r 1 1 Y r Y p ' U0 U0 L p a ' r ' ' L r N a N p ' L p Navion Aircraft Dutch roll eigenvalue using the 4X4 lateral-directional state: -0.4867 ± 2.3349i; 𝜁 = 0.204, 𝜔 = 2.39𝑟𝑎𝑑/𝑠𝑒𝑐 Text obtains Dutch roll approximation by neglecting Np’ and Lr’ (Np’=0.3498 and LrP’ =2.193) Eigenvalues: -0.5074±2.105𝑗; 𝜁 = 0.234, 𝜔 = 2.16𝑟𝑎𝑑/𝑠𝑒𝑐 Using the derived approximation: -0.5531 ± 2.2519i; 𝜁 = 0.239, 𝜔 = 2.32𝑟𝑎𝑑/𝑠𝑒𝑐 Navion Aircraft (Text approximation)
© Copyright 2026 Paperzz