Andrea Cangiani (University of Leicester) Τίτλος

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ
ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
Ηρώων Πολυτεχνείου 5
Πολυτεχνειούπολη Ζωγράφου, Κτήριο Ε
TK. 157 73, ΑΘΗΝΑ
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF APPLIED MATHEMATICAL AND
PHYSICAL SCIENCES
DEPARTMENT OF MATHEMATICS
5, Heroes of Polytechniou Avenue
Zografou Campus, E Building
GR.-157 73 ATHENS, GREECE
: + 30 210 772 1748, 1744, 3291 - Telefax: + 30 210 77 21775
Αθήνα, 3/5/2017
ΔΙΑΛΕΞΗ
Ομιλητής: Andrea Cangiani
(University of Leicester)
Τίτλος : «A Posteriori Error Estimation and Adaptivity for the Virtual Element
Method »
Περίληψη: We present a posteriori error analyses for the Virtual Element Method (VEM) applied to
second order elliptic and parabolic problems. The resulting error estimators are of residual-type and apply
on very general polygonal/polyhedral meshes. They are fully computable in the sense that they rely only
on quantities available from the Virtual Element solution, namely its degrees of freedom and element-wise
polynomial projection. The error estimators are used to drive adaptive mesh refinement in a number of
test problems, including reaction-diffusion systems relevant to cyclic competition models from
mathematical biology. The VEM mesh generality makes mesh adaptation particularly simple to implement
since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes
do not require any post-processing. Furthermore, mesh generality opens the way to endless possibilities on
how one may refine and coarsen. The design of adaptive algorithms able to exploit such flexibility is,
however, a non-trivial task and something that we just started to explore.
Joint work with E. H. Georgoulis, T. Pryer, O. Sutton.
Η ομιλία θα δοθεί την Τετάρτη 10 Μαΐου 2017 και ώρα 12:30, στην Αίθουσα
Σεμιναρίων του Τομέα Μαθηματικών, κτ. Ε΄, 2ος όροφος.
Η Επιτροπή Σεμιναρίων