ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ηρώων Πολυτεχνείου 5 Πολυτεχνειούπολη Ζωγράφου, Κτήριο Ε TK. 157 73, ΑΘΗΝΑ NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES DEPARTMENT OF MATHEMATICS 5, Heroes of Polytechniou Avenue Zografou Campus, E Building GR.-157 73 ATHENS, GREECE : + 30 210 772 1748, 1744, 3291 - Telefax: + 30 210 77 21775 Αθήνα, 3/5/2017 ΔΙΑΛΕΞΗ Ομιλητής: Andrea Cangiani (University of Leicester) Τίτλος : «A Posteriori Error Estimation and Adaptivity for the Virtual Element Method » Περίληψη: We present a posteriori error analyses for the Virtual Element Method (VEM) applied to second order elliptic and parabolic problems. The resulting error estimators are of residual-type and apply on very general polygonal/polyhedral meshes. They are fully computable in the sense that they rely only on quantities available from the Virtual Element solution, namely its degrees of freedom and element-wise polynomial projection. The error estimators are used to drive adaptive mesh refinement in a number of test problems, including reaction-diffusion systems relevant to cyclic competition models from mathematical biology. The VEM mesh generality makes mesh adaptation particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any post-processing. Furthermore, mesh generality opens the way to endless possibilities on how one may refine and coarsen. The design of adaptive algorithms able to exploit such flexibility is, however, a non-trivial task and something that we just started to explore. Joint work with E. H. Georgoulis, T. Pryer, O. Sutton. Η ομιλία θα δοθεί την Τετάρτη 10 Μαΐου 2017 και ώρα 12:30, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών, κτ. Ε΄, 2ος όροφος. Η Επιτροπή Σεμιναρίων
© Copyright 2026 Paperzz