Complex Molecular Evolutionary Models and Information Theoretic

Complex Molecular Evolutionary
Models and Information Theoretic
Approaches Provide Genomic
Perspectives on Amphibian Evolution
Paul M. Hime
16 May, 2017
Blue Waters Symposium
[email protected]
The Evolution of Life on Earth
• All life traces its origins back
to a single common ancestor
nearly 4 billion years ago
• But today, there are tens of
millions of species!
• Reconstructing the genealogy
of life is fundamental to nearly
all areas of modern biology.
The Evolution of Life on Earth
“Nothing in biology makes sense, except in light of evolution”
Dobzhansky
“Nothing in evolutionary biology makes sense, except in light of phylogeny”
All Organisms on Earth Trace Their Origins
Back to a Single Common Ancestor
Genomes Are Documents of
Evolutionary History
Organisms’ Genomes Evolve through Time
Phylogenetic Reconstruction
• Phylogenies are hypotheses about
ancestor - descendent relationships.
• These can be estimated from genetic
data (in the context of a model).
• Simple case: enumerate all possible
trees, pick the “best”.
• Tree space explodes factorially with
increasing numbers of taxa.
• Use heuristic search strategies to
explore tree- and parameter-space.
Models in Evolutionary Biology
• Evolutionary biology is an inherently historical discipline.
• In evolutionary biology, one cannot “replay the tape” of life...
• We use statistical approaches to compare competing sets of
models, in the light of data which we collect.
“All models are wrong. Some are useful.”
George Box
Data ≠ Information
(Except in the Context of an Appropriate Model)
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Data ≈ Information
(Except in the Context of an Appropriate Model)
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
*
*
informative site
informative site
Models of Nucleotide Substitution
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
Species
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTACGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCATCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTCCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCCTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTGCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
ACCGAGGGCTTCGATCGACTACCTTAGGGCTCTAGCCTGTTTCGTGCTAGCTGACTGATCGTAGTGTAGCTGACTGTGTG
*
*
informative site
informative site
Multi-sequence Alignment
General time-reversible
substitution matrix
Gamma-distributed rate
heterogeneity across sites
(discretized in practice)
Codon-Based Models of Molecular Evolution
The Multispecies Coalescent Model
Gene divergences always predate species divergences
Stochastic coalescent processes can lead to gene tree / species tree discordance
Modified from Leliaert et al. 2014
Gene Tree - Species Tree Discordance
Population-Level Processes Affect The
Expected Distributions of Gene Coalescence
Luay Nakhleh
Conflicting phylogenetic signal from different loci is expected, especially
for more recent divergence events and large effective population sizes.
What about at deep scales?
Many loci (regions of the genome) may be needed for difficult questions.
The Genomics Revolution in
Evolutionary Biology
It has never been
easier to collect
genomic data in
non-model
organisms.
The Genomics Revolution in
Evolutionary Biology
It has never been
easier to collect
genomic data in
non-model
organisms.
It has never been
easier to collect
genomic data in
non-model
organisms.
Data ≠ Information
(Except in the Context of an Appropriate Model)
Data ≠ Information
(Except in the Context of an Appropriate Model)
Data ≠ Information
(Except in the Context of an Appropriate Model)
Data ≠ Information
(Except in the Context of an Appropriate Model)
Some of the Many Tradeoffs in Phylogenomics
The genomic revolution is now offering unprecedented
opportunities to tackle thorny questions in evolutionary biology.
But these opportunities bring analytical and computational costs.
Some of the Many Tradeoffs in Phylogenomics
The genomic revolution is now offering unprecedented
opportunities to tackle thorny questions in evolutionary biology.
But these opportunities bring analytical and computational costs.
Genomic perspectives on the
amphibian tree of life
• Amphibians provide a rich system for testing phylogenetic
hypotheses at both deep and shallow scales of divergence.
• What is the topology of the amphibian Tree of Life???
• How confident are we in that topology?
• What are the inter-ordinal relationships?
• What is the nature of support across the genome?
• What are “best” practices with large phylogenomic data sets???
Extant Amphibian Diversity
Amphibians - 7,660 species as of 28 April, 2017 (http://AmphibiaWeb.org)
The three amphibian orders likely diverged 300+ MYA.
Map from BiodiversityMapping.org
Extant Amphibian Diversity
Caecilians (Gymnophiona) - 205 species, 33 genera, 10 families
Map from BiodiversityMapping.org
Extant Amphibian Diversity
Salamanders (Caudata) - 695 species, 68 genera, 10 families
Map from BiodiversityMapping.org
Extant Amphibian Diversity
Frogs and Toads (Anura) - 6,760 species, 448 genera, 55-65 families
Map from BiodiversityMapping.org
Amphibian Relationships
Hundreds of studies have addressed phylogenetic affinities of amphibians...
Amphibian Relationships
Hundreds of studies have addressed phylogenetic affinities of amphibians...
This project aims to sample hundreds
of nuclear genes for hundreds of
amphibian species
Inter-Ordinal Amphibian Relationships
Three main hypotheses for phylogenetic relationships among the
three amphibian orders (assuming that Amphibia is monophyletic...)
Batrachia
Acauda
Procera
The potential resolutions of these deep branches each have very
different implications for our understanding of amphibian evolution.
Inter-Ordinal Amphibian Relationships
•
There are 15 possible topologies for the three amphibian orders and
Inter-Ordinal Amphibian Relationships
amniotes,
assuming that Amphibia may or may NOT be monophyletic..
Three main hypotheses for phylogenetic relationships among the
three amphibian orders (assuming that Amphibia is monophyletic...)
Batrachia
Acauda
Procera
These three orders likely diverged ~300 million years ago.
Taxonomic Sampling across Amphibia
• We targeted 325 amphibian taxa (296 “worked”).
• 276 genera (> 50% of recognized genera)...
• 96% of recognized families (and most subfamilies)...
• Taxa were sampled roughly in proportion to species richness.
Taxonomic Sampling across Amphibia
• We targeted 325 amphibian taxa (296 “worked”).
• 276 genera (> 50% of recognized genera)...
• 96% of recognized families (and most subfamilies)...
• Taxa were sampled roughly in proportion to species richness.
• Multiple outgroups were included to root the phylogeny.
Anolis
Chrysemys
Gallus
Homo
Latimeria
Generating Genomic Data in Amphibians
• We developed an amphibian-specific gene capture system which
targets 366 semi-conserved nuclear exons.
• Probes were designed from genomic/transcriptomic* resources for:
1 Caecilian:
Ichthyophis
4 Salamanders:
Ambystoma*
Desmognathus
Cryptobranchus*
Notophthalmus*
6 Frogs:
Gastrophryne
Ascaphus
Pseudacris
Mixophyes
Rana
(Lithobates)
Xenopus
(Silurana)
Nuclear Gene Tree Estimation
•
Independently estimated ML gene trees for all genes in RAxML.
•
Used separate (best-fit) partitioning schemes and nucleotide
substitution models for each gene (GTR+G).
•
Conducted 500 non-parametric bootstrap replicates (across sites) to
assess “support” for branches in these gene trees.
•
Identified outlier taxa for each gene (and removed those taxa).
•
Conducted analyses with unconstrained and constrained topological
backbones.
Species Tree Estimation
•
Use multiple algorithms to estimate the topology of the species tree.
•
“Shortcut” methods attempt to reconcile collections of gene trees into
an estimate of the species tree (Astral and MulRF).
+
+
+
+
...
®
•
Also implemented a gene-tree-free approach (SVDQuartets).
•
Lastly, estimated a concatenated ML tree in RAxML, using a best-fit
partitioning scheme of 76 distinct partitions (separate GTR+G models).
•
Used the non-parametric bootstrap across sites to assess “support”
(sites and genes for Astral).
Brief Overview of Results
• Nearly all families are recovered as
monophyletic.
• Shallow-scale relationships are largely in line
with previous studies.
• Most higher-order clades are recovered.
• Deep branches receive strong bootstrap
support in species tree analyses...
Astral2 Species Tree
eq 1
1
se
q1
us_
pic
lym
_o
on
1
10
3
10
10
.3
33
.6
66
_s
1
eq
_s
ns
ce
es
irid
1
_v
t_
BC
_P
to
PM
2_
.3 33
1
eq
ae
H_A
I354
ta
DW
2_
I353
da
2_
W39
9_
YP
Cry
ata
W
by
_
ae
ire
5_
05
37
W_0
9_ SL
Z_
8_ M
VZ
100
100
67
10
87 38
I43 40_
s_ al
io s_
0
10
10
100
0
10
10
10
3
33
33
93 .33
10
0
10
0
0
10
0
10
10
0
99
3
.3 33
99
100
93
7
66
.6
0
0
100
98
10
10
100
100
q1
0
q1
100
100
100
98.66 67
100
100
ax_seq1
iculatus_ seq1
ptopelis_pa rkeri_seq1
roleptidae_Cardio glossa_leucomyst
nura_Arthro leptidae_Le
I4375_CAS _168499_A
I6485_MCZ_A_137988_Anura_Arthrolep tidae_Schoutedenella_sylvatica_seq1
I6478_MCZ_A_13 9626_Anura_Arth
_seq 1
s_se q1
atus_ seq1
olor_se q1
abon icus
us_ro bustu
nus_d iadem
oble ps_g
actylod on_bic
hoba trach
_Asty loster
e_Leptop elis_verm
nidae_ Leptyd
nidae _Tric
loster nidae
Astyl oster
ra_Ast yloster
ra_Astyl osternida
Anura _Asty
06_A nura_
_12283 6_Anu
I7720_R 306_Anu
_A_13 6805_
I4442_ AMCC
I6477 _MCZ
1
q1
atus _se
_co rrug
dae_ Scot
ylos terni
nura _Ast
Z_A_ 1368
eq1
s_s eq1
ns_ seq
ttul atu
bste trica
lius _gu
roo n_o
Hyp ero
yctib ates
_Al exte
nida e_N
rolii dae
tylo ster
a_H ype
nura _As
283 7_A
MCC _12
CZ_ A_1
3970 9_A
hof fi_s
x_g res
toth yla
liid ae_
Hyp ero
Anu ra_
AM CC
_12 588
0_A nur
I437 6_A
I648 3_M
eq 1
eq 1
_s eq
us _s
lat us
atu s_s
str iat
lvo vitt
lut eo
lus _fu
alu s_
ete rix
Afr ixa
e_C ryp
iida e_
roli ida
ype rol
ura _H
a_H ype
_A nur
369 20_
R1 139
I77 01_
MC Z_1
I44 03_
q1
q1
q1
s_se
i_ se
seq1
is_se
ctylu
na rd
ealii_
roda
alens
_l eo
lus_w
eneg
an tis
ma cu
dacty
ina_s
_im
yc tim
_P hl
Kass
emno
thy lax
idae_
ae_S
pis tho
eroli
roliid
ae _H
ae _O
_Hyp
Hype
rol iid
rol iid
ura_
Hy pe
Hy pe
8_An
nu ra_
nu ra_
_R83
0_ An
29 _A
95 _A
39 76
I7713
_R 11
_R 11
I77 04
I77 08
_A _1
_s eq
1
_seq
rops
si tu
w am
ki si
mac
eps_
revic
liid ae
pe ro
a_ Hy
nura
43_A
7_R8
1
eq1
1
I6437 _MC
seq1
sis_
en
mac
eps_
lin a_
al lu
_C
tid ae
Prob
dae_
ipiti
An ur
75 4_
_1 24
100
10
100
1
_M CZ
se
q1
q1
se
us_
se
q1
yp
n s_
a_
ita
eq
i_ se
_s
ci de
la m
th er
us
os
e xc
or at
rg un
pr ob
ne
e_
ar m
uine
_r ai
_m
hr yn
_g
rb us
is us
isus
ho
em
em
evic
_H
yl op
_H
_H
e_Br
id ae
idae
is ot
itida
isot
em
icip
em
ci pi
ra _H
Brev
ra_H
nu
re vi
ura_
Anu
_B
An
2_
nu ra
R01
557_
revic
5_
34 _A
_105
ra_B
CC
13 85
_Anu
C Z_
2_AM
8560
2_ M
CC
S_16
I4 38
7_ AM
4_CA
1
I44 28_
eq1
eq1
sse ni_s
_se q1
rsus_s
rke ri_s
nen sis
I64 75
eq 1
I6 45
I443
85
100
0
93
1
eq
_s
se
s_
lbu
ba
ch
ra
_b
ne
s_
cu
e ri
A lb
er op
ho
_C
ae
ae
lid
hy
ic ro
_A
04
93
I822
24
10
0
10
1
eq
_s
tris
ina
rh
xy
_o
lus_
ixa
ph
hry
op
Ore
e_
id a
h yl
lid
hy
ic ro
ra _M
A nu
4_
Z_
MV
1_
.3 33
3
100
1
se
eq
_s
na
na
es
alp
la_
iula
op
_C
Co
e_
ida
e_
ida
hyl
ic ro
_M
66.3333
10
0
82
q1
I770
_s
100
3
33
.3
0
10
1
eq
1
_s
ta
eq
eq
_s
so
om
ny
ge
cty
da
xy
ae
lid
hy
icro
_M
_M
ra
nu
42
PT
41
ula
q1
us
se
utt
q1
ss
s_
00
_5
4_
33
_g
se
olo
ri_
te
ula
ig
sc
fu
_th
ne
ry
ary
_B
ae
_O
ae
lid
hy
icro
_M
ra
ura
An
8_
_A
92
2_
34
TC
AB
3_
I1 3
I1 33
lla
atu
ue
_m
on
all
us
la
ers
_s
sia
s_
hu
ac
ph
yo
en
lid
hy
icro
icro
_M
ra
nu
_A
28
T4
44
PT
_C
ss
_p
lo
ae
og
ps
I1
33
I13
39
lid
ph
nu
m
atr
ob
en
_G
ae
lid
hy
_M
ra
nu
_A
nu
_A
55
43
55
_P
_P
I10
hy
ag
ulo
ly
ro
all
ic
_G
_C
eta
_M
ae
_X
ae
lid
hy
icro
_M
39
T4
_P
T4
_M
ae
ae
lid
ura
lid
hy
An
hy
ro
ro
lid
hy
ro
ic
icro
_M
ra
nu
_A
52
38
33
_P
46
I1
33
I1
7_
ic
ic
07
_M
_M
36
ura
ra
_M
ra
nu
ra
nu
_A
T4
_2
nu
An
I765
q1
se q1
rgi _s
am eru
ico lor
ne be
tot is_
ta_ se
lla _b
s_ bo
_c ryp
ole pte
sig illa
cf_te
ac hu
Ar thr
ietia_
_s ub
pte rna
ob atr
Am
da e_
Na tal
To mo
ana_
ph ali
da e_
ae_R
yx ice
da e_
_Cac
ph ali
Ranid
ph ali
idae
ra _P
phal
ura_
_A nu
ice
yx ice
yx ice
epha
7_An
55 59
yxic
_Pyx
_P
ura _P
0209
C_ 10
nura
nura
ura_
9_ An
AS_2
71_A
An
63_A
11_C
831_
_A MC
1_R3
9_R3
I104
2_R
I819
3_
I819
I782
I643
AS
0
C
10
9_
0
_A
10
_A
0
0
07
10
10
10
I64 38
seq1
nderso ni_seq
leveleve_
geri_ seq1
mar tien
_adspe
tes _pa
ptid es_
persus
rop ede
ynu s_c
Arth role
us_ads
ae_ Pet
ieto phr
cephal
ped etid
ae_ Am
ub ria
e_Pyxi
ufo nid
ae _A
a_P etro
phalida
ph alid
nur a_B
1_A nur
Pyxice
yxi ce
276 _A
ura _P
Anura_
ura _P
A_ 140
7_ An
0_ An
R725_
MC Z_
seq1
sis_seq1
atrachus_
assipes_
_Phrynob
nraua_cr
alid ae_
idae_Co
yxic eph
_Conrau
Anu ra_P
98_Anura
069 56_
_13 954
MC C_1
MC Z_A
_R 52
_R 41
_R 56
I7801_
I64 76_
I77 94
I78 27
I82 05
T5
0
0
100
54
10
10
100
T4
0
100
I64 39_
I642 8_A
wtoni_seq1
num_ boett
batrachus_na tator_seq1
hrynod on_sa
_Cac oster
rachidae
atrach idae_P
iceph alidae
hrynobat
Anura _Pyx
_Anura_P
_226 261_
S_218893
nura_P hrynob
ahlbergi_seq1
a_mascarenien
dae_Ptychadena_ne
idae_Ptychaden
Odontobatrac hidae_Odonto
_Anura_Ptychadeni
nura_Ptychaden
A_136 791_A
VZ_2531
I4416_CA
I4390_M
_P
10
100
100
100
100
62
0
0
10
0
0
10
0
I6 42
ym
e_Mi
on op
hio na_
iona _He
nec
ymno phion
ae_ Bou
e_H
leco mor
Ichthyoph
a_Rh inatre
ula tus
lon ect
es_
q1
_se
nat ans
itan
Sco leco
a_s eq1
mor phu
s_v ittat
phat rem
anna
hyophis_b
matid ae_E
picrio
q1
a_s eq1
alos tom
ae_C rota
iidae_Icht
1
s_ se
seq1
ula _ta
squ
erp ele_
phid ae_
eq 1
1
_s eq
ern an
ulata_
len ger
se _s
_s eq
seq1
ia_ alt
omo rphid
q1
m en
ph ini
_a nn
dis on
tentac
yph
tida e_T
_Sc olec
iona_
Gymnoph
se ra
no ps
Gr an
rpe lida
na_ Sco
iona
Gym noph
ec
eq 1
a_ se
_t ho
p_
ilia_s
lia_
Caeci
erp elid
lic at
um
s_
pe te
Sip ho
da e_
idae_
Typ hlo
ry
1
us _s
ul tip
et op
croca
ida e_
typ hli
a_H
oph ion
_2654 95_G
Ge ot
ic an
s_ m
ist om
_seq
q1
m ex
no pi
_S ch
nsis
ge
s_se
s_
op hi
e_
hii da
aecili
chen
sicu
um_ seq
a_tc haba
ID_8478_seq1
XID_28377 _seq1
2_ M
_R 96
87 32
_A nu
lida e_
lid ae
lid ae
llid ae
_G eph
Ma nti
_G uib
_M an
_B oo
tel la_
e_B uer
yro ma
da cty
em an
be tsi
leo _s
s_s eq
r_s eq
orti cale
oxy cep
boh itra
ga bri
ulc he
seq 1
erm a_c
ger ia_
ntis _am
lus _lu
tis _p
atus_ seq1
ii_se q1
_pic tus_
_Th elod
0
I646
0
I857
I648
10
0
10
0
I790
0_
8_
R11
stax_seq1
q1
eq1
llus_seq1
ppen dicul
alus _hos
ctix alus
hor idae
pho rida
s_parvulus_s
hestes_gry
urixa lus_a
e_G orhix
dae _Ny
Rha cop
elli dae
an tel
an tel
an tel
Ma nte
coph orida
Rh aco
_xeramp elina_se
dae_Philautu
idae_Raorc
horid ae_K
cop hori
Anu ra_
Anu ra_
_M ant
ura _M
ura _M
ura _M
ur a_
ura_ Rha
Polypedates_leucomy
ae_Chir omantis
_Rhacophori
Rhacophor
a_Rh acop
ura_ Rha
251 31_
414 42_
An ura
9_ An
1_ An
0_ An
8_ An
Z_ 23
VZ _2
1149 _An
075 _An
MV Z_2
MV Z_2
R9 42_
_R 97
_R 93
_R 92
7_ MV
33160_Anura
20_Anura_
112_ Anur
dopus_seq1
idae_Feihyla_palpebralis_seq1
nura_Rhacophoridae_
ura_Rha cophorid
_se q1
hal us_
_se q1
1
1
seq 1
1
q1
_9031_seq1
1
lmba boen
nicus_seq
si_se
nops_ peter
eq 1
ph is_
ra _M
38 72
alb ipu
8_R1
an te
3_ An
nc tat
144_
llid ae
ur a_
us _s
Anur
_B oo
0_C
M an
eq 1
a_Ra
ph is_
AS
te llid
_234
py rrh
nida
ae _A
5_LS
711_
e_Hy
us _s
gl yp
UM
An
eq 1
lara
to da
NS_
ura_
na_S
ct ylu
YP
1045
Ran
ylv
s_ m
M_0
idae
9_An
irana
ad ag
13
_P
74
_n
ur
as ca
tero
I784
a_R
igro
1_
68
rana
rie ns
Anu
vitta
anid
9_
_A
_kha
R18
ra_R
is_
ta_s
nu
ae_P
I135
se q1
ra
eq1
re_s
5_
10
an
_R
apur
26
Anu
idae
0
an
eq1
_R
ana_
I78
idae
ra_R
_H
EF
75
yl
pa
_S
_L
aran
an
_R
pua_
an
itS
I85
idae
11
gu
a_
ph
seq1
74
ira
pict
41
_B
_A
na
_L
_A
ab
urat
nu
I64
_s
SU
nu
ina_
ra_R
a_
an
20
ra_
MN
seq1
gu
ch
_A
an
inea
Ra
I6
ap
S
id
M
_
46
ae
nid
17
ae
CC
_s
6_
ns
_L
eq
58
ae
_1
is_s
I6
MV
1
ith
9_
_L
44
38
ob
eq
ith
An
Z_
6_
32
ates
1
ob
ura
25
I7
3_
CA
ate
10
89
_s
82
_R
An
S_
s_
ph
7_
0
65
an
ura
I7
pip
en
24
R1
_A
ida
88
oc
_R
ien
26
nu
53
e_
ep
2_
an
07
s_
I7
Lith
ra
ha
_A
R1
ida
se
_A
91
_R
la_s
nu
ob
q1
e_
16
nu
0_
an
ate
ra
I8
eq
Hu
2_
ra
ida
R1
_R
21
1
s_
_R
ia_
An
e_
16
p
9_
a
I6
a
a
n
n
ura
Od
lm
asi
nid
4_
id
R1
46
ipe
ae
orr
ca
An
_R
ae
5_
80
I6
s_
_P
_se
an
_A
ura
an
_A
M
42
se
elo
a_
m
q1
VZ
id
q1
_R
4_
nu
I6
ba
olo
ae
ph
_2
41
ra
AM
an
na
_M
ps
yla
_D
31
oru
id
7_
_m
C
x_
eri
ae
20
ic
C
AM
m_
ed
rid
sto
ro
_S
_1
8_
og
se
ib
glo
C
ge
ta
06
un
An
q1
en
C
u
n
s
da
52
_1
ro
sis
ys
ura
sid
is_
_s
0_
_o
44
_s
ae
_D
eq
eq
rp
na
An
94
_N
1
ic
hn
1
ta
ura
2_
ro
an
to
oc
glo
An
r_
ora
_D
ne
se
ura
ss
m
ic
na
q1
is_
id
ro
_D
_b
ae
glo
se
ou
ic
_N
q1
ss
ro
rre
an
id
glo
ti_
ae
ora
ss
cf_
_C
na
id
y
ha
un
ae
_p
pa
na
le
_Q
sk
ra
ne
ua
ei_
na
ns
sip
_A
is
se
_s
aa
q1
nn
eq
_v
an
1
err
dia
uc
_d
os
ela
pin
co
os
uri
a_
_s
se
eq
q1
1
I786
0
q1
se
i_
hli
ku
1
q
s_
se
q1
q1
cte
ii_
se
se
ne
rg
s_
s_
no
bo
ari
ari
im
ch
ch
lim
_L
no
no
s_
q1
ae
lim
lim
cte
id
se
s_
a_
ne
ss
s_
q1
cte
ary
no
cti
se
glo
rv
ne
im
hly
s_
ro
no
eje
_L
ic
op
su
n
im
lo
_F
ae
q1
_D
ya
_L
gu
id
ae
se
_c
ru
id
ura
ae
ss
hi_
tis
s_
id
ss
it
An
1
u
glo
le
lyc
an
eq
ch
glo
ro
0_
ph
a_
ro
ic
_R
_s
tra
36
q1
ic
an
Eu
lis
1
ba
_D
se
_
a
ura
21
q
_
dir
lo
_D
re
ae
se
An
In
eri
_2
ura
op
id
bo
q1
ura
th
a_
e_
5_
se
ss
An
_H
s_
AS
en
An
lim
da
lu
25
C
is _
ae
7_
gu
glo
a_
0_
xa
ali
id
rm
S_
4_
05
q1
yg
ix
us_
93
ss
N
icro
if o
icri
R
39
oz
ch
an
M
_se
44
glo
_D
fo n
I4
_M
8_
U
lis
cid
tra
_R
_1
bu
ae
ura
66
ba
icro
LS
Oc
bra
lid
to
ura
I7
CC
le s_
rte
e_
An
3_
_D
ra
xa
ve
An
q1
de
ra
5_
ida
57
AM
Ce
se
s_
icri
7_
nu
I8
ss
25
is co
9_
e_
de
_M
10
sis_
_A
43
glo
_D
41
ida
ylo
en
ro
69
_2
ura
_R
ae
I6
ch
ch
ic
n
5
a
id
14
0
tra
elew
AS
_D
atr
_A
91
ch
24
_p
ba
10
ra
_C
I7
_B
33
tr a
tis
to
S_
nu
ae
50
ba
0
04
ra
an
4
id
e
to
m
_A
CA
22
10
I6
_C
ach
27
2_
e ra
q1
laty
S_
ra
se
atr
95
45
_P
_C
nu
CA
2_
q1
ra
I6
23
tob
v_
_A
idae
0_
nu
S_
0
era
s_se
no
ch
14
41
_A
eu
p_
CA
10
_C
I4
20
atra
15
_s
5_
etra
ura
ob
M_
54
1
_p
q1
39
An
rana
0
12
se
CP
I4
erat
_seq
9_
10
chus
p_
C_
2_
Inge
44
_s
spei
ra_C
atra
e_
47
0
MC
25
ae
I6
alus
10
on
_1
_A
Anu
yctib
sida
5_
os
18
_N
icrix
CC
us_b
ae
84
_M
op
I6 4
rogl
AM
yl
37
ic
_
chid
ng
idae
eq1
31
S_2
0
tro
atra
ra_D
0
ixal
I44
us_s
_S
10
CA
10
an
ae
Anu
yctib
ciat
7_
9_
alid
ra_R
_fas
ra_N
I438
ph
nu
R05
seq1
Anu
opus
_A
xice
4_
4_
0
45
Py
tys_
ngyl
1
tro
G00
_pla
R11
ura_
_S
_seq
um
7_
An
S_A
1
nter
5_
idae
tern
CB
I791
ive
56
_seq
_N
phal
acos
05
_alb
34
icata
_C
_1
xice
rnum
Py
CC
nuipl
I109
lidae
1
AM
oste
_s eq
100
7
90.3 333
I6461 _MVZ
I7783_R1068_A
I6443_ MCZ_
I7557_R1020_Anura_Arthroleptidae_Arthroleptis_variablis_seq1
I7559_R846_Anura_Arth roleptidae_Arthroleptis_w
I4415_CAS_2 30053_Anura_
I4418_CAS_219251
33
10
15
92. 666
66
I1
10
0
10
10
100
9_
0
85
79
0
70
79
10
0
0
10
78
40
10
0
10
0
100
34
10
.3
0
10
10
100
T4
0
10
0
10
80
41
10
7
47
olin
I4
66
0
ue lle
liann
_car
.6
0
ryne
I647
_m
s_he
_2
tig iu
ot us
clei
I4 40
10
isto
_P
e_ Al
at on
AS
er m
lach
40
yli da
_D
C
m pt
icr oh
lid ae
33
e_ Ha
ra _M
ro hy
71.6667
ic
a_ M
_P
yli da
_A nu
33
3
0
icr oh
T3 21
.3
43
66
98
45
1_
_A nu
ra _M
35 _P
I82 44
I77 30
I82 29
7
10
se q1
I1
T2 81
_A nu
I1 33
I77 34
100
0
0
51
37 _P
T0 43
I82 33_
100
10
10
I1 33
47 _P
I64 40_
100
100
100
100
eq 1
.6
_s
100
97
ia na
33 3
45
1
eq 1
u ra
op hr
_s eq
An
yn
liv
e_ bo
100
q1
seq1
sp _s
ra _M
co
r_
vo me
A nu
e_ Ar
hi_ se
atus_
his trio
1_
icr
da
oh yli
a_
sch irc
crass
ryn e_
T 42
ra _M
ers iell
op s_
ps_in
yo ph
I64 70_
85 .3
100
_P
hy
as yp
cyclo
_H
lid ae
100
I792 9_R
I794 6_R
100
1
sp_ seq
q1
ri_ se
seq1
0
10
eae_
0
10
seq1
sis_
en
q1
0
se
0
10
vis_
10
1
re
_E
eq
_b
ur
ph
is _s
lidae
ryne
1
0
8_ An
ph
astro
or al
rohy
eq
io
10
58
ic
m
_G
ph
_M
ae
is _s
_1 25
ei fe
ca
q1
CC
nura
_S
hylid
ra nd
_r os
se
7
_g
icro
59_A
s_
lidae
5_ AM
66
pf fia
T0
hy
.6
q1
la ri
pf fia
I4 43
ra_M
tu m
99
se
icro
gu
nu
45_P
tu m
_S
_A
_M
ta _
ig ri
1
ar
ae
I133
_S
ra
ic
q
lid
nu
ae
se
asC
la _n
hy
to st
lid
_A
s_
_G
hy
no
12
nt hy
ic ro
q1
EF
an
T3
0
a_
do
ic ro
_R
ult
_P
_ se
10
ra _M
h yl
23
no
cc
1
57
_A
ra _M
ma
n to
_o
A nu
I135
eq
I133
ae
lis
do
5_
A nu
st ig
_s
e
o
lid
26
p
1
1
4_
th
T
s
hy
ty
u ro
0
eq
41
tu
_P
P le
Pla
p le
ic ro
03
10
_s
59
ea
e_
1
_1
e_
s_
eti
rl in
id a
I1 33
eq
ra _M
nu
CC
ida
uin
h yl
_s
in te
AM
h ry
hyl
A nu
_g
q1
0_
ic ro
s_
ata
9_
lo p
us
icro
se
nu
_M
Ka
orn
I6 43
T 35
ph
f_
_M
ry
ra
q1
e_
_P
co
_c
_in
ph
nu
ura
se
ta
36
ys
id a
_A
tta
1
An
a lo
a_
ga
le
_D
h yl
14
5_
I1 33
eq
_K
an
rie
ae
87
33
icry
_s
ic ro
ae
1
nd
va
12
lid
03
_M
eq
_M
y lid
su
hy
C_
hra
a_
_1
s
e
h
ll
_
ra
C
C
a
1
e
M
ulc
nu
a_
icro
lla
lid
ic ro
MC
an
eq
_A
_p
sc
_A
ne
_M
hy
_A
35
_M
1
_s
fu
am
ry
17
ula
36
ra
ura
I6 4
eq
icro
79
a_
ph
_R
ata
nu
I64
alo
An
24
_s
rn
_M
ae
rin
eta
_A
4_
_K
S_
lid
sis
_o
pe
68
ura
74
_M
ae
CA
hy
la
en
ha
T1
An
38
ae
lid
6_
hy
_P
an
6_
icro
_2
_C
lid
56
hy
ro
50
90
I8
nn
VZ
ae
hy
ic
ro
_M
33
M
ic
47
ro
M
ra
lid
yu
I1
ic
3_
_2
nu
e_
hy
_M
a_
46
_M
ro
AS
ra
_A
da
ell
I6
u
8
li
C
ic
ra
u
20
5_
hy
An
nu
all
_M
ro
45
R1
5_
_A
_C
ic
I6
ura
0_
06
36
ae
An
_M
74
13
T2
lid
I7
2_
_0
_P
ura
hy
M
11
52
An
ro
31
YP
ic
33
7_
_2
I1
0_
_M
94
H
44
N
33
I4
ura
M
_2
An
_F
AS
4_
92
C
3
6
0
4_
T1
I1
45
_P
I6
39
33
I1
I13 34
I1 33
• Scrutinize
phylogenetic
signal across
the genome...
28 4_
Mi cro
e_ My
ae _D
Stereo
I7961_R11
I793 5_R1
100
100
1
eq1
48
9_ PT
a_
An ur
hyl ida
oh ylid
dae_
lhoi_s
I4 40
ura_M
hylida
_M icro
_M icr
yli
icroh
seq 1
_se q1
ayi_seq
_carva
1
3_An
An ura
An ura
sals eri2
yne_ge
ope
e_Sync
ni_
27
8_PT
a_Micro
34 0_
33 2_
robu sta_
ran us_
enophr
_G
1
ng
_per
opida
mno phio
q1
eq
er m
_In do
ymn oph
F_IchBan_
I6456_CAS_2
100
100
100
45
I1335
8_Anur
3_ PT
4_ PT
phry ne_
Syn aptu
dae_Ct
100
s_
_PT19
I13 35
I13 34
ae_ Oto
ylid ae_
icrohyli
Gy mn
706_
I7925_R 538_An
100
100
7
100
1
hyl
S_1743
I13361
idae _Ade
icro hylid
Mic roh
a_M
4_Anur
69. 666
100
s_se q1
mos _seq
icro
LSUMN
Micr ohyl
Anu ra_M
Anu ra_
76.3 333
us_se q1
_ann ecten
lono
laste s_hy
33
I8562_
9_An ura_
PT4 59_
PT2 71_
tis_bif asciat
rynom antis
5_
OM_ 4416
I133 54_
I133 60_
chus_s
Phryn oman
hylida e_Ph
I6
I7739 _R13
I103 91_R
ae_Nasikabatra
icrohy lidae_
Micro
30_A nura_
rm op
se
_s
ae
hi id
phon
_C
hiona
812 _Gy
_D
_S iph
q1
I7967_R241_Anura_Rhacophoridae_Rhacophorus_pardalis_seq1
100
T 44
87_An ura_M
a_Si
se
q1
_sha
ae
hi id
op
s_
se
ii_
I7927_R233_Anura_Rhacophor
98.333 3
100
q1
ahyadrensis_se
_P
Nasikabatrachid
I1335 6_PT2
a_ De
I6459_CAS_241141_A
orbonica_ seq1
I1
AI442_Anura_
ae_Lepto phryne_b
er m
s_
ns
erus
id ae
op
hio na
nu
rling
ce
q1
se
nsi
1
I4421_CAS_224676_Anura_Rh acophoridae_Rhacophorus_rho
48.3333
98
33
• We’re done,
right??!!
I10935_NCBS_
99_Anura _Bufonid
op hi
s_
eq
bius
up
rach
ym nop
311 6_G
MCC _117
se
es
na
op hio
mnop
_s
idia
ey
hyno
er m
phion
mn
av
nigr
q1
nie
Latimeria_TAXID_7897_seq1
42
95.3333
ngidigita_seq 1
at
alle
se
nsi
ga
Homo_TAXID_9606_seq1
100
I1
I6464_M VZ_2393
ra_Bufonidae _Ansonia_lo
ph ion
795 05_
Anolis_TA
100
100
I1 33
I4429_YPM_ 013738_Anu
_B
mn op
Chrysemys_TAX
100
_Nectophryne_bates ii_seq1
achy
_D
io na
733 _G
Gallus_TAXID
100
on
_d
s_
nie
icus
la_k
er m
nsi
ga
us_
ius_
na _D
4_ Gy
I4343 _MVZ
100
100
100
I6481_MCZ_A_1396 34_Anura_Bufonidae
no ph
AS_ 168
I13518_RE
100
100
io
rias
ob
na _D
ymno
YPM _01
_jap
_P
nie
alle
nch
drel
iidae
9_Gy
MV Z_1
I857 7_C
yn
ym no
179
MV Z_
ra
an
ga
us_
And
_H
io
alle
rias
iidae
2_ Gy
02
_2 58
_149
e_
no ph
ym
tob
And
ae
69_G
q1
nch
alam
ynob
18 _G
59
_1 62
_BPN
100
e_
ynob
_H
_G
bra
hida
_S
iid
1
se
us_
p
Cry
no ph
ym
_Ga1
100
I4433_AMCC_105533_Anura_Bufonidae_Capensibufo_rosei_ seq1
I7581_R690_Anura_Bufonidae_Poyntonophrynus_damaranus _dombensis_seq1
ae
I434 5_A
100
0
10
e_
ob
nch
to
ryp
hida
iid
eq
ei_
1
bra
ym
5_ G
_M VZ
98
85.6 667
79
_M VZ
100
100
ida
_s
op
eq
ranc
yn
01 31
M_
C
ta_H
I44 37_
55
100
da
I43 48_
100
ob
m
c
n_
pto
ta
auda
S_ 21
I4337
100
0
ob
1
iu
_s
e_
nch
26 _G
_BPN
I43 42
100
100
0
ida
ranc
yn
au
do
ry
1
eq
oid
ia
ed
ta_H
_2 28
6_ YP
I4346
lp
_C
ra
ob
9_C
97 10
9_ CA
I4 43
rm
eq
_s
pto
rypt
da
_C
ta
nch
tob
rypt
Cau
a_
_s
um
am
ta_H
77
um
ac
te
ta_C
da
an
e
ida
bra
ryp
da
m
Dic
nch
1
ic
op
in
n_
pto
_C
eq
ex
a_
sto
ta_C
au
86
_s
m
m
bra
Cau
I4 33
0
d
_S
da
M_1
I4 33
0
10
10
2_
0_D
Am
pto
_C
M_9
I6 47
0
0
ry
ta_
ud
Cau
sto
nti
e
ida
D03
YP
I370
3
n
do
1
um
a_
m
by
e_
eq
rin
sto
Am
pto
1
_s
g
_ti
da
Ca
eq
ta
by
_C
au
_A
a
_
ire
F_
J1
H
PM
1_
am
da
_C
m
ati
_s
ita
m
ae
m
_S
7A
ig
_A
d
ati
ata
dra
rd
to
ys
sto
au
13
3
_C
I370
7
m
an
te
ic
_D
ud
_C
LK
b
m
by
ta
m
_
na
d
ati
m
Ca
MH
3_
ala
sto
da
16
dri
m
by
_E
I370
10
eq
us
_s
is
irIn
_s
A
e_
_A
u
Ca
MH
04
m
ta
an
da
s
by
0
.6 66
_s
ns
ie
7_
H_
P
7_
m
ati
_A
I370
0
sis
ha
m
la
a
ud
_S
PM
I37
10
en
in
w
w
_k
a
56
EF
0
m
ta
da
_C
_2
9_
_A
0
0
ho
ch
W
_R
70
7
10
0
on
trit
lo
Ty
3
T2
u
Sa
sto
by
ata
Ca
0
10
eic
q1
sis
q1
se
en
se
s_
ng
s_
tu
ko
ca
ng
1
ro
ho
eq
_c
n_
_s
us
ito
da
otr
au
alm
ic
es
th
m
ns
ph
ra
_e
oto
Pa
ps
N
no
e_
n_
Cy
da
ito
e_
otr
dri
0
_
33
d
_
ae
la
dra
I43 47
100
70 .66
7
au
DW
35
d
Am
_
P4
09
6_
dri
I37
100
18. 666
O
_
d
Sa
an
100
0
10
0
C
1_
RB
35
an
ata
0
93
0
10
1_
m
dri
_
ae
m
100
66 7
8_
ala
78
I1
3
10
100
10
0
0
RB
53
m
d
au
_1
I4
10
10
10
_C
W
1_
I3
0
68
0
10
86 .6
ta
_S
92
0
to
da
54
W
100
0
10
10
10
99
0
hin
an
2
da
ig
_T
_D
I3
0
10
0
10
0
Ec
m
9
34
0
10
10
0
10
10
0
e_
ala
K0
0
10
0
da
_S
_C
au
ta
0
1
10
e_
dri
ta
J
4_
98
1
de
da
an
39
da
ala
10
0
10
100
0
22
0
10
0
10
10
10
dri
m
_C
au
_S
an
I3
10
q1
q1
an
ala
m
ala
ta
da
54
10
0
10
33
eq
q1
se
s_
su
ari
lg
vu
s_
rg
ure
Ne
e_
da
dri
dri
an
m
da
au
_C
_S
ta
da
au
au
C
5_
2_
5
s7
0
10
0
0
10
.3
1
eq
_s
us
ulo
ac
m
ru
tu
Tri
e_
e_
da
dri
an
m
ala
ala
_S
ata
56
18
_1
C
5_
19
TP
25
55
s_
q1
se
r_se
m_
1
rube
yl u
eq
_s
a ct
ton_
ga
tr id
co
otri
ifu
a_
trit
_luc
iu m
ya
ea
ph
Rh
uryc
Am
e_
uin
e_
ng
ida
id a
_a
on
us
trit
iu m
te
co
ph
s_
ya
Pro
ru
e_
Rh
ctu
ida
ta_
Ne
te
da
e_
ro
au
da
ida
_P
te
dri
ta
ro
an
da
m
_P
ta
au
an
ala
_C
m
da
_S
au
ala
ata
_S
_C
ud
59
ata
_S
Ca
ud
ata
9_
Ca
ud
60
6_
26
Ca
06
ud
9_
TP
27
Ca
83
TP
9_
24
8_
74
TP
33
24
Z_
9_
M
TP
33
U
0_
LS
33
26
4_
I9
TP
53
33
I3
7_
I9
H
33
88
I4
91
10
100
100
100
P
0
25
I3
10
0
100
10
0
_T
0
0
0
10
10
61
0
23
0
10
10
7
10
0
3_
I9
33
I9
10
0
0
0
66
10
.6
10
57
100
1
10
q1
99
q1
po
cu
hilu
op
yrin
_G
ud
se
_P
ae
_E
ae
tid
on
Am
ta _
da
_C
33
13
76
40
24
77
H_
PM
5_
0_
34
I9
I9
0
eq
0
80
_S
ta tu
rphy
ritic
m _s
us
eq
1
_s
eq
1
seq1
_s eq
q1
seq1
tris_
en
m _s
ty liu
id ac
ae
tid
on
od
tid
on
od
od
leth
ta_P
au
_C
8a
86
_1
_H
MZ
Z_
I3
10
0
39 .33
_s
q1
98
10
I9
1
33
I9
1
q1
0
MV
2_
36
I4
10
10
0
33
0
10
10
1
1
1
53
ana_
ile tti
x_ se
kore
sa _r
er ni
nia_
griv
gl os
lis _p
no
s_ni
ol ito
ep
_B
yc ta
_N
chos
tid ae
em
atra
tid ae
_H
_B
od on
on
ae
ae
od
tid
tid
on
le th
on
od
leth
od
ta _P
le th
leth
ta_P
da
ta _P
ta_P
leth
da
da
Cau
3_
C au
Cau
ta_P
01
3_
da
_0
au
R_2
on
_C
AP
da
irs
5_
au
R02
pe
_C
_P
H_1
12
PM
MH
20
32
6_
_P
J_
_2
97
JR
VZ
I933
7_
_M
I124
SU
51
I932
_L
36
I4 3
I35
seq1
eq1
ni_s
orda
arse
_K
idae
dont
le th
_P
da ta
da
C au
2_
97
63
4_
55
LJ_1
_E
_T
99
3
0
.3 33
99
0
0
51
10
100
0
100
7
10
100
100
.6 66
42
69
q1
1
eq
sis
se
1
en
s_
eq
ic
1
ep
_s
in
eq
q1
1
10
I1 24
0
10
0
q1
eq
q1
_s
se
q1
s_
se
eri
_s
q1
q1
q1
1
tus _s
ac ula
q1
se q1
ti_se
ad rom
igh ti_
tus_
brich
s_ qu
s_ wr
ncta
s_hu
na thu
lavipu
nathu
es_f
sm og
on_j
aeog
eid
e_ De
thod
e_Ph
e_An
_Ple
ntida
ntida
tidae
etho
hodo
hodo
odon
a_Pl
Plet
_Plet
leth
udat
ata_
Ca
ta_P
C au
Caud
157_
auda
11 3_
U01_
_247
09_C
_1 18
VZ
_2
CC
7_JK
VZ
98_M
_M
8_ AM
I371
96
I124
48
I4 35
I1 24
100
100
100
10
100
100
1
100
eq
1
100
100
100
100
100
100
I111
ra_ seq
seq 1
adi gito
eq1
tett eri_
seq1
anus_s
cus_
_ho chs
s_fus
s_mont
pel ma
nathu
na thu
scaphu
e_L eio
smog
sm og
dae_A
e_De
e_ De
scaphi
ntida
nti da
nti da
ura_A
hodo
ho do
ho do
_Plet
on_An
_P let
_P let
udata
ud ata
ud ata
udata
3_Ca
8_ Ca
7_ Ca
2_Ca
_JK0
_J K0
_J K0
_P_8
I3715
I37 16
0_CS
lis_s eq1
seq1
_pic tus_
icro del
s_s eq1
oglo ssus
bin a_m
tetr ican
ae_ Disc
e_B om
tes_ obs
ato rida
idae _Aly
ma tida
Bom bin
eio pel
ura_ Alyt
Anu ra_
nur a_L
914 _An
421 12_
513 4_A
_AscM
VZ_ 231
CA S_2
DM G_
I85 55_
I44 48_
I37 11
I4359
I371
100
100
1
84
_REF
689 _An
VZ_ 235
I437 3_M
I439 7_M
I13520
eq1
ura_ Disc
Rhin ophr
6_An ura_
VZ_1 6475
oglo ssid
ndii_seq1
us_d orsa
inop hryn
ynida e_Rh
pipa_seq1
us_boe ttgeri_s
dae_Pipa_
eq1
Anura_Pipi
XID_8364_s
_247511_
Xenopus_TA
I6444_MVZ
I442 3_M
s_ibericus_seq1
idae_Spe a_hammo
ae_Hym enochir
Scaphiopodidae_Scaphiopus
_Anura_S caphiopod
4_Anur a_Pipid
I6453_P MH_201
I4413_MVZ_234650_Anura_Pelobatidae_Pelobates_syriacus_seq1
I4414_MVZ_186009_Anura_Pelodytidae_Pelodyte
I4424_CAS_229217_Anura_
q1
eq1
phryidae_Ophryop hryne_hansi_seq1
egophrys_g landulosa_s
e_seq1
lalax_bo urreti_se
I6469_MV Z_145187
I6416_AMCC_144 796_Anura_Mego
nura_Mego phryidae_M
ophryida e_Lepto
1
elli_s eq1
anens is_seq
ium_ch apaens
iger_g ongsh
ae_Lep tobrach
ryidae _Scut
I4408_MVZ_226277_Anura_Megophryida e_Brachytarsophrys_feae_seq1
I4409_CAS _240922_A
ura_M egoph
ra_Meg ophryid
6489_An ura_Meg
_10639 7_Anu
I6425_A MCC_10
I6429_ AMCC
nsis_seq1
1
ayi_seq
seq1
hevilli_
seq 1
asw elli_
alella_g
rini a_h
yes_sc
_sechelle
hryne _purc
ptoceph
Mixoph
oglossus
chidae_
ae_H eleop
ae_Caly
ssidae_So
yobatra
phalellid
leoph rynid
a_Sooglo
alyptoce
Anur a_He
Anura_C
isko_Anur
BI_1 954_
_2342 95_An
MH_01_
R04_Lab
I4399 _SAN
I4384_P
I9326_C
I6473 _CAS
eq 1
q1
1
lls i_s
lli_ se
ra_ seq
a_s eq1
su de
gn ife
icto rian
hu s_
nia _si
atr ac
rini a_v
e_ Cri
_Pa rac
e_G eoc
ach ida
chi dae
ach ida
yob atr
yob atra
yob atr
ura _M
ura _M
nur a_M
nura_M
479 _An
476 _A
xSch_A
MV _21
MV _21
REF_Mi
I85 71_
I13524_
1
_seq
eq 1
_s eq
agua
wi nii
rill i_s
_d ar
du me
eq1
q1
eq 1
ta_s
1
eq
eq
q1
ta _s
si_s
r_ se
or nu
an
a_ se
es _s
rg ol
yll od
s_ ga
_cav
s_ ph
nic ho
ma
ste s_
od er
lo de
ev
ni ge
nia_
enia
iu s_
tefa
a_ta
at ob
_S
se
is_
_se
lm
an
_s
m
gic
us
do
ce
_ru
s_
eri
ria
tis
uff
us
ta
cte
_s
ilu
co
an
op
s_
tim
lu
ste
yc
ax
_la
in
us
pa
pit
ns
q1
r_
q1
_se
rife
se
ntii
ii_
illa
is_s
ro tt
_va
p ie
re
lea
cre
s_
ch
Sc
O
ha
N
e_
ep
e_
da
yc
da
e_
yn
irtu
s_
au
eru
es
_ca
lca
_th
ria
ca
ito
a_
laev
hyl
usa
s_
ry s_
hu
ph
_c
co
trac
zio
ed
ru
lom
_C
hr ys
ha
ba
hyl
at op
pido
chyl
el m
so de
_T
atra
phus
de n_
dy na
_N ota
ym no
Ne ob
hid ae
ae _L
ida e_
atr ac
ac hid
tra ch
My ob
yo ba
nu ra_
ura _M
3_ An
61 _A
8_ An
18 15
ram
e_ Hy
yclo
_R hin
ae_C
tid ae
_B
e_ Al
iid ae
idae
di da
chyl
Al so
di da
tra
ylo
ur a_
Ba
phid
er ma
ram
hin od
ob atr
ra _R
a_ My
_A nu
An ur
_7 06
21 52
_M V_
_M V_
87 0_
I90 34
An
ra _H
06 0_
_A nu
_1 88
Cyclo
Le
C er
ae
e_
e_
tid
da
da
_P
_C
ria
oa
orh
sc
en
lo
ha
Hy
sib
e_
yp
da
_H
ito
_L
ae
_L
ae
ae
ylid
ylid
ylid
_H
ae
_H
ura
ura
ylid
An
An
ae
ae
ylid
ry id
4_
_H
01
ura
_H
An
a2
ph
ac
hr yi
iphr
op
em
at ob
er at
ra_H
ra to
ura
2_
hryi
An
Ce
op
8_
ra _
erat
nu
el am
Anu
ra _T
6_
ura_
28
A nu
_A
ra_C
ra _C
81
Anu
A nu
0_
1_
An
0_
56
N_1
64
828_
90
17 13
VZ
ura_
1_ KZ
1_An
I4 41
48 29
b_38
Z_ 16
1_Ca
AR 66
I437
2_ MV
I85 61
I85 70
_S AM
I4 42
I85 64_
I64 86
_2
_164
KU
VZ
2_ M
7_
7_M
I4 37
I437
47
BP
Z _2
0_
55
55
ori
yli
da
se
81
48
_H
yli
se
i_
48
ZA
_H
Sp
eq
ZA
CA
ura
e_
_s
s_
ge
12
CA
An
da
eq
se
4_
ura
s_
xa
alu
in
12
_Q
88
An
do
en
13
C_
58
_9
2_
_s
re
ph
Lit
6_
tu
_g
ce
H_
66
se
ro
PM
10
ns
tis
ara
sa
NS
yli
ch
yli
_H
Tra
_H
ra
ra
e_
_H
i_
eq
ic
_p
eta
da
UM
ura
m
an
8_
LS
An
thoi
is
die
_s
eq
yli
na
ylus
_H
dact
ra
hero
ycep
85
rach
51
ae_B
ZA
_C
ta
_s
_0
nu ra
M
94 _A
_107
YP
CC
9_
5_AM
_fo
atu
s_
ud
_p
om
q1
s_
se
q1
s_se
ra ug
6_ US
352_
_coq
q1
as to
halu
NM
I4380
Anur
_2 68
rid ae
ui_s
s_ep
_USM
a_St
94 2_
eq1
_C
hipp
ra ug
rabo
An ur
N_53
ium
I44 12
as to
man
a_ St
_seq
3994
_M VZ
r_ no
tidae
ra bo
_Anu
1
_1 45
ma nt
bl ei
_Phr
ra_Br
20 8_
I43 86
_s eq
ida e_
ynop
achy
An ura
_A MC
1
us
Pr
ce
_O do
ist im
phali
_sp_
C_ 11
nto ph
dae_
an tis
83 59
seq1
_A nu
Ischn
_r ide
ryn ida
ra_ Ce
I8558_
ocne
ns _s
e_ Od
ntr ole
ma_ra
eq 1
LSUM
on top
nid ae
NS_17
magii
hry nu
_H ya
409_A
_seq
s_ oc
I8557_
lin ob
nura_C
99
cid en
1
100
atr ac
LSUM
tal is_
entrol
hiu m_
NS_16
enidae
se q1
fle isc
979_A
_Coch
hm an
nura_C
I8567_
ranella
ni_ se
entrole
LSUMN
_ad
q1
nidae_
S_1543
enoche
Centro
2_Anur
ira_se
lene_p
I440 5_C
a_Lept
q1
rosobl
AS_ 245
odactyl
epon_s
125 _An
idae_L
100
100
ura _Le
eq1
ithodyt
I440 6_M
ptod acty
es_line
VZ_ 231
lida e_L
atus_s
766 _An
epto dac
eq1
ura_ Lep
tylu s_fu
I644 1_M
toda ctyli
scu s_s
VZ_2 6427
dae _Ple
100
eq1
0_An ura_
urod ema
Lept odac
_bib roni
tylid ae_P
I6458 _CAS
_se q1
hysa laem
_231 794_
us_p ustu
100
Anura _Lep
losu s_se
todac tylida
q1
e_Ph ysala
I1250 0_PM
100
H_201 4_red
emus _pus
100
o_Anu ra_Bu
tulos us_se
fonida e_Mel
q1
anoph rynisc
us_ste lzneri_
I4430_ YPM_0
seq1
13728_ Anura_
Bufonid ae_Ate
lopus_h oogmo
edi_seq 1
I4383_EC M_4908_
Anura_Bu fonidae_A
naxyrus_ terrestris
_seq1
I8576_LSUMNS_15190_A
nura_Bufonidae_Rhinella_
98.3333
marinus_seq1
100
I6467_MVZ_231697_ Anura_Bufonidae_Rh
amphophryne_macro rhina_seq1
I4 42
se
on
igri
m
se
hu
th
MV
M_0
MC
I41
_Q
9_
nu
nu
_n
ory
op
ca
_m
ru
s_
se
da
_A
se
yli
eq
_A
02
_s
eq
52
us
_s
ris
ria
tu
las_
_se
se
ta
_H
us
_fe
vit
me
tu s_
lis
s_
ris
s_
1_
er at
di nu
ora
tylu
ac
te
co
it a
C
_P
pri
ilis
yla
e_
ps
ae
Tri
Sm
78
ag
fem
ac
er at
ud
ba
leu
tr in
da
dro
id
e_
oh
ac
57
in sp
m ar
od
llo
s_
e_
en
nu
rule
in sp
hy
te
ry n
s_
ctr
yli
ud
e_
_A
te s_
_s
stig
ae
te s_
_P
ba
ph
ate
D
da
da
ud
_H
se
62
tis
s_cy
_c
ba
ae
dro
no
ob
se
50
an
llo
ba
en
an
ed
_P
e_
yli
Ple
CA
hu
_A
llo
_D
_M
pip
us
e_
yli
Q
th om
op
leut
ae
_A
ae
ae
_E
teth
se
87
yrrh
ae_E
ae
tid
ti d
ae
_P
ae
35
_S
at id
eu
ba
tid
olos
14
ob
_C
d ro
ba
_C
at id
ylid
da
ra
_P
_H
_H
ura
lidae
tylid
ae
en
dro
ae
ob
ae
yli
A5
ro m
tid
en
atid
A_
odac
halid
_D
ro m
tid
ylid
ura
da
ura
ura
An
an
acty
ura
drob
ra _A
ra _A
ba
_H
AZ
ther
An
en
A nu
th om
od
ycep
ra_D
5_
A nu
dro
_H
ra
yli
nu
_2
eu
ther
Eleu
rach
nu
30
3_
ba
ura
nu
_H
_A
VZ
_B
_A
56
78
dro
en
_A
An
An
M
Eleu
ura_
nura
53 41
55
ZA
44
ra _C
en
_D
An
An
17
_H
1_
8_
ura_
CA
ZA
nu
_D
ura
r_
ura
51
3_
1_
47
ura
24
_Q
CA
_A
_D
Fe
12
60
19
B6
0_
S_
I444
An
1_An
_A
M N_
67
u ra
ra
se
An
Z_
T_55
1_ US
1_
O_0
45
_Q
82
An
nu
An
Nig
N
An
8_
I4 39
8_EM
BH
44
H 26
24
7_
_A
6_
se
25
14
U
3_
S_
C
6_CF
SB
21
66
1_
06
_P
4_
C
I439
I855
I1 20
5_
NS_
13
82
13
_P
_0
H
54
UM
S_
31
14
EF
94
N
_1
Q
LS
69
_2
20
_R
17
M
M
I4 19
8_
_1
MN
F_
_0
EF
CC
C
26
47
I1 20
I857
NS
SU
AS
M
_R
M
9_
UM
_L
_C
YP
22
YP
2_
LS
93
IT
21
AM
0_
64
U
_2
9_
63
9_
35
_1
56
_2
LS
16
I855
I85
44
I1
6_
CC
7_
48
I6
I4 3
44
AM
44
7_
I4
I6
I4
35
1_
VZ
2_
VZ
I1
I4
43
M
57
46
M
I6
1_
2_
I8
42
I440
8_
YP
_A
57
56
56
43
CA
47
I8
46
I6
I4 42
I4 38
1_
34
I41
I8
I8
I4
2_
16
44
I4
I6
I6
I6
I6
• Inter-ordinal
support is for
Batrachia
(BS = 100)
I444
I4 4
• High bootstrap
support across
the tree
_couchii_seq1
"TUSBM4QFDJFT5SFF&TUJNBUFEGSPN"ODIPSFE-PDJ"NQIJCJBBOE&BDI0SEFS$POTUSBJOFEUP#F.POPQIZM
sis_ seq1
Inter-Ordinal Support Varies across Loci
(RAxML “Best” Gene Trees)
Acauda
n = 45
Procera
n = 51
Batrachia
n = 98
Support across 500 Bootstrap Replicates
Acauda
Batrachia
Procera
Unbounded Support Using the AIC
100
90
80
∆ AIC
70
60
50
40
30
20
10
0
Acauda
Batrachia
Procera
Unbounded Support Using the AIC
100
Constrain the basal
topology, then calculate AIC
for each model...
90
80
∆ AIC
70
60
50
40
30
20
10
0
Acauda
Batrachia
Procera
Unbounded Support Using the AIC
100
Think of these as measuring
the strength of support
against alternative models.
90
80
∆ AIC
70
60
50
40
30
20
10
0
Acauda
Batrachia
Procera
Backbone of the Amphibian Tree of Life
These topologies
are largely
concordant with
previous studies...
With a few distinct
exceptions...
Backbone of the Amphibian Tree of Life
These topologies
are largely
concordant with
previous studies...
With a few distinct
exceptions...
Conflict in the Frog Tree: Nasikabatrachus
Conflict in the Frog Tree: Nasikabatrachus
Conflict in the Frog Tree: Nasikabatrachus
Different Methods Yield Different Topologies
ASTRAL Tree
RAxML Tree
*
78
100
100
100
100
100
A Framework for Testing Neobatrachian Relationships
A Framework for Testing Neobatrachian Relationships
Conclusions
• The illusion of “support” for topological hypotheses
depends on how hard one looks.
• The bootstrap can help determine the direction of support,
but may not be informative about its magnitude.
• Substantial discordance across loci exists at the base of
the amphibian tree (and may not all be noise!).
• Genomic data and new statistical models are providing
novel insights into evolutionary relationships of amphibians.
• More data ≠ easy answers (that are credible...).
Why Blue Waters?
• Rigorously testing competing topological models across
large numbers of genes is computationally demanding.
• Even embarrassingly parallel approaches (gene-by-gene
AIC) overwhelm typical HPC clusters’ resources.
• MCMC sampling for rugged likelihood surfaces can be
improved with large numbers of Metropolis coupled chains.
• For Bayes factor tests (with N taxa):
Markov chain Monte Carlo scales as N2
Hamiltonian Monte Carlo scales as N1.2
Acknowledgments
Co-Authors/Collaborators
Alan R. Lemmon
Emily C. Moriarty Lemmon
Elizabeth Scott-Prendini
Jeremy M. Brown
Robert C. Thomson
Brice P. Noonan
R. Alex Pyron
Pedro L. V. Peloso
Michelle Kortyna
Justin D. Kratovil
J. Scott Keogh
Tissue Loans from Institutions:
American Museum of Natural History (Darrel Frost, David Kizirian, Julie Feinstein)
California Academy of Sciences (David Blackburn, Jens Vindum)
Florida Museum of Natural History (Pamela Soltis)
University of Kansas Biodiversity Institute and Natural History Museum (Rafe Brown, Linda Trueb, Andrew Campbell)
Louisiana State University Museum of Natural Science (Robb Brumfield, Donna Dittmann)
Museum of Comparative Zoology (Jim Hanken, José Rosado, Breda Zimkus)
Museum of Vertebrate Zoology (Jim McGuire, Carol Spencer, Ted Papenfuss, Marvalee Wake, Sima Bouzid)
Museum Victoria (Jane Melville, Joanna Sumner)
National Museum of Natural History (Kevin De Queiroz, Addison Wynn)
South African National Biodiversity Institute (Zoe Davids)
Saint Louis Zoological Park (Jeffrey Ettling, Mark Wanner, Randall Junge)
University of Michigan Museum of Natural History (Ronald A. Nussbaum, Gregory Schneider)
Yale Peabody Museum (Gregory Watkins-Colwell)
Tissue Loans from Individuals:
J.J. Apodaca, Alan Channing, Becky Chong, Guarino Colli, Tyler Frye, S. Blair Hedges, Elizabeth Jockusch, Christopher
McNamara, Eric O'Neill, Todd Pierson, Steve Richards, Kelly Zamudio
Stephen C. Donnellan
Rachel L. Mueller
Fellowships: NSF Graduate Research Fellowship (3048109801), Blue Waters Graduate Research Fellowship (NSF/NCSA)
Christopher J. Raxworthy
Funding: SSB Graduate Student Research Award, DEB-0949532 (DWW), DEB-1601586 (DWW, PMH)
Krushnamegh Kunte
Santiago Ron
Sandeep Das
Nikhil Gaitonde
David M. Green
Jim Labisko
David W. Weisrock