Chapter 5 Partitions and Permutations 5.1 Stirling Subset Numbers 5.2 Stirling Cycle Numbers 5.3 Inversions and Ascents 5.4 Derangements 5.5 Exponential Generating Functions 5.6 Posets and Lattices 1 2 Chapter 5 Partitions and Permutations Section 5.1 Stirling Subset Numbers 5.1 STIRLING SUBSET NUMBERS Non-Distinctness of Cells of a Partition 3 4 Chapter 5 Partitions and Permutations Section 5.1 Stirling Subset Numbers 5 6 Chapter 5 Partitions and Permutations Every Cell of a Partition is Non-Empty Section 5.1 Stirling Subset Numbers Distinctness of Objects 7 8 Chapter 5 Partitions and Permutations The Type of a Partition Section 5.1 Stirling Subset Numbers Stirling’s Subset Number Recurrence 9 10 Chapter 5 Partitions and Permutations Stirling’s Triangle for Subset Numbers Table 5.1.1 Section 5.1 Stirling Subset Numbers Rows Are Log-Concave Fig 5.1.1 11 12 Chapter 5 Partitions and Permutations Section 5.1 Stirling Subset Numbers Bell Numbers 13 14 Chapter 5 Partitions and Permutations Section 5.1 Stirling Subset Numbers 15 16 Chapter 5 Partitions and Permutations Column-Sum Formulas Section 5.1 Stirling Subset Numbers 17 18 Chapter 5 Partitions and Permutations Section 5.1 Stirling Subset Numbers Southeast Diagonal Sum 19 20 Chapter 5 Partitions and Permutations Stirling Numbers of the Second Kind Section 5.1 Stirling Subset Numbers 21 22 Chapter 5 Partitions and Permutations Section 5.1 Stirling Subset Numbers Table 5.1.2 23 24 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers 5.2 STIRLING CYCLE NUMBERS 25 26 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers Non-Distinctness of the Cycles Stirling’s Cycle Number Recurrence 27 28 Chapter 5 Partitions and Permutations Stirling’s Triangle for Cycle Numbers Section 5.2 Stirling Cycle Numbers Table 5.2.1 29 30 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers Rows are Log-Concave 31 32 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers Fig 5.2.1 Row Sums 33 34 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers 35 36 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers 37 38 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers Columns 39 40 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers Southeast Diagonal 41 42 Chapter 5 Partitions and Permutations Stirling Numbers of the First Kind Section 5.2 Stirling Cycle Numbers 43 44 Chapter 5 Partitions and Permutations Section 5.2 Stirling Cycle Numbers Table 5.2.2 45 46 Chapter 5 Partitions and Permutations Section 5.3 Inversions and Ascents 5.3 INVERSIONS AND ASCENTS Inversions 47 48 Chapter 5 Partitions and Permutations Section 5.3 Inversions and Ascents Table 5.3.1 49 50 Chapter 5 Partitions and Permutations Section 5.3 Inversions and Ascents 51 52 Ascents Chapter 5 Partitions and Permutations Section 5.3 Inversions and Ascents Eulerian Numbers 53 54 Table 5.3.2 Chapter 5 Partitions and Permutations Section 5.3 Inversions and Ascents 55 56 Chapter 5 Partitions and Permutations 5.4 DERANGEMENTS Section 5.4 Derangements Table 5.4.1 57 58 Chapter 5 Partitions and Permutations Section 5.4 Derangements 59 60 Chapter 5 Partitions and Permutations 5.5 EXPONENTIAL GEN FUNCTIONS Section 5.5 Exponential Gen Functions 61 62 Chapter 5 Partitions and Permutations Section 5.5 Exponential Gen Functions Counting Ordered Selections 63 64 Chapter 5 Partitions and Permutations Section 5.5 Exponential Gen Functions 65 66 Chapter 5 Partitions and Permutations Counting Certain Kinds of Strings Section 5.5 Exponential Gen Functions 67 68 Chapter 5 Partitions and Permutations Section 5.5 Exponential Gen Functions 69 70 Chapter 5 Partitions and Permutations An Application To Stirling Subset #s Section 5.5 Exponential Gen Functions 71 72 Chapter 5 Partitions and Permutations An EGF for Derangement Numbers Section 5.5 Exponential Gen Functions 73 74 Chapter 5 Partitions and Permutations Section 5.5 Exponential Gen Functions 75 76 Chapter 5 Partitions and Permutations 5.6 POSETS AND LATTICES Section 5.6 Posets and Lattices Products of Sets Cover Digraph 77 78 Chapter 5 Partitions and Permutations Fig 5.6.1 The Boolean Poset Section 5.6 Posets and Lattices Fig 5.6.2 The Divisibility Poset 79 80 Chapter 5 Partitions and Permutations Fig 5.6.3 The Partition Poset Section 5.6 Posets and Lattices Fig 5.6.4 81 82 Chapter 5 Partitions and Permutations Inversion-Dominance Ordering on Perms Section 5.6 Posets and Lattices Fig 5.6.5 83 84 Chapter 5 Partitions and Permutations Minimal and Maximal Elements Fig 5.6.6 Section 5.6 Posets and Lattices Lattice Property 85 86 Chapter 5 Partitions and Permutations Section 5.6 Posets and Lattices Fig 5.6.7 87 88 Chapter 5 Partitions and Permutations Fig 5.6.8 Poset Isomorphism Section 5.6 Posets and Lattices Fig 5.6.9 89 90 Chapter 5 Partitions and Permutations Fig 5.6.10 Chains and Antichains Section 5.6 Posets and Lattices 91 92 Chapter 5 Partitions and Permutations Section 5.6 Posets and Lattices Fig 5.6.11 93 94 Ranked Posets Chapter 5 Partitions and Permutations Section 5.6 Posets and Lattices Fig 5.6.12 95 96 Chapter 5 Partitions and Permutations Linear Extensions Section 5.6 Posets and Lattices Algorithm 5.6.1: 97 98 Chapter 5 Partitions and Permutations Dilworth’s Theorem Section 5.6 Posets and Lattices 99 100 Chapter 5 Partitions and Permutations Section 5.6 Posets and Lattices Fig 5.6.13 101 102 Chapter 5 Partitions and Permutations
© Copyright 2026 Paperzz