Complex Molecular Evolutionary Models and Information Theoretic Approaches Provide Genomic Perspectives on Amphibian Evolution Paul M. Hime 16 May, 2017 Blue Waters Symposium [email protected] The Evolution of Life on Earth • All life traces its origins back to a single common ancestor nearly 4 billion years ago • But today, there are tens of millions of species! • Reconstructing the genealogy of life is fundamental to nearly all areas of modern biology. The Evolution of Life on Earth “Nothing in biology makes sense, except in light of evolution” Dobzhansky “Nothing in evolutionary biology makes sense, except in light of phylogeny” All Organisms on Earth Trace Their Origins Back to a Single Common Ancestor Genomes Are Documents of Evolutionary History Organisms’ Genomes Evolve through Time Phylogenetic Reconstruction • Phylogenies are hypotheses about ancestor - descendent relationships. • These can be estimated from genetic data (in the context of a model). • Simple case: enumerate all possible trees, pick the “best”. • Tree space explodes factorially with increasing numbers of taxa. • Use heuristic search strategies to explore tree- and parameter-space. Models in Evolutionary Biology • Evolutionary biology is an inherently historical discipline. • In evolutionary biology, one cannot “replay the tape” of life... • We use statistical approaches to compare competing sets of models, in the light of data which we collect. “All models are wrong. Some are useful.” George Box Data ≠ Information (Except in the Context of an Appropriate Model) Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Data ≈ Information (Except in the Context of an Appropriate Model) Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG * * informative site informative site Models of Nucleotide Substitution Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG * * informative site informative site Multi-sequence Alignment General time-reversible substitution matrix Gamma-distributed rate heterogeneity across sites (discretized in practice) Codon-Based Models of Molecular Evolution The Multispecies Coalescent Model Gene divergences always predate species divergences Stochastic coalescent processes can lead to gene tree / species tree discordance Modified from Leliaert et al. 2014 Gene Tree - Species Tree Discordance Population-Level Processes Affect The Expected Distributions of Gene Coalescence Luay Nakhleh Conflicting phylogenetic signal from different loci is expected, especially for more recent divergence events and large effective population sizes. What about at deep scales? Many loci (regions of the genome) may be needed for difficult questions. The Genomics Revolution in Evolutionary Biology It has never been easier to collect genomic data in non-model organisms. The Genomics Revolution in Evolutionary Biology It has never been easier to collect genomic data in non-model organisms. It has never been easier to collect genomic data in non-model organisms. Data ≠ Information (Except in the Context of an Appropriate Model) Data ≠ Information (Except in the Context of an Appropriate Model) Data ≠ Information (Except in the Context of an Appropriate Model) Data ≠ Information (Except in the Context of an Appropriate Model) Some of the Many Tradeoffs in Phylogenomics The genomic revolution is now offering unprecedented opportunities to tackle thorny questions in evolutionary biology. But these opportunities bring analytical and computational costs. Some of the Many Tradeoffs in Phylogenomics The genomic revolution is now offering unprecedented opportunities to tackle thorny questions in evolutionary biology. But these opportunities bring analytical and computational costs. Genomic perspectives on the amphibian tree of life • Amphibians provide a rich system for testing phylogenetic hypotheses at both deep and shallow scales of divergence. • What is the topology of the amphibian Tree of Life??? • How confident are we in that topology? • What are the inter-ordinal relationships? • What is the nature of support across the genome? • What are “best” practices with large phylogenomic data sets??? Extant Amphibian Diversity Amphibians - 7,660 species as of 28 April, 2017 (http://AmphibiaWeb.org) The three amphibian orders likely diverged 300+ MYA. Map from BiodiversityMapping.org Extant Amphibian Diversity Caecilians (Gymnophiona) - 205 species, 33 genera, 10 families Map from BiodiversityMapping.org Extant Amphibian Diversity Salamanders (Caudata) - 695 species, 68 genera, 10 families Map from BiodiversityMapping.org Extant Amphibian Diversity Frogs and Toads (Anura) - 6,760 species, 448 genera, 55-65 families Map from BiodiversityMapping.org Amphibian Relationships Hundreds of studies have addressed phylogenetic affinities of amphibians... Amphibian Relationships Hundreds of studies have addressed phylogenetic affinities of amphibians... This project aims to sample hundreds of nuclear genes for hundreds of amphibian species Inter-Ordinal Amphibian Relationships Three main hypotheses for phylogenetic relationships among the three amphibian orders (assuming that Amphibia is monophyletic...) Batrachia Acauda Procera The potential resolutions of these deep branches each have very different implications for our understanding of amphibian evolution. Inter-Ordinal Amphibian Relationships • There are 15 possible topologies for the three amphibian orders and Inter-Ordinal Amphibian Relationships amniotes, assuming that Amphibia may or may NOT be monophyletic.. Three main hypotheses for phylogenetic relationships among the three amphibian orders (assuming that Amphibia is monophyletic...) Batrachia Acauda Procera These three orders likely diverged ~300 million years ago. Taxonomic Sampling across Amphibia • We targeted 325 amphibian taxa (296 “worked”). • 276 genera (> 50% of recognized genera)... • 96% of recognized families (and most subfamilies)... • Taxa were sampled roughly in proportion to species richness. Taxonomic Sampling across Amphibia • We targeted 325 amphibian taxa (296 “worked”). • 276 genera (> 50% of recognized genera)... • 96% of recognized families (and most subfamilies)... • Taxa were sampled roughly in proportion to species richness. • Multiple outgroups were included to root the phylogeny. Anolis Chrysemys Gallus Homo Latimeria Generating Genomic Data in Amphibians • We developed an amphibian-specific gene capture system which targets 366 semi-conserved nuclear exons. • Probes were designed from genomic/transcriptomic* resources for: 1 Caecilian: Ichthyophis 4 Salamanders: Ambystoma* Desmognathus Cryptobranchus* Notophthalmus* 6 Frogs: Gastrophryne Ascaphus Pseudacris Mixophyes Rana (Lithobates) Xenopus (Silurana) Nuclear Gene Tree Estimation • Independently estimated ML gene trees for all genes in RAxML. • Used separate (best-fit) partitioning schemes and nucleotide substitution models for each gene (GTR+G). • Conducted 500 non-parametric bootstrap replicates (across sites) to assess “support” for branches in these gene trees. • Identified outlier taxa for each gene (and removed those taxa). • Conducted analyses with unconstrained and constrained topological backbones. Species Tree Estimation • Use multiple algorithms to estimate the topology of the species tree. • “Shortcut” methods attempt to reconcile collections of gene trees into an estimate of the species tree (Astral and MulRF). + + + + ... ® • Also implemented a gene-tree-free approach (SVDQuartets). • Lastly, estimated a concatenated ML tree in RAxML, using a best-fit partitioning scheme of 76 distinct partitions (separate GTR+G models). • Used the non-parametric bootstrap across sites to assess “support” (sites and genes for Astral). Brief Overview of Results • Nearly all families are recovered as monophyletic. • Shallow-scale relationships are largely in line with previous studies. • Most higher-order clades are recovered. • Deep branches receive strong bootstrap support in species tree analyses... Astral2 Species Tree eq 1 1 se q1 us_ pic lym _o on 1 10 3 10 10 .3 33 .6 66 _s 1 eq _s ns ce es irid 1 _v t_ BC _P to PM 2_ .3 33 1 eq ae H_A I354 ta DW 2_ I353 da 2_ W39 9_ YP Cry ata W by _ ae ire 5_ 05 37 W_0 9_ SL Z_ 8_ M VZ 100 100 67 10 87 38 I43 40_ s_ al io s_ 0 10 10 100 0 10 10 10 3 33 33 93 .33 10 0 10 0 0 10 0 10 10 0 99 3 .3 33 99 100 93 7 66 .6 0 0 100 98 10 10 100 100 q1 0 q1 100 100 100 98.66 67 100 100 ax_seq1 iculatus_ seq1 ptopelis_pa rkeri_seq1 roleptidae_Cardio glossa_leucomyst nura_Arthro leptidae_Le I4375_CAS _168499_A I6485_MCZ_A_137988_Anura_Arthrolep tidae_Schoutedenella_sylvatica_seq1 I6478_MCZ_A_13 9626_Anura_Arth _seq 1 s_se q1 atus_ seq1 olor_se q1 abon icus us_ro bustu nus_d iadem oble ps_g actylod on_bic hoba trach _Asty loster e_Leptop elis_verm nidae_ Leptyd nidae _Tric loster nidae Astyl oster ra_Ast yloster ra_Astyl osternida Anura _Asty 06_A nura_ _12283 6_Anu I7720_R 306_Anu _A_13 6805_ I4442_ AMCC I6477 _MCZ 1 q1 atus _se _co rrug dae_ Scot ylos terni nura _Ast Z_A_ 1368 eq1 s_s eq1 ns_ seq ttul atu bste trica lius _gu roo n_o Hyp ero yctib ates _Al exte nida e_N rolii dae tylo ster a_H ype nura _As 283 7_A MCC _12 CZ_ A_1 3970 9_A hof fi_s x_g res toth yla liid ae_ Hyp ero Anu ra_ AM CC _12 588 0_A nur I437 6_A I648 3_M eq 1 eq 1 _s eq us _s lat us atu s_s str iat lvo vitt lut eo lus _fu alu s_ ete rix Afr ixa e_C ryp iida e_ roli ida ype rol ura _H a_H ype _A nur 369 20_ R1 139 I77 01_ MC Z_1 I44 03_ q1 q1 q1 s_se i_ se seq1 is_se ctylu na rd ealii_ roda alens _l eo lus_w eneg an tis ma cu dacty ina_s _im yc tim _P hl Kass emno thy lax idae_ ae_S pis tho eroli roliid ae _H ae _O _Hyp Hype rol iid rol iid ura_ Hy pe Hy pe 8_An nu ra_ nu ra_ _R83 0_ An 29 _A 95 _A 39 76 I7713 _R 11 _R 11 I77 04 I77 08 _A _1 _s eq 1 _seq rops si tu w am ki si mac eps_ revic liid ae pe ro a_ Hy nura 43_A 7_R8 1 eq1 1 I6437 _MC seq1 sis_ en mac eps_ lin a_ al lu _C tid ae Prob dae_ ipiti An ur 75 4_ _1 24 100 10 100 1 _M CZ se q1 q1 se us_ se q1 yp n s_ a_ ita eq i_ se _s ci de la m th er us os e xc or at rg un pr ob ne e_ ar m uine _r ai _m hr yn _g rb us is us isus ho em em evic _H yl op _H _H e_Br id ae idae is ot itida isot em icip em ci pi ra _H Brev ra_H nu re vi ura_ Anu _B An 2_ nu ra R01 557_ revic 5_ 34 _A _105 ra_B CC 13 85 _Anu C Z_ 2_AM 8560 2_ M CC S_16 I4 38 7_ AM 4_CA 1 I44 28_ eq1 eq1 sse ni_s _se q1 rsus_s rke ri_s nen sis I64 75 eq 1 I6 45 I443 85 100 0 93 1 eq _s se s_ lbu ba ch ra _b ne s_ cu e ri A lb er op ho _C ae ae lid hy ic ro _A 04 93 I822 24 10 0 10 1 eq _s tris ina rh xy _o lus_ ixa ph hry op Ore e_ id a h yl lid hy ic ro ra _M A nu 4_ Z_ MV 1_ .3 33 3 100 1 se eq _s na na es alp la_ iula op _C Co e_ ida e_ ida hyl ic ro _M 66.3333 10 0 82 q1 I770 _s 100 3 33 .3 0 10 1 eq 1 _s ta eq eq _s so om ny ge cty da xy ae lid hy icro _M _M ra nu 42 PT 41 ula q1 us se utt q1 ss s_ 00 _5 4_ 33 _g se olo ri_ te ula ig sc fu _th ne ry ary _B ae _O ae lid hy icro _M ra ura An 8_ _A 92 2_ 34 TC AB 3_ I1 3 I1 33 lla atu ue _m on all us la ers _s sia s_ hu ac ph yo en lid hy icro icro _M ra nu _A 28 T4 44 PT _C ss _p lo ae og ps I1 33 I13 39 lid ph nu m atr ob en _G ae lid hy _M ra nu _A nu _A 55 43 55 _P _P I10 hy ag ulo ly ro all ic _G _C eta _M ae _X ae lid hy icro _M 39 T4 _P T4 _M ae ae lid ura lid hy An hy ro ro lid hy ro ic icro _M ra nu _A 52 38 33 _P 46 I1 33 I1 7_ ic ic 07 _M _M 36 ura ra _M ra nu ra nu _A T4 _2 nu An I765 q1 se q1 rgi _s am eru ico lor ne be tot is_ ta_ se lla _b s_ bo _c ryp ole pte sig illa cf_te ac hu Ar thr ietia_ _s ub pte rna ob atr Am da e_ Na tal To mo ana_ ph ali da e_ ae_R yx ice da e_ _Cac ph ali Ranid ph ali idae ra _P phal ura_ _A nu ice yx ice yx ice epha 7_An 55 59 yxic _Pyx _P ura _P 0209 C_ 10 nura nura ura_ 9_ An AS_2 71_A An 63_A 11_C 831_ _A MC 1_R3 9_R3 I104 2_R I819 3_ I819 I782 I643 AS 0 C 10 9_ 0 _A 10 _A 0 0 07 10 10 10 I64 38 seq1 nderso ni_seq leveleve_ geri_ seq1 mar tien _adspe tes _pa ptid es_ persus rop ede ynu s_c Arth role us_ads ae_ Pet ieto phr cephal ped etid ae_ Am ub ria e_Pyxi ufo nid ae _A a_P etro phalida ph alid nur a_B 1_A nur Pyxice yxi ce 276 _A ura _P Anura_ ura _P A_ 140 7_ An 0_ An R725_ MC Z_ seq1 sis_seq1 atrachus_ assipes_ _Phrynob nraua_cr alid ae_ idae_Co yxic eph _Conrau Anu ra_P 98_Anura 069 56_ _13 954 MC C_1 MC Z_A _R 52 _R 41 _R 56 I7801_ I64 76_ I77 94 I78 27 I82 05 T5 0 0 100 54 10 10 100 T4 0 100 I64 39_ I642 8_A wtoni_seq1 num_ boett batrachus_na tator_seq1 hrynod on_sa _Cac oster rachidae atrach idae_P iceph alidae hrynobat Anura _Pyx _Anura_P _226 261_ S_218893 nura_P hrynob ahlbergi_seq1 a_mascarenien dae_Ptychadena_ne idae_Ptychaden Odontobatrac hidae_Odonto _Anura_Ptychadeni nura_Ptychaden A_136 791_A VZ_2531 I4416_CA I4390_M _P 10 100 100 100 100 62 0 0 10 0 0 10 0 I6 42 ym e_Mi on op hio na_ iona _He nec ymno phion ae_ Bou e_H leco mor Ichthyoph a_Rh inatre ula tus lon ect es_ q1 _se nat ans itan Sco leco a_s eq1 mor phu s_v ittat phat rem anna hyophis_b matid ae_E picrio q1 a_s eq1 alos tom ae_C rota iidae_Icht 1 s_ se seq1 ula _ta squ erp ele_ phid ae_ eq 1 1 _s eq ern an ulata_ len ger se _s _s eq seq1 ia_ alt omo rphid q1 m en ph ini _a nn dis on tentac yph tida e_T _Sc olec iona_ Gymnoph se ra no ps Gr an rpe lida na_ Sco iona Gym noph ec eq 1 a_ se _t ho p_ ilia_s lia_ Caeci erp elid lic at um s_ pe te Sip ho da e_ idae_ Typ hlo ry 1 us _s ul tip et op croca ida e_ typ hli a_H oph ion _2654 95_G Ge ot ic an s_ m ist om _seq q1 m ex no pi _S ch nsis ge s_se s_ op hi e_ hii da aecili chen sicu um_ seq a_tc haba ID_8478_seq1 XID_28377 _seq1 2_ M _R 96 87 32 _A nu lida e_ lid ae lid ae llid ae _G eph Ma nti _G uib _M an _B oo tel la_ e_B uer yro ma da cty em an be tsi leo _s s_s eq r_s eq orti cale oxy cep boh itra ga bri ulc he seq 1 erm a_c ger ia_ ntis _am lus _lu tis _p atus_ seq1 ii_se q1 _pic tus_ _Th elod 0 I646 0 I857 I648 10 0 10 0 I790 0_ 8_ R11 stax_seq1 q1 eq1 llus_seq1 ppen dicul alus _hos ctix alus hor idae pho rida s_parvulus_s hestes_gry urixa lus_a e_G orhix dae _Ny Rha cop elli dae an tel an tel an tel Ma nte coph orida Rh aco _xeramp elina_se dae_Philautu idae_Raorc horid ae_K cop hori Anu ra_ Anu ra_ _M ant ura _M ura _M ura _M ur a_ ura_ Rha Polypedates_leucomy ae_Chir omantis _Rhacophori Rhacophor a_Rh acop ura_ Rha 251 31_ 414 42_ An ura 9_ An 1_ An 0_ An 8_ An Z_ 23 VZ _2 1149 _An 075 _An MV Z_2 MV Z_2 R9 42_ _R 97 _R 93 _R 92 7_ MV 33160_Anura 20_Anura_ 112_ Anur dopus_seq1 idae_Feihyla_palpebralis_seq1 nura_Rhacophoridae_ ura_Rha cophorid _se q1 hal us_ _se q1 1 1 seq 1 1 q1 _9031_seq1 1 lmba boen nicus_seq si_se nops_ peter eq 1 ph is_ ra _M 38 72 alb ipu 8_R1 an te 3_ An nc tat 144_ llid ae ur a_ us _s Anur _B oo 0_C M an eq 1 a_Ra ph is_ AS te llid _234 py rrh nida ae _A 5_LS 711_ e_Hy us _s gl yp UM An eq 1 lara to da NS_ ura_ na_S ct ylu YP 1045 Ran ylv s_ m M_0 idae 9_An irana ad ag 13 _P 74 _n ur as ca tero I784 a_R igro 1_ 68 rana rie ns Anu vitta anid 9_ _A _kha R18 ra_R is_ ta_s nu ae_P I135 se q1 ra eq1 re_s 5_ 10 an _R apur 26 Anu idae 0 an eq1 _R ana_ I78 idae ra_R _H EF 75 yl pa _S _L aran an _R pua_ an itS I85 idae 11 gu a_ ph seq1 74 ira pict 41 _B _A na _L _A ab urat nu I64 _s SU nu ina_ ra_R a_ an 20 ra_ MN seq1 gu ch _A an inea Ra I6 ap S id M _ 46 ae nid 17 ae CC _s 6_ ns _L eq 58 ae _1 is_s I6 MV 1 ith 9_ _L 44 38 ob eq ith An Z_ 6_ 32 ates 1 ob ura 25 I7 3_ CA ate 10 89 _s 82 _R An S_ s_ ph 7_ 0 65 an ura I7 pip en 24 R1 _A ida 88 oc _R ien 26 nu 53 e_ ep 2_ an 07 s_ I7 Lith ra ha _A R1 ida se _A 91 _R la_s nu ob q1 e_ 16 nu 0_ an ate ra I8 eq Hu 2_ ra ida R1 _R 21 1 s_ _R ia_ An e_ 16 p 9_ a I6 a a n n ura Od lm asi nid 4_ id R1 46 ipe ae orr ca An _R ae 5_ 80 I6 s_ _P _se an _A ura an _A M 42 se elo a_ m q1 VZ id q1 _R 4_ nu I6 ba olo ae ph _2 41 ra AM an na _M ps yla _D 31 oru id 7_ _m C x_ eri ae 20 ic C AM m_ ed rid sto ro _S _1 8_ og se ib glo C ge ta 06 un An q1 en C u n s da 52 _1 ro sis ys ura sid is_ _s 0_ _o 44 _s ae _D eq eq rp na An 94 _N 1 ic hn 1 ta ura 2_ ro an to oc glo An r_ ora _D ne se ura ss m ic na q1 is_ id ro _D _b ae glo se ou ic _N q1 ss ro rre an id glo ti_ ae ora ss cf_ _C na id y ha un ae _p pa na le _Q sk ra ne ua ei_ na ns sip _A is se _s aa q1 nn eq _v an 1 err dia uc _d os ela pin co os uri a_ _s se eq q1 1 I786 0 q1 se i_ hli ku 1 q s_ se q1 q1 cte ii_ se se ne rg s_ s_ no bo ari ari im ch ch lim _L no no s_ q1 ae lim lim cte id se s_ a_ ne ss s_ q1 cte ary no cti se glo rv ne im hly s_ ro no eje _L ic op su n im lo _F ae q1 _D ya _L gu id ae se _c ru id ura ae ss hi_ tis s_ id ss it An 1 u glo le lyc an eq ch glo ro 0_ ph a_ ro ic _R _s tra 36 q1 ic an Eu lis 1 ba _D se _ a ura 21 q _ dir lo _D re ae se An In eri _2 ura op id bo q1 ura th a_ e_ 5_ se ss An _H s_ AS en An lim da lu 25 C is _ ae 7_ gu glo a_ 0_ xa ali id rm S_ 4_ 05 q1 yg ix us_ 93 ss N icro if o icri R 39 oz ch an M _se 44 glo _D fo n I4 _M 8_ U lis cid tra _R _1 bu ae ura 66 ba icro LS Oc bra lid to ura I7 CC le s_ rte e_ An 3_ _D ra xa ve An q1 de ra 5_ ida 57 AM Ce se s_ icri 7_ nu I8 ss 25 is co 9_ e_ de _M 10 sis_ _A 43 glo _D 41 ida ylo en ro 69 _2 ura _R ae I6 ch ch ic n 5 a id 14 0 tra elew AS _D atr _A 91 ch 24 _p ba 10 ra _C I7 _B 33 tr a tis to S_ nu ae 50 ba 0 04 ra an 4 id e to m _A CA 22 10 I6 _C ach 27 2_ e ra q1 laty S_ ra se atr 95 45 _P _C nu CA 2_ q1 ra I6 23 tob v_ _A idae 0_ nu S_ 0 era s_se no ch 14 41 _A eu p_ CA 10 _C I4 20 atra 15 _s 5_ etra ura ob M_ 54 1 _p q1 39 An rana 0 12 se CP I4 erat _seq 9_ 10 chus p_ C_ 2_ Inge 44 _s spei ra_C atra e_ 47 0 MC 25 ae I6 alus 10 on _1 _A Anu yctib sida 5_ os 18 _N icrix CC us_b ae 84 _M op I6 4 rogl AM yl 37 ic _ chid ng idae eq1 31 S_2 0 tro atra ra_D 0 ixal I44 us_s _S 10 CA 10 an ae Anu yctib ciat 7_ 9_ alid ra_R _fas ra_N I438 ph nu R05 seq1 Anu opus _A xice 4_ 4_ 0 45 Py tys_ ngyl 1 tro G00 _pla R11 ura_ _S _seq um 7_ An S_A 1 nter 5_ idae tern CB I791 ive 56 _seq _N phal acos 05 _alb 34 icata _C _1 xice rnum Py CC nuipl I109 lidae 1 AM oste _s eq 100 7 90.3 333 I6461 _MVZ I7783_R1068_A I6443_ MCZ_ I7557_R1020_Anura_Arthroleptidae_Arthroleptis_variablis_seq1 I7559_R846_Anura_Arth roleptidae_Arthroleptis_w I4415_CAS_2 30053_Anura_ I4418_CAS_219251 33 10 15 92. 666 66 I1 10 0 10 10 100 9_ 0 85 79 0 70 79 10 0 0 10 78 40 10 0 10 0 100 34 10 .3 0 10 10 100 T4 0 10 0 10 80 41 10 7 47 olin I4 66 0 ue lle liann _car .6 0 ryne I647 _m s_he _2 tig iu ot us clei I4 40 10 isto _P e_ Al at on AS er m lach 40 yli da _D C m pt icr oh lid ae 33 e_ Ha ra _M ro hy 71.6667 ic a_ M _P yli da _A nu 33 3 0 icr oh T3 21 .3 43 66 98 45 1_ _A nu ra _M 35 _P I82 44 I77 30 I82 29 7 10 se q1 I1 T2 81 _A nu I1 33 I77 34 100 0 0 51 37 _P T0 43 I82 33_ 100 10 10 I1 33 47 _P I64 40_ 100 100 100 100 eq 1 .6 _s 100 97 ia na 33 3 45 1 eq 1 u ra op hr _s eq An yn liv e_ bo 100 q1 seq1 sp _s ra _M co r_ vo me A nu e_ Ar hi_ se atus_ his trio 1_ icr da oh yli a_ sch irc crass ryn e_ T 42 ra _M ers iell op s_ ps_in yo ph I64 70_ 85 .3 100 _P hy as yp cyclo _H lid ae 100 I792 9_R I794 6_R 100 1 sp_ seq q1 ri_ se seq1 0 10 eae_ 0 10 seq1 sis_ en q1 0 se 0 10 vis_ 10 1 re _E eq _b ur ph is _s lidae ryne 1 0 8_ An ph astro or al rohy eq io 10 58 ic m _G ph _M ae is _s _1 25 ei fe ca q1 CC nura _S hylid ra nd _r os se 7 _g icro 59_A s_ lidae 5_ AM 66 pf fia T0 hy .6 q1 la ri pf fia I4 43 ra_M tu m 99 se icro gu nu 45_P tu m _S _A _M ta _ ig ri 1 ar ae I133 _S ra ic q lid nu ae se asC la _n hy to st lid _A s_ _G hy no 12 nt hy ic ro q1 EF an T3 0 a_ do ic ro _R ult _P _ se 10 ra _M h yl 23 no cc 1 57 _A ra _M ma n to _o A nu I135 eq I133 ae lis do 5_ A nu st ig _s e o lid 26 p 1 1 4_ th T s hy ty u ro 0 eq 41 tu _P P le Pla p le ic ro 03 10 _s 59 ea e_ 1 _1 e_ s_ eti rl in id a I1 33 eq ra _M nu CC ida uin h yl _s in te AM h ry hyl A nu _g q1 0_ ic ro s_ ata 9_ lo p us icro se nu _M Ka orn I6 43 T 35 ph f_ _M ry ra q1 e_ _P co _c _in ph nu ura se ta 36 ys id a _A tta 1 An a lo a_ ga le _D h yl 14 5_ I1 33 eq _K an rie ae 87 33 icry _s ic ro ae 1 nd va 12 lid 03 _M eq _M y lid su hy C_ hra a_ _1 s e h ll _ ra C C a 1 e M ulc nu a_ icro lla lid ic ro MC an eq _A _p sc _A ne _M hy _A 35 _M 1 _s fu am ry 17 ula 36 ra ura I6 4 eq icro 79 a_ ph _R ata nu I64 alo An 24 _s rn _M ae rin eta _A 4_ _K S_ lid sis _o pe 68 ura 74 _M ae CA hy la en ha T1 An 38 ae lid 6_ hy _P an 6_ icro _2 _C lid 56 hy ro 50 90 I8 nn VZ ae hy ic ro _M 33 M ic 47 ro M ra lid yu I1 ic 3_ _2 nu e_ hy _M a_ 46 _M ro AS ra _A da ell I6 u 8 li C ic ra u 20 5_ hy An nu all _M ro 45 R1 5_ _A _C ic I6 ura 0_ 06 36 ae An _M 74 13 T2 lid I7 2_ _0 _P ura hy M 11 52 An ro 31 YP ic 33 7_ _2 I1 0_ _M 94 H 44 N 33 I4 ura M _2 An _F AS 4_ 92 C 3 6 0 4_ T1 I1 45 _P I6 39 33 I1 I13 34 I1 33 • Scrutinize phylogenetic signal across the genome... 28 4_ Mi cro e_ My ae _D Stereo I7961_R11 I793 5_R1 100 100 1 eq1 48 9_ PT a_ An ur hyl ida oh ylid dae_ lhoi_s I4 40 ura_M hylida _M icro _M icr yli icroh seq 1 _se q1 ayi_seq _carva 1 3_An An ura An ura sals eri2 yne_ge ope e_Sync ni_ 27 8_PT a_Micro 34 0_ 33 2_ robu sta_ ran us_ enophr _G 1 ng _per opida mno phio q1 eq er m _In do ymn oph F_IchBan_ I6456_CAS_2 100 100 100 45 I1335 8_Anur 3_ PT 4_ PT phry ne_ Syn aptu dae_Ct 100 s_ _PT19 I13 35 I13 34 ae_ Oto ylid ae_ icrohyli Gy mn 706_ I7925_R 538_An 100 100 7 100 1 hyl S_1743 I13361 idae _Ade icro hylid Mic roh a_M 4_Anur 69. 666 100 s_se q1 mos _seq icro LSUMN Micr ohyl Anu ra_M Anu ra_ 76.3 333 us_se q1 _ann ecten lono laste s_hy 33 I8562_ 9_An ura_ PT4 59_ PT2 71_ tis_bif asciat rynom antis 5_ OM_ 4416 I133 54_ I133 60_ chus_s Phryn oman hylida e_Ph I6 I7739 _R13 I103 91_R ae_Nasikabatra icrohy lidae_ Micro 30_A nura_ rm op se _s ae hi id phon _C hiona 812 _Gy _D _S iph q1 I7967_R241_Anura_Rhacophoridae_Rhacophorus_pardalis_seq1 100 T 44 87_An ura_M a_Si se q1 _sha ae hi id op s_ se ii_ I7927_R233_Anura_Rhacophor 98.333 3 100 q1 ahyadrensis_se _P Nasikabatrachid I1335 6_PT2 a_ De I6459_CAS_241141_A orbonica_ seq1 I1 AI442_Anura_ ae_Lepto phryne_b er m s_ ns erus id ae op hio na nu rling ce q1 se nsi 1 I4421_CAS_224676_Anura_Rh acophoridae_Rhacophorus_rho 48.3333 98 33 • We’re done, right??!! I10935_NCBS_ 99_Anura _Bufonid op hi s_ eq bius up rach ym nop 311 6_G MCC _117 se es na op hio mnop _s idia ey hyno er m phion mn av nigr q1 nie Latimeria_TAXID_7897_seq1 42 95.3333 ngidigita_seq 1 at alle se nsi ga Homo_TAXID_9606_seq1 100 I1 I6464_M VZ_2393 ra_Bufonidae _Ansonia_lo ph ion 795 05_ Anolis_TA 100 100 I1 33 I4429_YPM_ 013738_Anu _B mn op Chrysemys_TAX 100 _Nectophryne_bates ii_seq1 achy _D io na 733 _G Gallus_TAXID 100 on _d s_ nie icus la_k er m nsi ga us_ ius_ na _D 4_ Gy I4343 _MVZ 100 100 100 I6481_MCZ_A_1396 34_Anura_Bufonidae no ph AS_ 168 I13518_RE 100 100 io rias ob na _D ymno YPM _01 _jap _P nie alle nch drel iidae 9_Gy MV Z_1 I857 7_C yn ym no 179 MV Z_ ra an ga us_ And _H io alle rias iidae 2_ Gy 02 _2 58 _149 e_ no ph ym tob And ae 69_G q1 nch alam ynob 18 _G 59 _1 62 _BPN 100 e_ ynob _H _G bra hida _S iid 1 se us_ p Cry no ph ym _Ga1 100 I4433_AMCC_105533_Anura_Bufonidae_Capensibufo_rosei_ seq1 I7581_R690_Anura_Bufonidae_Poyntonophrynus_damaranus _dombensis_seq1 ae I434 5_A 100 0 10 e_ ob nch to ryp hida iid eq ei_ 1 bra ym 5_ G _M VZ 98 85.6 667 79 _M VZ 100 100 ida _s op eq ranc yn 01 31 M_ C ta_H I44 37_ 55 100 da I43 48_ 100 ob m c n_ pto ta auda S_ 21 I4337 100 0 ob 1 iu _s e_ nch 26 _G _BPN I43 42 100 100 0 ida ranc yn au do ry 1 eq oid ia ed ta_H _2 28 6_ YP I4346 lp _C ra ob 9_C 97 10 9_ CA I4 43 rm eq _s pto rypt da _C ta nch tob rypt Cau a_ _s um am ta_H 77 um ac te ta_C da an e ida bra ryp da m Dic nch 1 ic op in n_ pto _C eq ex a_ sto ta_C au 86 _s m m bra Cau I4 33 0 d _S da M_1 I4 33 0 10 10 2_ 0_D Am pto _C M_9 I6 47 0 0 ry ta_ ud Cau sto nti e ida D03 YP I370 3 n do 1 um a_ m by e_ eq rin sto Am pto 1 _s g _ti da Ca eq ta by _C au _A a _ ire F_ J1 H PM 1_ am da _C m ati _s ita m ae m _S 7A ig _A d ati ata dra rd to ys sto au 13 3 _C I370 7 m an te ic _D ud _C LK b m by ta m _ na d ati m Ca MH 3_ ala sto da 16 dri m by _E I370 10 eq us _s is irIn _s A e_ _A u Ca MH 04 m ta an da s by 0 .6 66 _s ns ie 7_ H_ P 7_ m ati _A I370 0 sis ha m la a ud _S PM I37 10 en in w w _k a 56 EF 0 m ta da _C _2 9_ _A 0 0 ho ch W _R 70 7 10 0 on trit lo Ty 3 T2 u Sa sto by ata Ca 0 10 eic q1 sis q1 se en se s_ ng s_ tu ko ca ng 1 ro ho eq _c n_ _s us ito da otr au alm ic es th m ns ph ra _e oto Pa ps N no e_ n_ Cy da ito e_ otr dri 0 _ 33 d _ ae la dra I43 47 100 70 .66 7 au DW 35 d Am _ P4 09 6_ dri I37 100 18. 666 O _ d Sa an 100 0 10 0 C 1_ RB 35 an ata 0 93 0 10 1_ m dri _ ae m 100 66 7 8_ ala 78 I1 3 10 100 10 0 0 RB 53 m d au _1 I4 10 10 10 _C W 1_ I3 0 68 0 10 86 .6 ta _S 92 0 to da 54 W 100 0 10 10 10 99 0 hin an 2 da ig _T _D I3 0 10 0 10 0 Ec m 9 34 0 10 10 0 10 10 0 e_ ala K0 0 10 0 da _S _C au ta 0 1 10 e_ dri ta J 4_ 98 1 de da an 39 da ala 10 0 10 100 0 22 0 10 0 10 10 10 dri m _C au _S an I3 10 q1 q1 an ala m ala ta da 54 10 0 10 33 eq q1 se s_ su ari lg vu s_ rg ure Ne e_ da dri dri an m da au _C _S ta da au au C 5_ 2_ 5 s7 0 10 0 0 10 .3 1 eq _s us ulo ac m ru tu Tri e_ e_ da dri an m ala ala _S ata 56 18 _1 C 5_ 19 TP 25 55 s_ q1 se r_se m_ 1 rube yl u eq _s a ct ton_ ga tr id co otri ifu a_ trit _luc iu m ya ea ph Rh uryc Am e_ uin e_ ng ida id a _a on us trit iu m te co ph s_ ya Pro ru e_ Rh ctu ida ta_ Ne te da e_ ro au da ida _P te dri ta ro an da m _P ta au an ala _C m da _S au ala ata _S _C ud 59 ata _S Ca ud ata 9_ Ca ud 60 6_ 26 Ca 06 ud 9_ TP 27 Ca 83 TP 9_ 24 8_ 74 TP 33 24 Z_ 9_ M TP 33 U 0_ LS 33 26 4_ I9 TP 53 33 I3 7_ I9 H 33 88 I4 91 10 100 100 100 P 0 25 I3 10 0 100 10 0 _T 0 0 0 10 10 61 0 23 0 10 10 7 10 0 3_ I9 33 I9 10 0 0 0 66 10 .6 10 57 100 1 10 q1 99 q1 po cu hilu op yrin _G ud se _P ae _E ae tid on Am ta _ da _C 33 13 76 40 24 77 H_ PM 5_ 0_ 34 I9 I9 0 eq 0 80 _S ta tu rphy ritic m _s us eq 1 _s eq 1 seq1 _s eq q1 seq1 tris_ en m _s ty liu id ac ae tid on od tid on od od leth ta_P au _C 8a 86 _1 _H MZ Z_ I3 10 0 39 .33 _s q1 98 10 I9 1 33 I9 1 q1 0 MV 2_ 36 I4 10 10 0 33 0 10 10 1 1 1 53 ana_ ile tti x_ se kore sa _r er ni nia_ griv gl os lis _p no s_ni ol ito ep _B yc ta _N chos tid ae em atra tid ae _H _B od on on ae ae od tid tid on le th on od leth od ta _P le th leth ta_P da ta _P ta_P leth da da Cau 3_ C au Cau ta_P 01 3_ da _0 au R_2 on _C AP da irs 5_ au R02 pe _C _P H_1 12 PM MH 20 32 6_ _P J_ _2 97 JR VZ I933 7_ _M I124 SU 51 I932 _L 36 I4 3 I35 seq1 eq1 ni_s orda arse _K idae dont le th _P da ta da C au 2_ 97 63 4_ 55 LJ_1 _E _T 99 3 0 .3 33 99 0 0 51 10 100 0 100 7 10 100 100 .6 66 42 69 q1 1 eq sis se 1 en s_ eq ic 1 ep _s in eq q1 1 10 I1 24 0 10 0 q1 eq q1 _s se q1 s_ se eri _s q1 q1 q1 1 tus _s ac ula q1 se q1 ti_se ad rom igh ti_ tus_ brich s_ qu s_ wr ncta s_hu na thu lavipu nathu es_f sm og on_j aeog eid e_ De thod e_Ph e_An _Ple ntida ntida tidae etho hodo hodo odon a_Pl Plet _Plet leth udat ata_ Ca ta_P C au Caud 157_ auda 11 3_ U01_ _247 09_C _1 18 VZ _2 CC 7_JK VZ 98_M _M 8_ AM I371 96 I124 48 I4 35 I1 24 100 100 100 10 100 100 1 100 eq 1 100 100 100 100 100 100 I111 ra_ seq seq 1 adi gito eq1 tett eri_ seq1 anus_s cus_ _ho chs s_fus s_mont pel ma nathu na thu scaphu e_L eio smog sm og dae_A e_De e_ De scaphi ntida nti da nti da ura_A hodo ho do ho do _Plet on_An _P let _P let udata ud ata ud ata udata 3_Ca 8_ Ca 7_ Ca 2_Ca _JK0 _J K0 _J K0 _P_8 I3715 I37 16 0_CS lis_s eq1 seq1 _pic tus_ icro del s_s eq1 oglo ssus bin a_m tetr ican ae_ Disc e_B om tes_ obs ato rida idae _Aly ma tida Bom bin eio pel ura_ Alyt Anu ra_ nur a_L 914 _An 421 12_ 513 4_A _AscM VZ_ 231 CA S_2 DM G_ I85 55_ I44 48_ I37 11 I4359 I371 100 100 1 84 _REF 689 _An VZ_ 235 I437 3_M I439 7_M I13520 eq1 ura_ Disc Rhin ophr 6_An ura_ VZ_1 6475 oglo ssid ndii_seq1 us_d orsa inop hryn ynida e_Rh pipa_seq1 us_boe ttgeri_s dae_Pipa_ eq1 Anura_Pipi XID_8364_s _247511_ Xenopus_TA I6444_MVZ I442 3_M s_ibericus_seq1 idae_Spe a_hammo ae_Hym enochir Scaphiopodidae_Scaphiopus _Anura_S caphiopod 4_Anur a_Pipid I6453_P MH_201 I4413_MVZ_234650_Anura_Pelobatidae_Pelobates_syriacus_seq1 I4414_MVZ_186009_Anura_Pelodytidae_Pelodyte I4424_CAS_229217_Anura_ q1 eq1 phryidae_Ophryop hryne_hansi_seq1 egophrys_g landulosa_s e_seq1 lalax_bo urreti_se I6469_MV Z_145187 I6416_AMCC_144 796_Anura_Mego nura_Mego phryidae_M ophryida e_Lepto 1 elli_s eq1 anens is_seq ium_ch apaens iger_g ongsh ae_Lep tobrach ryidae _Scut I4408_MVZ_226277_Anura_Megophryida e_Brachytarsophrys_feae_seq1 I4409_CAS _240922_A ura_M egoph ra_Meg ophryid 6489_An ura_Meg _10639 7_Anu I6425_A MCC_10 I6429_ AMCC nsis_seq1 1 ayi_seq seq1 hevilli_ seq 1 asw elli_ alella_g rini a_h yes_sc _sechelle hryne _purc ptoceph Mixoph oglossus chidae_ ae_H eleop ae_Caly ssidae_So yobatra phalellid leoph rynid a_Sooglo alyptoce Anur a_He Anura_C isko_Anur BI_1 954_ _2342 95_An MH_01_ R04_Lab I4399 _SAN I4384_P I9326_C I6473 _CAS eq 1 q1 1 lls i_s lli_ se ra_ seq a_s eq1 su de gn ife icto rian hu s_ nia _si atr ac rini a_v e_ Cri _Pa rac e_G eoc ach ida chi dae ach ida yob atr yob atra yob atr ura _M ura _M nur a_M nura_M 479 _An 476 _A xSch_A MV _21 MV _21 REF_Mi I85 71_ I13524_ 1 _seq eq 1 _s eq agua wi nii rill i_s _d ar du me eq1 q1 eq 1 ta_s 1 eq eq q1 ta _s si_s r_ se or nu an a_ se es _s rg ol yll od s_ ga _cav s_ ph nic ho ma ste s_ od er lo de ev ni ge nia_ enia iu s_ tefa a_ta at ob _S se is_ _se lm an _s m gic us do ce _ru s_ eri ria tis uff us ta cte _s ilu co an op s_ tim lu ste yc ax _la in us pa pit ns q1 r_ q1 _se rife se ntii ii_ illa is_s ro tt _va p ie re lea cre s_ ch Sc O ha N e_ ep e_ da yc da e_ yn irtu s_ au eru es _ca lca _th ria ca ito a_ laev hyl usa s_ ry s_ hu ph _c co trac zio ed ru lom _C hr ys ha ba hyl at op pido chyl el m so de _T atra phus de n_ dy na _N ota ym no Ne ob hid ae ae _L ida e_ atr ac ac hid tra ch My ob yo ba nu ra_ ura _M 3_ An 61 _A 8_ An 18 15 ram e_ Hy yclo _R hin ae_C tid ae _B e_ Al iid ae idae di da chyl Al so di da tra ylo ur a_ Ba phid er ma ram hin od ob atr ra _R a_ My _A nu An ur _7 06 21 52 _M V_ _M V_ 87 0_ I90 34 An ra _H 06 0_ _A nu _1 88 Cyclo Le C er ae e_ e_ tid da da _P _C ria oa orh sc en lo ha Hy sib e_ yp da _H ito _L ae _L ae ae ylid ylid ylid _H ae _H ura ura ylid An An ae ae ylid ry id 4_ _H 01 ura _H An a2 ph ac hr yi iphr op em at ob er at ra_H ra to ura 2_ hryi An Ce op 8_ ra _ erat nu el am Anu ra _T 6_ ura_ 28 A nu _A ra_C ra _C 81 Anu A nu 0_ 1_ An 0_ 56 N_1 64 828_ 90 17 13 VZ ura_ 1_ KZ 1_An I4 41 48 29 b_38 Z_ 16 1_Ca AR 66 I437 2_ MV I85 61 I85 70 _S AM I4 42 I85 64_ I64 86 _2 _164 KU VZ 2_ M 7_ 7_M I4 37 I437 47 BP Z _2 0_ 55 55 ori yli da se 81 48 _H yli se i_ 48 ZA _H Sp eq ZA CA ura e_ _s s_ ge 12 CA An da eq se 4_ ura s_ xa alu in 12 _Q 88 An do en 13 C_ 58 _9 2_ _s re ph Lit 6_ tu _g ce H_ 66 se ro PM 10 ns tis ara sa NS yli ch yli _H Tra _H ra ra e_ _H i_ eq ic _p eta da UM ura m an 8_ LS An thoi is die _s eq yli na ylus _H dact ra hero ycep 85 rach 51 ae_B ZA _C ta _s _0 nu ra M 94 _A _107 YP CC 9_ 5_AM _fo atu s_ ud _p om q1 s_ se q1 s_se ra ug 6_ US 352_ _coq q1 as to halu NM I4380 Anur _2 68 rid ae ui_s s_ep _USM a_St 94 2_ eq1 _C hipp ra ug rabo An ur N_53 ium I44 12 as to man a_ St _seq 3994 _M VZ r_ no tidae ra bo _Anu 1 _1 45 ma nt bl ei _Phr ra_Br 20 8_ I43 86 _s eq ida e_ ynop achy An ura _A MC 1 us Pr ce _O do ist im phali _sp_ C_ 11 nto ph dae_ an tis 83 59 seq1 _A nu Ischn _r ide ryn ida ra_ Ce I8558_ ocne ns _s e_ Od ntr ole ma_ra eq 1 LSUM on top nid ae NS_17 magii hry nu _H ya 409_A _seq s_ oc I8557_ lin ob nura_C 99 cid en 1 100 atr ac LSUM tal is_ entrol hiu m_ NS_16 enidae se q1 fle isc 979_A _Coch hm an nura_C I8567_ ranella ni_ se entrole LSUMN _ad q1 nidae_ S_1543 enoche Centro 2_Anur ira_se lene_p I440 5_C a_Lept q1 rosobl AS_ 245 odactyl epon_s 125 _An idae_L 100 100 ura _Le eq1 ithodyt I440 6_M ptod acty es_line VZ_ 231 lida e_L atus_s 766 _An epto dac eq1 ura_ Lep tylu s_fu I644 1_M toda ctyli scu s_s VZ_2 6427 dae _Ple 100 eq1 0_An ura_ urod ema Lept odac _bib roni tylid ae_P I6458 _CAS _se q1 hysa laem _231 794_ us_p ustu 100 Anura _Lep losu s_se todac tylida q1 e_Ph ysala I1250 0_PM 100 H_201 4_red emus _pus 100 o_Anu ra_Bu tulos us_se fonida e_Mel q1 anoph rynisc us_ste lzneri_ I4430_ YPM_0 seq1 13728_ Anura_ Bufonid ae_Ate lopus_h oogmo edi_seq 1 I4383_EC M_4908_ Anura_Bu fonidae_A naxyrus_ terrestris _seq1 I8576_LSUMNS_15190_A nura_Bufonidae_Rhinella_ 98.3333 marinus_seq1 100 I6467_MVZ_231697_ Anura_Bufonidae_Rh amphophryne_macro rhina_seq1 I4 42 se on igri m se hu th MV M_0 MC I41 _Q 9_ nu nu _n ory op ca _m ru s_ se da _A se yli eq _A 02 _s eq 52 us _s ris ria tu las_ _se se ta _H us _fe vit me tu s_ lis s_ ris s_ 1_ er at di nu ora tylu ac te co it a C _P pri ilis yla e_ ps ae Tri Sm 78 ag fem ac er at ud ba leu tr in da dro id e_ oh ac 57 in sp m ar od llo s_ e_ en nu rule in sp hy te ry n s_ ctr yli ud e_ _A te s_ _s stig ae te s_ _P ba ph ate D da da ud _H se 62 tis s_cy _c ba ae dro no ob se 50 an llo ba en an ed _P e_ yli Ple CA hu _A llo _D _M pip us e_ yli Q th om op leut ae _A ae ae _E teth se 87 yrrh ae_E ae tid ti d ae _P ae 35 _S at id eu ba tid olos 14 ob _C d ro ba _C at id ylid da ra _P _H _H ura lidae tylid ae en dro ae ob ae yli A5 ro m tid en atid A_ odac halid _D ro m tid ylid ura da ura ura An an acty ura drob ra _A ra _A ba _H AZ ther An en A nu th om od ycep ra_D 5_ A nu dro _H ra yli nu _2 eu ther Eleu rach nu 30 3_ ba ura nu _H _A VZ _B _A 56 78 dro en _A An An M Eleu ura_ nura 53 41 55 ZA 44 ra _C en _D An An 17 _H 1_ 8_ ura_ CA ZA nu _D ura r_ ura 51 3_ 1_ 47 ura 24 _Q CA _A _D Fe 12 60 19 B6 0_ S_ I444 An 1_An _A M N_ 67 u ra ra se An Z_ T_55 1_ US 1_ O_0 45 _Q 82 An nu An Nig N An 8_ I4 39 8_EM BH 44 H 26 24 7_ _A 6_ se 25 14 U 3_ S_ C 6_CF SB 21 66 1_ 06 _P 4_ C I439 I855 I1 20 5_ NS_ 13 82 13 _P _0 H 54 UM S_ 31 14 EF 94 N _1 Q LS 69 _2 20 _R 17 M M I4 19 8_ _1 MN F_ _0 EF CC C 26 47 I1 20 I857 NS SU AS M _R M 9_ UM _L _C YP 22 YP 2_ LS 93 IT 21 AM 0_ 64 U _2 9_ 63 9_ 35 _1 56 _2 LS 16 I855 I85 44 I1 6_ CC 7_ 48 I6 I4 3 44 AM 44 7_ I4 I6 I4 35 1_ VZ 2_ VZ I1 I4 43 M 57 46 M I6 1_ 2_ I8 42 I440 8_ YP _A 57 56 56 43 CA 47 I8 46 I6 I4 42 I4 38 1_ 34 I41 I8 I8 I4 2_ 16 44 I4 I6 I6 I6 I6 • Inter-ordinal support is for Batrachia (BS = 100) I444 I4 4 • High bootstrap support across the tree _couchii_seq1 "TUSBM4QFDJFT5SFF&TUJNBUFEGSPN"ODIPSFE-PDJ"NQIJCJBBOE&BDI0SEFS$POTUSBJOFEUP#F.POPQIZM sis_ seq1 Inter-Ordinal Support Varies across Loci (RAxML “Best” Gene Trees) Acauda n = 45 Procera n = 51 Batrachia n = 98 Support across 500 Bootstrap Replicates Acauda Batrachia Procera Unbounded Support Using the AIC 100 90 80 ∆ AIC 70 60 50 40 30 20 10 0 Acauda Batrachia Procera Unbounded Support Using the AIC 100 Constrain the basal topology, then calculate AIC for each model... 90 80 ∆ AIC 70 60 50 40 30 20 10 0 Acauda Batrachia Procera Unbounded Support Using the AIC 100 Think of these as measuring the strength of support against alternative models. 90 80 ∆ AIC 70 60 50 40 30 20 10 0 Acauda Batrachia Procera Backbone of the Amphibian Tree of Life These topologies are largely concordant with previous studies... With a few distinct exceptions... Backbone of the Amphibian Tree of Life These topologies are largely concordant with previous studies... With a few distinct exceptions... Conflict in the Frog Tree: Nasikabatrachus Conflict in the Frog Tree: Nasikabatrachus Conflict in the Frog Tree: Nasikabatrachus Different Methods Yield Different Topologies ASTRAL Tree RAxML Tree * 78 100 100 100 100 100 A Framework for Testing Neobatrachian Relationships A Framework for Testing Neobatrachian Relationships Conclusions • The illusion of “support” for topological hypotheses depends on how hard one looks. • The bootstrap can help determine the direction of support, but may not be informative about its magnitude. • Substantial discordance across loci exists at the base of the amphibian tree (and may not all be noise!). • Genomic data and new statistical models are providing novel insights into evolutionary relationships of amphibians. • More data ≠ easy answers (that are credible...). Why Blue Waters? • Rigorously testing competing topological models across large numbers of genes is computationally demanding. • Even embarrassingly parallel approaches (gene-by-gene AIC) overwhelm typical HPC clusters’ resources. • MCMC sampling for rugged likelihood surfaces can be improved with large numbers of Metropolis coupled chains. • For Bayes factor tests (with N taxa): Markov chain Monte Carlo scales as N2 Hamiltonian Monte Carlo scales as N1.2 Acknowledgments Co-Authors/Collaborators Alan R. Lemmon Emily C. Moriarty Lemmon Elizabeth Scott-Prendini Jeremy M. Brown Robert C. Thomson Brice P. Noonan R. Alex Pyron Pedro L. V. Peloso Michelle Kortyna Justin D. Kratovil J. Scott Keogh Tissue Loans from Institutions: American Museum of Natural History (Darrel Frost, David Kizirian, Julie Feinstein) California Academy of Sciences (David Blackburn, Jens Vindum) Florida Museum of Natural History (Pamela Soltis) University of Kansas Biodiversity Institute and Natural History Museum (Rafe Brown, Linda Trueb, Andrew Campbell) Louisiana State University Museum of Natural Science (Robb Brumfield, Donna Dittmann) Museum of Comparative Zoology (Jim Hanken, José Rosado, Breda Zimkus) Museum of Vertebrate Zoology (Jim McGuire, Carol Spencer, Ted Papenfuss, Marvalee Wake, Sima Bouzid) Museum Victoria (Jane Melville, Joanna Sumner) National Museum of Natural History (Kevin De Queiroz, Addison Wynn) South African National Biodiversity Institute (Zoe Davids) Saint Louis Zoological Park (Jeffrey Ettling, Mark Wanner, Randall Junge) University of Michigan Museum of Natural History (Ronald A. Nussbaum, Gregory Schneider) Yale Peabody Museum (Gregory Watkins-Colwell) Tissue Loans from Individuals: J.J. Apodaca, Alan Channing, Becky Chong, Guarino Colli, Tyler Frye, S. Blair Hedges, Elizabeth Jockusch, Christopher McNamara, Eric O'Neill, Todd Pierson, Steve Richards, Kelly Zamudio Stephen C. Donnellan Rachel L. Mueller Fellowships: NSF Graduate Research Fellowship (3048109801), Blue Waters Graduate Research Fellowship (NSF/NCSA) Christopher J. Raxworthy Funding: SSB Graduate Student Research Award, DEB-0949532 (DWW), DEB-1601586 (DWW, PMH) Krushnamegh Kunte Santiago Ron Sandeep Das Nikhil Gaitonde David M. Green Jim Labisko David W. Weisrock
© Copyright 2026 Paperzz