Lecture 5. Single Equilibrium Stages (1) ( ) [Ch. 4] • Phase Separation • Degree of Freedom Analysis F C P2 - Gibbs phase rule - General analysis • Binary Vapor-Liquid Systems - Examples of binary system Phase equilibrium diagram q-line Phase diagram for constant relative volatility • Azeotropic Systems Phase Separation V • Simplest separation processes - Two phases in contact physical equilibrium phase separation - If th the separation ti ffactor t iis llarge, a single contact stage may be sufficient - If the separation p factor is not large, g , multiple stages are required V/L • Separation factor for vapor-liquid equilibrium p p q q K LK LK , HK (relative volatility ) K HK = 10,000 : almost perfect separation in a single stage = 1.10 : almost perfect separation requires hundreds of stages • Calculation for separation operations : material balances, phase equilibrium relations, and energy balance L Gibbs Phase Rule • Variables - Intensive variables : Do not depend on system size; temperature, pressure, phase compositions -E Extensive t i variables i bl : Depend D d on system t size; i ; mass, moles, energy; mass or molar flow rates, energy transfer rates • Degree off freedom, f d F Number of independent variables (variance) • Gibbs phase rule Relation between the number of independent intensive variables at equilibrium F C P2 C : Number of components at equilibrium P : Number of phases at equilibrium Degree of Freedom Analysis (1) • Gibbs phase rule : consider equilibrium intensive variables only Variables yi T, P : 2 variables xi, yi, … : C×P variables Equations T, P C x i 1 1 and fi fi L xi i C y i 1 V i yi or K i xi 1 P equations C (P 1) equations (P-1) F = ((2 + CP)) – P – C(P ( - 1)) = C – P + 2 For a binary VLE system (F=2) : given T, P determine x and y Degree of Freedom Analysis (2) • General analysis: consider all intensive and extensive variables V yi Variables T, P : 2 xi, yi ,… : C×P + zi, TF, PF, F Q, F, Q [V, L,…] C+P+4 in general (C+6 for VLE) q Equations F zi TF PF T,P P + C(P-1) equations + Fzi Vyi Lxi Q L xi C+1 equations FhF Q VhV LhL F = (2+CP) + (C+P+4) – [P+C(P-1)] - (C+1) =C+5 C If we consider z i 1 i 1 F = C + 4 Binary VaporVapor-Liquid Systems • Experimental vapor-liquid vapor liquid equilibrium data for binary systems (A and B) are widely available e.g. Perry’s handbook • Types of equilibrium data P y x - Isothermal : P-y-x - Isobaric : T-y-x • If P and d T are fixed fi d phase h compositions ii are completely l l defined ⇒ separation factor (relative volatility for vapor vapor-liquid) liquid) is also fixed A, B K A ( y A / xA ) ( y A / xA ) K B ( yB / xB ) (1 y A ) /(1 x A ) A is the more-volatile component (yA > xA) Examples of Binary System • Water + Glycerol - Normal boiling point difference : 190 ℃ - Relative volatility : very high ⇒ Good separation in a single equilibrium stage • Methanol + Water - Normal boiling point difference : 35.5 ℃ - Relative volatility : intermediate ⇒ About 30 trays are required for an acceptable separation • p-xylene + m-xylene - Normal boiling point difference : 0.8 ℃ - Relative volatility : close to 1.0 - Distillation Di till ti separation ti iis iimpractical ti l : about b t1 1,000 000 ttrays are required i d ⇒ Crystallization or adsorption is preferred T = 50 ℃ 9 8 7 6 5 4 3 2 1 0 200 150 100 50 0 0 0.2 0.4 0.6 0.8 1 Composition 0 0.2 0.4 0.6 0.8 1 Composition T = 250 ℃ 1400 • As T becomes higher, relative volatilityy becomes smaller Separation becomes difficult 1200 Pressure, p psia T = 150 ℃ 250 Presssure, psia Presssure, psia Equilibrium Data for MethanolMethanol -Water System (1) 1000 800 600 400 p by y • At 250 oC no separation distillation when x ≥ 0.772 200 0 0 0.2 0.4 0.6 Composition 0.8 1 Equilibrium Data for MethanolMethanol -Water System (2) • (relative volatility) = 1.0 The separation by distillation is not possible ∵ Th The compositions iti off th the vapor and liquid are identical and two phases become one phase yA = xA Tc (℃) Pc (psia) 0.000 374.1 3,208 0.772 250 1,219 1.000 240 1,154 In industry, distillation columns operate at pressures below Pc Phase Equilibrium Diagram Methanol-water system y-x diagram di att 1 atm t n hexane-n octane system T-y-x diagram at 1 atm Dew point Tie line P-x diagram at 150 ℃ Bubble point q-line n hexane-n octane system y-x phase diagram at 1 atm Fz H VyyH LxH F V L (V / F ) 1 1 yH xH zH (V / F ) (V / F ) Feed mixture, F with overall composition zH = 0.6 For 60 mol% F l% vaporization, i ti slope = (0.6-1)/0.6 = -2/3 ⇒ Equilibrium q composition p from equilibrium curve : yH = 0.76 and xH = 0.37 Slope=0, (V/F)=1 : vapor only Slope=∞, (V/F)=0 : liquid only y-x Phase Diagram for Constant Relative Volatility • Relative volatility A, B y A / xA y A / xA yB / xB (1 y A ) /(1 x A ) If A,B is assumed constant over the entire composition range, the y-x phase equilibrium curve can be determined using A,B A, B x A yA 1 x A ( A, B 1) For an ideal solution, A,B can be approximated with Raoult’s law A, B K A PAsat / P PAsat sat sat K B PB / P PB Azeotropic systems (1) • Azeotropes : formed by liquid mixtures exhibiting minimum- or maximum-boiling i b ili points i t - Homogeneous or heterogeneous azeotropes Isopropyl ether-isopropyl alcohol at 101 kPa Acetone-chloroform at 101 kPa • Identical vapor and liquid compositions at the azeotropic composition all K-values are 1 no separation by ordinary distillation Azeotropic systems (2) • Azeotropes limit the separation achievable by ordinary distillation ⇒ Changing pressure sufficiently : shift the equilibrium to break the azeotrope or move it • Azeotrope formation can be used to achieve difficult separations An entrainer (MSA) is added combining with one or more of the components in the feed forming a minimum-boiling azeotrope recover as the distillate e.g. e g heterogeneous azeotropic distillation: addition of benzene to an alcohol-water mixture
© Copyright 2026 Paperzz