10th Maths_Trignometry

SUNSHIELD CLASSES
All progress, change, and Success is based on a foundation at convenience
.
Trigonometry
Trigonometry is a scientific study of measurement of triangle and its angle as well as sides.
Ray: A ray having one end point and end with and where.
Line segment: A line segment having two end point are called as line segment.
Note: In trigonometry studying only about right angle triangle.
Angle of elevation
+πœ—
βˆ’πœ—
Angle of depression
a) Angle of Elevation(+𝝑) : If a ray rotating in anticlockwise direction then formed angle (+πœƒ) are
called as angle of elevation.
b) Angle of Depression(βˆ’πœ½) : If a ray rotating in clockwise direction then formed angle (βˆ’πœƒ) are
called as angle of depression.
B
90°
πœƒ
C
A
πœƒ
πœƒ
Then βˆ†π΄π΅πΆ are called right angled triangle.
By using angle sum property
∠𝐴 + ∠𝐡 + ∠𝐢 = 180°
1
1
1
ADDRESS: INFRONT OF SHRAVAN KANTA PALACE PLOT NO. 10,ABOVE AXIS BANK,
AYODHYA BYPASS ROAD, BHOPAL ,Pin code 462022,
Cont.No. 07552625412, 7697542831
SUNSHIELD CLASSES
All progress, change, and Success is based on a foundation at convenience
∠𝐴 = 90° + πœƒ + 180°
∠𝐴 = 180° βˆ’ 90° βˆ’ πœƒ
∠𝐴 = 90° βˆ’ πœƒ = πΆπ‘œπ‘šπ‘π‘™π‘’π‘šπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦ π‘Žπ‘›π‘”π‘™π‘’
Note: Acute angle less than 90°, Obtuse angle more than 90°.
Complementary angle: If sum of two acute angles is 90° are called as complementary angle.
∠𝐴 + ∠𝐢 = 90°\
(90° βˆ’ πœƒ) + πœƒ
90° βˆ’ πœƒ + πœƒ
90°, β„Žπ‘’π‘›π‘π‘’ π‘π‘Ÿπ‘œπ‘£π‘’π‘‘
Then (90° βˆ’ πœƒ)and angle πœƒ are complementary angle to each other.
Supplementary Angle:
If sum of two angles is 180° are called as supplementary angles.
Then (180° βˆ’ πœƒ)and πœƒare supplementary to each other.
Pythagoras Theorem (PGT)
Sum of squares of two sides is equal to square of third side are called s Pythagoras theorem (PGT).
2
2
2
ADDRESS: INFRONT OF SHRAVAN KANTA PALACE PLOT NO. 10,ABOVE AXIS BANK,
AYODHYA BYPASS ROAD, BHOPAL ,Pin code 462022,
Cont.No. 07552625412, 7697542831
SUNSHIELD CLASSES
All progress, change, and Success is based on a foundation at convenience
A
H
P
90°
πœƒ
B
C
(AC)2=(AB)2 + (BC)2
H2 = P2 +B2
NOTE: where using PGT
1. PGT always using in right angled triangle.
2. Q. Why using in right angled triangle.
A. For finding third side if two sides are given
A
H =?
πœƒ
πœƒ
B
B
C
Given P = 3 cm
B = 4 cm
H =?
By using PGT;
H2 = P2 + B2
(AC)S = (AB)2 + (BC)2
3
3
3
ADDRESS: INFRONT OF SHRAVAN KANTA PALACE PLOT NO. 10,ABOVE AXIS BANK,
AYODHYA BYPASS ROAD, BHOPAL ,Pin code 462022,
Cont.No. 07552625412, 7697542831
SUNSHIELD CLASSES
All progress, change, and Success is based on a foundation at convenience
H2 = (3)2 + (4)2
H2 = 9 + 16 = H2 = √25 = 5𝐢𝑀
a) Side opposite 90° (right angle) Hypotenuse.
b) Side opposite angle πœƒ always perpendicular.
c) Side adjacent to angle πœƒ always Base.
Trigonometric Ratios:
A
P
H
πœƒ
B
𝑠𝑖𝑛 πœƒ
B
C
π‘π‘œπ‘  πœƒ
π‘‘π‘Žπ‘› πœƒ
P
B
P
H
H
B
𝑠𝑒𝑐 πœƒ
π‘π‘œπ‘‘ πœƒ
𝑐𝑠𝑐 πœƒ
PANDIT
BADRI
PRASAD
HAR
HAR
BOLE
A right angle triangle is shown Figure. ∠𝐡 𝑖𝑠 π‘œπ‘“ 90° 𝑠𝑖𝑑𝑒 π‘œπ‘“ π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ ∠𝐡 𝑏𝑒 π‘π‘Žπ‘™π‘™π‘’π‘‘ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’.
4
4
4
ADDRESS: INFRONT OF SHRAVAN KANTA PALACE PLOT NO. 10,ABOVE AXIS BANK,
AYODHYA BYPASS ROAD, BHOPAL ,Pin code 462022,
Cont.No. 07552625412, 7697542831
SUNSHIELD CLASSES
All progress, change, and Success is based on a foundation at convenience
There are two other angle i.e. ∠𝐴 π‘Žπ‘›π‘‘ ∠𝐢. It we consider ∠𝐢 as πœƒ,then opposite side to this angle is
called perpendicular and side adjacent to πœƒis called base.
οƒ˜ Six Trigonometry Ratio are:
𝑃
𝐴𝐡
𝑆𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ πœƒ
𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ 90°
𝐡
𝐡𝐢
𝑆𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ πœƒ
π‘π‘œπ‘  πœƒ = πΆπ‘œπ‘ π‘–π‘›π‘’ π‘œπ‘“ π‘Žπ‘›π‘”π‘™π‘’ πœƒ = 𝐻 = 𝐴𝐢 = 𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ 90°
𝑃
𝐴𝐡
𝑆𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ πœƒ
π‘‘π‘Žπ‘› πœƒ = π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ π‘œπ‘“ π‘Žπ‘›π‘”π‘™π‘’ πœƒ = 𝐡 = 𝐡𝐢 = 𝑠𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ 90°
𝐻
𝐴𝐢
𝑆𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ 90°
𝑐𝑠𝑐 πœƒ = π‘π‘œπ‘ π‘’π‘ π‘œπ‘“ π‘Žπ‘›π‘”π‘™π‘’ πœƒ = =
=
𝑃
𝐴𝐡
𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ πœƒ
𝐻
𝐴𝐢
𝑆𝑖𝑑𝑒 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘‘π‘œ 90°
𝑠𝑒𝑐 πœƒ = π‘ π‘’π‘π‘Žπ‘›π‘‘ π‘œπ‘“ π‘Žπ‘›π‘”π‘™π‘’ πœƒ = =
=
𝐡
𝐡𝐢
𝑠𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ πœƒ
𝐡
𝐡𝐢
𝑆𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ 90°
π‘π‘œπ‘‘ πœƒ = π‘π‘œπ‘‘π‘’π‘›π‘‘ π‘œπ‘“ π‘Žπ‘›π‘”π‘™π‘’ πœƒ = 𝑃 = 𝐴𝐢 = 𝑠𝑖𝑑𝑒 π‘œπ‘π‘π‘ π‘–π‘‘π‘’ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ πœƒ
1. 𝑠𝑖𝑛 πœƒ = Sine of angle πœƒ = 𝐻 = 𝐴𝐢 =
2.
3.
4.
5.
6.
οƒ˜ Inter relationship is Basic Trigonometric Ratio :
1
π‘‘π‘Žπ‘› πœƒ = π‘π‘œπ‘‘ πœƒ
1
π‘π‘œπ‘‘ πœƒ = π‘π‘œπ‘‘πœƒ
π‘π‘œπ‘  πœƒ =
1
𝑠𝑒𝑐 πœƒ
𝑠𝑒𝑐 πœƒ =
1
π‘π‘œπ‘  πœƒ
𝑠𝑖𝑛 πœƒ =
1
π‘π‘œπ‘ π‘’π‘ πœƒ
𝑐𝑠𝑐 πœƒ =
1
𝑠𝑖𝑛 πœƒ
Trigonometric Table:
5
5
5
ADDRESS: INFRONT OF SHRAVAN KANTA PALACE PLOT NO. 10,ABOVE AXIS BANK,
AYODHYA BYPASS ROAD, BHOPAL ,Pin code 462022,
Cont.No. 07552625412, 7697542831
SUNSHIELD CLASSES
All progress, change, and Success is based on a foundation at convenience
Trigonometric ratios of complementary angles:
6
6
6
ADDRESS: INFRONT OF SHRAVAN KANTA PALACE PLOT NO. 10,ABOVE AXIS BANK,
AYODHYA BYPASS ROAD, BHOPAL ,Pin code 462022,
Cont.No. 07552625412, 7697542831
SUNSHIELD CLASSES
All progress, change, and Success is based on a foundation at convenience
Illustra tion :
Ex .1 In the given triangle AB =5cm. find all trigonometric ratios.
Sol. Using Pathygoras theorem
𝐴𝐢 2 = 𝐴𝐡2 + 𝐡𝐢 2
A
52 = 32 + P2
16 = P2 β‡’
P = cm
B
H
Here P = 4cm, B = 3cm, H = 5cm
∴
𝑃
𝐻
𝑠𝑖𝑛 πœƒ =
4
=5
𝑃
𝐻
𝑃
=
𝐡
4
πΆπ‘œπ‘  πœƒ =
=5
π‘‘π‘Žπ‘› πœƒ
=
C
B
P
4
3
𝐡
3
𝐻
5
𝐻
𝑃
=4
π‘π‘œπ‘‘ πœƒ = 𝑃 = 4
𝑠𝑒𝑐 πœƒ = 𝐡 = 3
𝑐𝑠𝑐 πœƒ =
5
π‘š
𝑛
Ex.2 If π‘‘π‘Žπ‘› πœƒ = ,then find 𝑠𝑖𝑛 πœƒ.
Sol. Let P = π‘š ∝ π‘Žπ‘›π‘‘ 𝛽 = 𝑛 ∝
∴ π‘‘π‘Žπ‘› πœƒ =
A
𝑃 π‘š
=
𝐡 𝑛
H2 = P2 + B2
H2 = π‘š2 ∝2 + 𝑛2 ∝2
π‘šβˆ
H
𝐻 =∝ βˆšπ‘š2 + 𝑛2
∴
π‘‘π‘Žπ‘› πœƒ =
𝑠𝑖𝑛 πœƒ =
𝑃
𝐻
=
π‘šπ‘Ž
βˆβˆšπ‘š2 +𝑛2
B
π‘›βˆ
C
π‘š
βˆšπ‘š2 +𝑛2
7
7
7
ADDRESS: INFRONT OF SHRAVAN KANTA PALACE PLOT NO. 10,ABOVE AXIS BANK,
AYODHYA BYPASS ROAD, BHOPAL ,Pin code 462022,
Cont.No. 07552625412, 7697542831