MA1251 Numerical Methods Mr. K E SATHAPPAN

LP- MA1251/
LESSON PLAN
MA2264
LP Rev. No: 00
Date: 05.12.09
Sub Code & Name : MA1251/MA2264 - Numerical Methods
Page 1 of 6
Unit: I
Branch: EEE/CSE/MECH/IT/CH /CI
Semester : IV/VI
Unit syllabus: Solution of Equations and Eigen value problems
Linear interpolation methods ( Method of False position) – Newton’s method – statement of Fixed point theorem
– Fixed point iteration x: = g(x) method – Solution of linear system by Gauss elimination method and Gauss
Jordan method- Iterative methods – Gauss Jacobi method and Gauss-seidel method- inverse of a matrix by gauss
jordan method – Eigen value of a matrix by Power method.
Objective: To know how to Solve the given algebraic or transcental equation.
Session
No
1
Topics to be covered
Introduction of the syllabus and Unit I
Time
50m
Ref
2,3
Teaching
Method
BB
2
Method of False position
50m
2,3
BB
3
Newton Raphson method and problems
50m
2,3
BB
4
Fixed point iteration: x=g(x) method and problems
50m
2,3
BB
5
Solution to linear system of equation Gauss elimination method
50m
2,3
BB
6
Gauss Jordan method
50m
2,3
BB
7
Iterative methods : Gauss Jacobi method Problems
50m
2,3
BB
8
Gauss Seidel method- problems
50m
2,3
BB
9
Tutorial
50m
2,3
BB
10
Eigen value problems – Power method
50m
2,3
BB
11
Tutorial
50m
2,3
BB
12
Summarization of unit I
50m
LESSON PLAN
LP- MA1251/
MA2264
LP Rev. No: 00
Sub Code & Name : MA 1251/MA2264 - Numerical Methods
Unit: II
Branch: EEE/CSE/MECH/IT/CH /CI
Semester : IV/VI
Date: 05.12.09
Page 2 of 6
Unit syllabus: Interpolation and Approximation
Lagrangian polynomials – Divided Differences – Interpolating with a cubic spline – Newton’s forward and back
ward difference formulas.
Objective: To Know how to interpolate or extrapolate with the data available.
Session
No
13
Topics to be covered
Introduction of the syllabus and Unit II
Time
50m
Ref
1,2,4
Teaching
Method
BB
14
Lagrangian polynomial method
50m
1,2,4
BB
15
Divided differences method
50m
1,2,4
BB
16
Divided differences methods and problems
50m
1,2,4
BB
17
Tutorial
50m
1,2,4
BB
18
Interpolating with a cubic spline
50m
1,2,4
BB
19
cubic spline problems
50m
1,2,4
BB
20
CAT-I
1.15hr
21
Newton’s Forward differences method
50m
1,2,4
BB
22
Newton’s backward differences method
50m
1,2,4
BB
23
Tutorial
50m
1,2,4
BB
24
Summarization of the Unit II
50m
LESSON PLAN
LP- MA1251/
MA2264
Sub Code & Name : MA 1251/MA2264 - Numerical Methods
Unit: III Branch: EEE/CSE/MECH/IT/CH /CI
Semester : IV/VI
LP Rev. No: 00
Date: 05.12.09
Page 3 of 6
Unit syllabus: Numerical Differentiation and Integration.
Derivative from Difference table – Divided Differences and finite differences – Numerical integration by
Trapezoidal, Simpson’s 1/3 and 3/8 rules – Romberg Method – Two and three point guassian quadrature formulas
– Double integration using Trapezoidal and simpson’s rules.
Objective: To acquire the knowledge of finding numerical values of differentiations and integrations.
Session
No
25
Topics to be covered
Introduction to the unit. III. Derivative from the Difference table
Time
50m
Ref
1,2,4
Teaching
Method
BB
26
Derivatives from Divided differences
50m
1,2,4
BB
27
From Finite differences
50m
1,2,4
BB
28
Numerical Integration by Trapezoidal rule and problems
50m
1,2,4
BB
29
Simpson’s 1/3 rule and problems
50m
1,2,4
BB
30
Simpson’s 3/8 rule and problems
50m
1,2,4
BB
31
Romberg’s method and problems
50m
1,2,4
BB
32
Two and three point Gaussian quadrature formulas and problems
50m
1,2,4
BB
33
Double integration by Trapezoidal method and Problems
50m
1,2,4
BB
34
Double integration by Simpson’s rules and Problems
50m
1,2,4
BB
35
Summarization of Unit III
50m
36
CAT-II
1.15hr
LESSON PLAN
LP- MA1251/
MA2264
LP Rev. No: 00
Sub Code & Name : MA 1251/MA2264 - Numerical Methods
Unit: IV
Date: 05.12.09
Branch: EEE/CSE/MECH/IT/CH /CI Semester : IV/VI
Page 4 of 6
Unit syllabus: Initial value problems for ODE.
Single step Methods – Taylor series method-Euler and Modified Euler method – Fourth order Runge Kutta
method for solving first and second order equations – Multistep methods – Miline’s and Adam’s Predicator and
corrector methods.
Objective: To know how to solve the given ODE, numerically.
Session
No
37
Topics to be covered
Introduction of the syllabus and Unit IV
Time
50m
Ref
1,2,3
Teaching
Method
BB
38
Taylor series method and Problems
50m
1,2,3
BB
39
Euler method and problems
50m
1,2,3
BB
40
Modified Euler method and problems
50m
1,2,3
BB
41
Tutorial
50m
1,2,3
BB
42
Fourth order Runge Kutta method and problems
50m
1,2,3
BB
43
Problems
50m
1,2,3
BB
44
Multi step method Miline’s method and problems
50m
1,2,3
BB
45
Tutorial
50m
1,2,3
BB
46
Adam’s method and problems
50m
1,2,3
BB
47
Tutorial
50m
1,2,3
BB
48
Summarization of the unit IV
50m
LESSON PLAN
LP- MA1251/
MA2264
Sub Code & Name : MA 1251/MA2264 - Numerical Methods
Unit: V
Branch: EEE/CSE/MECH/IT/CH /CI
Semester : IV/VI
LP Rev. No: 00
Date: 05.12.09
Page 5 of 6
Unit syllabus: Boundary value problems in ordinary and partial differential equations.
Finite difference solution to second order ordinary differential equation – finite difference Solution to one
dimensional heat equationby explicit and implicit methods- one dimensional Wave equation and two dimensional
Laplace and poisson equation.
Objective: To know how to solve the boundary value problems numerically.
Session
No
49
Topics to be covered
Introduction of the syllabus and Unit V
Time
50m
Ref
1,2,4
Teaching
Method
BB
50
Finite difference solution of second order ODE
50m
1,2,4
BB
51
Finite difference solution of one dimensional heat equation
By explicit method
50m
1,2,4
BB
52
Problems
50m
1,2,4
BB
53
Implicit method
50m
1,2,4
BB
54
One dimensional wave equation – problems
50m
1,2,4
BB
55
Two dimensional Laplace equation – problems
50m
1,2,4
BB
56
Tutorial
50m
1,2,4
BB
57
Two dimensional Poisson equation – problems
50m
1,2,4
BB
58
Tutorial
50m
1,2,4
BB
59
Summarizing the unit V
50m
60
CAT-III
1.15hr
LESSON PLAN
LP- MA1251/
MA2264
LP Rev. No: 00
Sub Code & Name : MA 1251/MA2264 - Numerical Methods
Branch: EEE/CSE/MECH/IT/CH /CI
Date: 05.12.09
Semester : IV/VI
Page
6 of 6
Course Delivery Plan:
Week
1
I II
2
3
4
5
6
7
8
9
10
11
12
13
14
15
I II
I II
I II
I II
I II
I II
I II
I II
I II
I II
I II
I II
I II
I II
Units
References:
1.
2.
3.
4.
C F Gerald and P O Wheatly, “Applied Numerical Analysis”, Sixth edition, Pearson Education
Asia, New Delhi, 2002.
E Balagurusamy, “Numerical Methods”, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 1999.
P Kandhasamy, K Thilakavathy and K Gunavathy, “Numerical Methods”, S Chand Co. Ltd,
NewDelhi,2003.
R L Burden and T D Faires, “Numerical Analysis”, Seventh Edition, Thomson Asia Pvt. Ltd.
Singapore, 2002.
Prepared by
Approved by
Name
KE.Sathappan
Dr.R.Muthucumaraswamy
Designation
Senior Lecturer
HOD/AM
05.12.2009
05.012.2009
Signature
Date