11.C.3. Boltzmann's H Theorem The Boltzmann's H function is defined as H t d 3q1 d 3 p1 f p1, q1, t ln f p1, q1, t (11.75) d 3q1 d 3 p1 f1 ln f1 We shall show that if f satisfies the Boltzmann equation (11.74), then H always decreases due to collision effects. Now, H f d 3q1 d 3 p1 ln f1 1 1 t t (11.75) t (11.76) Writing (11.74) as f1 f f q1 1 p1 1 d 3 p2 d g cm f1' f 2' f1 f 2 t q1 p1 where f j f p j , q1 , t , eq (11.76) can be written as H f f d 3q1 d 3 p1 ln f1 1 q1 1 p1 1 t q1 p1 d 3q1 d 3 p1 d 3 p2 d g cm f1' f 2' f1 f 2 ln f1 1 (11.77) Now, ln f1 1 q1 ln f1 1 p1 f1 f1 ln f1 q1 f1 ln f1 f1 ln f1 q1 q1 q1 q1 q1 q1 f1 f1 ln f1 p1 f1 ln f1 f1 ln f1 p1 p1 p1 p1 p1 p1 which, with the help of H H q1 p1 0 q1 p1 q1 p1 p1 q1 gives d q d 3 1 3 f f p1 ln f1 1 q1 1 p1 1 q1 p1 d 3q1 d 3 p1 q1 f1 ln f1 p1 f1 ln f1 0 p1 q1 Hence, (11.77) simplifies to H d 3q1 d 3 p1 d 3 p2 d g cm f1' f 2' f1 f 2 ln f1 1 t Setting p1 p2 gives (11.78) H d 3q1 d 3 p1 d 3 p2 d g cm f1' f 2' f1 f 2 ln f 2 1 t (11.79) Hence, H 1 3 d q1 d 3 p1 d 3 p2 d g cm f1' f 2' f1 f 2 ln f1 f 2 2 (11.80) t 2 Setting p1 p1 , p2 p2 inverts the scattering process but leaves cm unchanged. Furthermore, d 3 p1 d 3 p2 d 3 p1 d 3 p2 so that (11.80) becomes H 1 d 3q1 d 3 p1 d 3 p2 d g cm f1' f 2' f1 f 2 ln f1' f 2' 2 t 2 (11.80a) Combining (11.80,a) gives H 1 3 f f d q1 d 3 p1 d 3 p2 d g cm f1' f 2' f1 f 2 ln 1 2 t 4 f1' f 2' (11.81) Now, since ln is a monotonic function, a b ln a ln b 0 f1' f 2' f1 f 2 ln a, b 0 f1 f 2 0 f1' f 2' Hence, we obtain the Boltzmann's H theorem: H 0 (11.81a) t where the equal signs holds only if f1' f 2' f1 f 2 for all collisions. This is the condition of detailed balance and is the equilibrium condition for the gas. also be written as ln f1' ln f 2' ln f1 ln f 2 (11.82) It can Now, at equilibrium, all f must be independent of q1. Therefore, (11.82) can be satisfied only if ln f is an additive function of only quantities that are conserved in a collision, i.e., ln f1 A B p1 C p12 2m (11.83) p2 f1 exp A B p1 C 1 2m where A, B and C are constants. Note that this is simply a Maxwell-Boltzmann distribution with non-zero average momentum. Since H always decreases with t, we may use it to define an entropy for systems in non-equilibrium, i.e., S t kB H t k B d 3q1 d 3 p1 f1 ln f1 (11.84)
© Copyright 2026 Paperzz