Introduction to Data Assimilation Quintin Schiller GEM Student Tutorial June 17th 2012 Snowmass, CO Data Assimilation Data assimilation combines sparse observations with a physical model to generate a better estimate of the global system. Generally, data assimilation incorporates the errors associated with the measurements and model to find the best estimate. Introduction Kalman Filters A Simple Case Applications Weather Prediction 60% Probability Cone Introduction Kalman Filters A Simple Case Applications Orbit Determination Error Ellipse Introduction Kalman Filters A Simple Case Applications Electric Potential AMIE Ionosphere Prediction GAIM TEC Introduction Kalman Filters A Simple Case Applications Global Magnetosphere Environment Introduction Kalman Filters A Simple Case Applications Complexity Types of Assimilation Introduction Non-linearity 4DVAR Kalman Filters 3DVAR Direct Injection Optimum Interpolation ‘Nudging’ Interpolation of observations Kalman Filters A Simple Case Applications Complexity Types of Assimilation Introduction Non-linearity 4DVAR Kalman Filters 3DVAR Direct Injection Optimum Interpolation ‘Nudging’ Interpolation of observations Kalman Filters A Simple Case Applications Kalman Filter An optimal recursive estimator that minimizes the mean of the squared error in observations and model. Optimized for Gaussian errors. Consists of two major operations: 1) Analysis Step (Update Step) 2) Forecast Step Introduction Kalman Filters A Simple Case Applications Observations Observation Errors Update Step t • Compare observation and model errors • Use obs to update state • Update state covariance Introduction Kalman Filters A Simple Case Applications Observations Observation Errors Update Step t • Compare observation and model errors • Use obs to update state • Update state covariance Forecast Step t+1 • Use model to propagate state vector • Use model to propagte state covariance Analysis State • Analysis state vector • Analysis covariance Observations Observation Errors Update Step t • Compare observation and model errors • Use obs to update state • Update state covariance Forecast Step t+1 • Use model to propagate state vector • Use model to propagte state covariance Analysis State • Analysis state vector • Analysis covariance Forecast State • Forecast state vector • Forecast covariance Simple Case Introduction Kalman Filters A Simple Case Applications Simple Case Introduction Kalman Filters A Simple Case Applications Simple Case Introduction Kalman Filters A Simple Case Applications Simple Case Introduction Kalman Filters A Simple Case Applications Simple Case You Introduction Kalman Filters A Simple Case Applications Observations h 10% y y v 10% Introduction Kalman Filters A Simple Case Applications Observations h 10% y y v 10% Physical Model 1 2 h h v t at 0 0 2 h 10 y x v 10 y a 0.001 h v Introduction Kalman Filters A Simple Case Applications Observations h 10% y y v 10% Physical Model 1 2 h h v t at 0 0 2 h 10 y x v 10 y a 0.001 h State Vector (Estimateables) h x v a v Introduction Kalman Filters A Simple Case Applications 1 2 h h0 v 0 t at 2 Introduction Kalman Filters A Simple Case Applications Height Assimilated State Time Introduction Kalman Filters A Simple Case Applications Model State Assimilated State Height Forecast Step Time Introduction Kalman Filters A Simple Case Applications Model State Observation Assimilated State Height Update Step Update Time Introduction Kalman Filters A Simple Case Applications Model State Observation Assimilated State Height Forecast Step Time Introduction Kalman Filters A Simple Case Applications Model State Observation Assimilated State Height Update Step Update Time Introduction Kalman Filters A Simple Case Applications Model State Observation Assimilated State Height Forecast Step Time Introduction Kalman Filters A Simple Case Applications Model State Observation Assimilated State Height Repeat! Time Introduction Kalman Filters A Simple Case Applications 1 2 h h0 v 0 t at 2 2 1 v Cd A 2 h h0 v 0 t a t 2 m h x v a Introduction Kalman Filters A Simple Case Applications Introduction Kalman Filters A Simple Case Applications h x v a Introduction Kalman Filters A Simple Case Applications h x v a 2 1 v Cd A 2 h h0 v 0 t a t 2 m Introduction Kalman Filters A Simple Case Applications Application to the Magnetosphere Introduction Kalman Filters A Simple Case Applications Observations 30%(?) PSDSat1 y y 70%(?) PSDSat2 (For constant 1st and 2nd adiabatic invariants) Introduction Kalman Filters A Simple Case Applications Observations 30%(?) PSDSat1 y y 70%(?) PSDSat2 Physical Model DLL f f f 2 L 2 S t L L L 10 (?) f L 10 y x M M 10 (?) y f L 2 Introduction Kalman Filters A Simple Case Applications Observations 30%(?) PSDSat1 y y 70%(?) PSDSat2 Physical Model DLL f f f 2 L 2 S t L L L State Vector (Estimateables) PSDL 10 PSD L 9.97 x M PSD L 2.25 PSDL 2 10 (?) f L 10 y x M M 10 (?) y f L 2 Introduction Kalman Filters A Simple Case Applications State Vector Observations Error Covariance Backups Obs. Information yt Rt Update Step t=ti Kt=PftHTt[HtPftHTt+Rt]-1 xat=xft+Kt [yt-Htxft] Pat=(I-KtHt)Pft Prediction Step tt+1 Xft+1=Φt+1,txat P=Φt+1,tPatΦTt+1,t+Qt Analysis State xat Pat Forecast State xft Pft
© Copyright 2026 Paperzz