Robust Local Community Detection:
On Free Rider Effect and Its Elimination
Yubao Wu1, Ruoming Jin2, Jing Li1, Xiang Zhang1
1Case
Western Reserve University
2Kent
State University
Generic Local Community Detection Problem
Input:
a) Graph πΊ(π, πΈ)
b) A set of query nodes π
c) A goodness metric π π
A
Output: Subgraph πΊ π such that:
1) π contains π (π β π)
2) π π is maximized
[1] M. Sozio, et al. KDDβ10.
[2] W. Cui, et al. SIGMODβ14.
[3] L. Ma, et al. DaWakβ13.
[4] B. Saha, et al. RECOMBβ10.
[5] C. Tsourakakis, et al. SIGMODβ14.
[6] A. Clauset, PREβ05.
[7] F. Luo, et al. WIASβ08.
[8] R. Andersen, et al. FOCSβ06.
Community Goodness Metrics
Intuitions
Internal
denseness
Internal
denseness &
external
sparseness
Boundary
sharpness
Goodness metrics
Ref.
Formulas π(π)
Classic density
[1]
π π /|π|
π π β πΌβ(|π|)
concave β π₯
Edge-surplus
[2]
Minimum degree
[3,4]
minπ’βπ π€π (π’)
Subgraph modularity
[5]
π π /π(π, π)
Density-isolation
[6]
π π β πΌ π π, π β π½|π|
External conductance
[7]
π π, π /min{π π , π(π)}
Local modularity
[8]
π πΏπ, π /π(πΏπ, π)
[1] B. Saha, et al. RECOMBβ10.
[2] C. Tsourakakis, et al. SIGMODβ14.
[3] M. Sozio, et al. KDDβ10.
[4] W. Cui, et al. SIGMODβ14.
β π₯ =
π₯
2
[5] F. Luo, et al. WIASβ08.
[6] K. J. Lang, CIKMβ07.
[7] R. Andersen, et al. FOCSβ06.
[8] A. Clauset, PREβ05.
Free Rider Effect
AβͺB AβͺC
Goodness metrics
A
Classic density
2.50
2.95
2.83
Edge-surplus
15.3
26.5
22.8
Minimum degree
4
4
4
Subgraph modularity
2.0
3.6
4.6
Density-isolation
-2.6
3.8
1.5
Ext. conductance
0.25
0.14
0.11
Local modularity
0.63
0.70
0.78
[1] B. Saha, et al. RECOMBβ10.
[2] C. Tsourakakis, et al. SIGMODβ14.
[3] M. Sozio, et al. KDDβ10.
[4] W. Cui, et al. SIGMODβ14.
[5] F. Luo, et al. WIASβ08.
[6] K. J. Lang, CIKMβ07.
[7] R. Andersen, et al. FOCSβ06.
[8] A. Clauset, PREβ05.
Free Rider Effect in Real Networks
(a) Co-author network
(b) Biological network
One existing method: classic density
Barna, Saha, et al. Dense subgraphs with restrictions and
applications to gene annotation graphs. RECOMB, 2010.
Query Biased Node Weighting
Node Weight:
π(π’) =
1
π(π’)
π π’ : proximity value w.r.t. the query
Query biased density:
π(π)
π(π) =
π(π)
π π =
π’βπ π(π’)
: sum of node weights
Subgraph A becomes the
query biased densest subgraph
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
QDC Problem
Query biased densest connected subgraph (QDC) problem:
Input:
a) Graph πΊ(π, πΈ)
b) A set of query nodes π
Output:
1)
2)
3)
Subgraph πΊ π such that:
π contains π (π β π)
Query biased density π π is maximized
πΊ[π] is connected
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
QDC Problem and Two Related Problems
QDC
Input
Output
πΊπ:
Complexity
QDCβ
1) πΊ(π, πΈ)
2) query π
QDCββ
1) πΊ(π, πΈ)
2) query π
πΊ π, πΈ
1) π contains π
1) π contains π
2) π π is maximized 2) π π is maximized π π is maximized
3) πΊ[π] is connected
NP-hard
Polynomial
Polynomial
Optimal
Optimal
If πΊ[π] is connected
If π contains π
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
Finding the QDCββ
Finding the QDCβ
1. Removing Low Degree Nodes
β’ Reduce the search space
β’ Retain the densest subgraph
Subgraph
contraction
2. Detect the Densest Subgraph
β’ On the reduced search space
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
Finding the QDC
Greedy Node Deletion
Local Expansion
1) Connect the query nodes with
a Steiner tree
2) Greedy local expansion
1) Delete low degree nodes
2) Maintain the connectivity
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
ExperimentsββDatasets
Dataset
# Nodes
# Edges
# Communities
Amazon
00,334,863
0,000,925,872
0,151,037
DBLP
00,317,080
0,001,049,866
0,013,477
Youtube
01,134,890
0,002,987,624
0,008,385
Orkut
03,072,441
0,117,185,083
6,288,363
LiveJournal
03,997,962
0,034,681,189
0,287,512
Friendster
65,608,366
1,806,067,135
0,957,154
[1] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. In ICDM, 2012.
[2] snap.stanford.edu
ExperimentsββState-of-the-Art Methods
Classes
Abbr. Ref.
DS
Internal
denseness
Key Idea
[1] Densest subgraph with query constraint
OQC
[2] Optimal quasi-clique; edge-surplus
MDG
[3] Minimum degree
PRN
Internal
LS
denseness
& external EMC
sparseness
SM
[4] External conductance
Boundary
[8] Local modularity
LM
[5] Local spectral
[6] More internal edges than external edges
[7] Subgraph modularity
[1] B. Saha, et al. RECOMBβ10.
[2] C. Tsourakakis, et al. SIGMODβ14.
[3] M. Sozio, et al. KDDβ10.
[4] R. Andersen, et al. FOCSβ06.
[5] M. W. Mahoney, et al. JMLRβ12.
[6] G. W. Flake, KDDβ00.
[7] F. Luo, et al. WIASβ08.
[8] A. Clauset, PREβ05.
ExperimentsββEffectiveness Evaluat. Metrics
Metrics
F-score
Formulas
πΉ(π, π) = 2 β
precision π, π β recall(π, π)
precision π, π + recall(π, π)
π(π)
|π|
Density
Community
π π β² , π\π β²
goodness Cohesiveness πmin
β² βπ min{π (π β² ), π (π\π β² )}
π
π
metrics
π(π)
Separability
π(π, π)
Consistency
1β
1
π
π
π β² βπ, πβ² = π
πΉ π, π β² β πΉmean
[1] J. Yang and J. Leskovec. Dening and evaluating network communities
based on ground-truth. In ICDM, pages 745-754, 2012.
[2] Ma, Lianhang, et al. GMAC: A seed-insensitive approach to local
community detection. In DaWak, pages 297-308, 2013.
2
Effectiveness Evaluation ββ F-Score
F-score
QDC
DS
LS
EMC
SM
LM
Amazon
0.83
0.52
0.54
0.46
0.69
0.66
0.61
0.60
0.58
DBLP
0.46
0.31
0.33
0.32
0.48
0.42
0.34
0.36
0.37
Youtube
0.43
0.23
0.22
0.17
0.26
0.24
0.21
0.21
0.22
Orkut
0.47
0.15
0.16
0.13
0.21
0.17
0.19
0.16
0.18
LiveJournal
0.64
0.48
0.47
0.40
0.52
0.51
0.47
0.48
0.49
Friendster
0.32
--
0.14
0.12
0.17
0.16
--
0.14
0.13
Avg. F-score
0.53
0.3
0.31
0.27
0.39
0.36
0.33
0.33
0.33
Avg. Precision 0.65
0.46
0.45
0.29
0.51
0.41
0.34
0.38
0.48
0.61
0.58
0.69
0.67
0.64
0.66
0.63
0.59
Avg. Recall
0.78
OQC MDG PRN
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
Effectiveness EvaluationββGoodness Metrics
Community goodness metrics on LiveJournal graph
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
Effectiveness EvaluationββConsistency
Consistency QDC
DS
OQC MDG PRN
LS
EMC
SM
LM
Amazon
0.94
0.77
0.76
0.58
0.79
0.69
0.74
0.67
0.61
DBLP
0.88
0.62
0.64
0.37
0.65
0.53
0.56
0.43
0.56
Youtube
0.85
0.61
0.54
0.46
0.71
0.41
0.57
0.37
0.36
Orkut
0.83
0.56
0.52
0.32
0.68
0.43
0.51
0.54
0.47
LiveJournal
0.93
0.74
0.67
0.43
0.84
0.64
0.73
0.58
0.52
Friendster
0.78
--
0.56
0.45
0.65
0.49
--
0.32
0.39
Average
0.87
0.64
0.62
0.44
0.72
0.53
0.61
0.49
0.49
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
Conclusions
1) Free rider effect is a serious problem;
2) Query biased node weighting scheme can
effectively eliminate the free rider effect thus
improve the accuracy.
Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local
community detection: on free rider effect and its elimination.
PVLDB, 8(7):798-809, 2015.
© Copyright 2026 Paperzz