LP- MA1251/ LESSON PLAN MA2264 LP Rev. No: 00 Date: 05.12.09 Sub Code & Name : MA1251/MA2264 - Numerical Methods Page 1 of 6 Unit: I Branch: EEE/CSE/MECH/IT/CH /CI Semester : IV/VI Unit syllabus: Solution of Equations and Eigen value problems Linear interpolation methods ( Method of False position) – Newton’s method – statement of Fixed point theorem – Fixed point iteration x: = g(x) method – Solution of linear system by Gauss elimination method and Gauss Jordan method- Iterative methods – Gauss Jacobi method and Gauss-seidel method- inverse of a matrix by gauss jordan method – Eigen value of a matrix by Power method. Objective: To know how to Solve the given algebraic or transcental equation. Session No 1 Topics to be covered Introduction of the syllabus and Unit I Time 50m Ref 2,3 Teaching Method BB 2 Method of False position 50m 2,3 BB 3 Newton Raphson method and problems 50m 2,3 BB 4 Fixed point iteration: x=g(x) method and problems 50m 2,3 BB 5 Solution to linear system of equation Gauss elimination method 50m 2,3 BB 6 Gauss Jordan method 50m 2,3 BB 7 Iterative methods : Gauss Jacobi method Problems 50m 2,3 BB 8 Gauss Seidel method- problems 50m 2,3 BB 9 Tutorial 50m 2,3 BB 10 Eigen value problems – Power method 50m 2,3 BB 11 Tutorial 50m 2,3 BB 12 Summarization of unit I 50m LESSON PLAN LP- MA1251/ MA2264 LP Rev. No: 00 Sub Code & Name : MA 1251/MA2264 - Numerical Methods Unit: II Branch: EEE/CSE/MECH/IT/CH /CI Semester : IV/VI Date: 05.12.09 Page 2 of 6 Unit syllabus: Interpolation and Approximation Lagrangian polynomials – Divided Differences – Interpolating with a cubic spline – Newton’s forward and back ward difference formulas. Objective: To Know how to interpolate or extrapolate with the data available. Session No 13 Topics to be covered Introduction of the syllabus and Unit II Time 50m Ref 1,2,4 Teaching Method BB 14 Lagrangian polynomial method 50m 1,2,4 BB 15 Divided differences method 50m 1,2,4 BB 16 Divided differences methods and problems 50m 1,2,4 BB 17 Tutorial 50m 1,2,4 BB 18 Interpolating with a cubic spline 50m 1,2,4 BB 19 cubic spline problems 50m 1,2,4 BB 20 CAT-I 1.15hr 21 Newton’s Forward differences method 50m 1,2,4 BB 22 Newton’s backward differences method 50m 1,2,4 BB 23 Tutorial 50m 1,2,4 BB 24 Summarization of the Unit II 50m LESSON PLAN LP- MA1251/ MA2264 Sub Code & Name : MA 1251/MA2264 - Numerical Methods Unit: III Branch: EEE/CSE/MECH/IT/CH /CI Semester : IV/VI LP Rev. No: 00 Date: 05.12.09 Page 3 of 6 Unit syllabus: Numerical Differentiation and Integration. Derivative from Difference table – Divided Differences and finite differences – Numerical integration by Trapezoidal, Simpson’s 1/3 and 3/8 rules – Romberg Method – Two and three point guassian quadrature formulas – Double integration using Trapezoidal and simpson’s rules. Objective: To acquire the knowledge of finding numerical values of differentiations and integrations. Session No 25 Topics to be covered Introduction to the unit. III. Derivative from the Difference table Time 50m Ref 1,2,4 Teaching Method BB 26 Derivatives from Divided differences 50m 1,2,4 BB 27 From Finite differences 50m 1,2,4 BB 28 Numerical Integration by Trapezoidal rule and problems 50m 1,2,4 BB 29 Simpson’s 1/3 rule and problems 50m 1,2,4 BB 30 Simpson’s 3/8 rule and problems 50m 1,2,4 BB 31 Romberg’s method and problems 50m 1,2,4 BB 32 Two and three point Gaussian quadrature formulas and problems 50m 1,2,4 BB 33 Double integration by Trapezoidal method and Problems 50m 1,2,4 BB 34 Double integration by Simpson’s rules and Problems 50m 1,2,4 BB 35 Summarization of Unit III 50m 36 CAT-II 1.15hr LESSON PLAN LP- MA1251/ MA2264 LP Rev. No: 00 Sub Code & Name : MA 1251/MA2264 - Numerical Methods Unit: IV Date: 05.12.09 Branch: EEE/CSE/MECH/IT/CH /CI Semester : IV/VI Page 4 of 6 Unit syllabus: Initial value problems for ODE. Single step Methods – Taylor series method-Euler and Modified Euler method – Fourth order Runge Kutta method for solving first and second order equations – Multistep methods – Miline’s and Adam’s Predicator and corrector methods. Objective: To know how to solve the given ODE, numerically. Session No 37 Topics to be covered Introduction of the syllabus and Unit IV Time 50m Ref 1,2,3 Teaching Method BB 38 Taylor series method and Problems 50m 1,2,3 BB 39 Euler method and problems 50m 1,2,3 BB 40 Modified Euler method and problems 50m 1,2,3 BB 41 Tutorial 50m 1,2,3 BB 42 Fourth order Runge Kutta method and problems 50m 1,2,3 BB 43 Problems 50m 1,2,3 BB 44 Multi step method Miline’s method and problems 50m 1,2,3 BB 45 Tutorial 50m 1,2,3 BB 46 Adam’s method and problems 50m 1,2,3 BB 47 Tutorial 50m 1,2,3 BB 48 Summarization of the unit IV 50m LESSON PLAN LP- MA1251/ MA2264 Sub Code & Name : MA 1251/MA2264 - Numerical Methods Unit: V Branch: EEE/CSE/MECH/IT/CH /CI Semester : IV/VI LP Rev. No: 00 Date: 05.12.09 Page 5 of 6 Unit syllabus: Boundary value problems in ordinary and partial differential equations. Finite difference solution to second order ordinary differential equation – finite difference Solution to one dimensional heat equationby explicit and implicit methods- one dimensional Wave equation and two dimensional Laplace and poisson equation. Objective: To know how to solve the boundary value problems numerically. Session No 49 Topics to be covered Introduction of the syllabus and Unit V Time 50m Ref 1,2,4 Teaching Method BB 50 Finite difference solution of second order ODE 50m 1,2,4 BB 51 Finite difference solution of one dimensional heat equation By explicit method 50m 1,2,4 BB 52 Problems 50m 1,2,4 BB 53 Implicit method 50m 1,2,4 BB 54 One dimensional wave equation – problems 50m 1,2,4 BB 55 Two dimensional Laplace equation – problems 50m 1,2,4 BB 56 Tutorial 50m 1,2,4 BB 57 Two dimensional Poisson equation – problems 50m 1,2,4 BB 58 Tutorial 50m 1,2,4 BB 59 Summarizing the unit V 50m 60 CAT-III 1.15hr LESSON PLAN LP- MA1251/ MA2264 LP Rev. No: 00 Sub Code & Name : MA 1251/MA2264 - Numerical Methods Branch: EEE/CSE/MECH/IT/CH /CI Date: 05.12.09 Semester : IV/VI Page 6 of 6 Course Delivery Plan: Week 1 I II 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I II I II I II I II I II I II I II I II I II I II I II I II I II I II Units References: 1. 2. 3. 4. C F Gerald and P O Wheatly, “Applied Numerical Analysis”, Sixth edition, Pearson Education Asia, New Delhi, 2002. E Balagurusamy, “Numerical Methods”, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 1999. P Kandhasamy, K Thilakavathy and K Gunavathy, “Numerical Methods”, S Chand Co. Ltd, NewDelhi,2003. R L Burden and T D Faires, “Numerical Analysis”, Seventh Edition, Thomson Asia Pvt. Ltd. Singapore, 2002. Prepared by Approved by Name KE.Sathappan Dr.R.Muthucumaraswamy Designation Senior Lecturer HOD/AM 05.12.2009 05.012.2009 Signature Date
© Copyright 2026 Paperzz