4 The Evolution of the Term Structure of Interest Rates A Motivation This chapter introduces the stochastic evolution for the zero-coupon bond price curve. The stochastic structure is introduced sequentially, starting with a one-factor model, then presenting a two-factor model, and so forth. This section motivates the discrete time processes constructed in this chapter. Consider the historical forward rate curve evolution. 1 Figure 4.1: Forward Rate Curve Evolutions over January 1973 - March 1997 2 From this evolution, we can generate histograms for changes in a particular maturity forward rate. 3 Figure 4.2: Histogram of Monthly Changes in Forward Rates from January 1973 - March 1997. 3 Months Forward Rate 6 Months Forward Rate 0.25 0.35 0.3 0.2 0.25 0.15 0.2 0.15 0.1 0.1 0.05 0.05 0 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0 -0.1 -0.08 -0.06 -0.04 -0.02 Df 0 0.02 0.04 0.06 0.08 Df 1 Year Forward Rate 3 Years Forward Rate 0.35 0.16 0.3 0.14 0.12 0.25 0.1 0.2 0.08 0.15 0.06 0.1 0.04 0.05 0 -0.08 0.02 -0.06 -0.04 -0.02 0 Df 0.02 0.04 0.06 0 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 Df 4 Figure 4.2 (continued): Histogram of Monthly Changes in Forward Rates from January 1973 - March 1997. 5 Years Forward Rate 7 Years Forward Rate 0.2 0.25 0.18 0.16 0.2 0.14 0.12 0.15 0.1 0.08 0.1 0.06 0.04 0.05 0.02 0 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0 -0.08 -0.06 -0.04 -0.02 0 Df 0.02 0.04 0.06 0.08 Df 10 Years Forward Rate 20 Years Forward Rate 0.4 0.35 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 -0.1 -0.08 -0.06 -0.04 -0.02 0 Df 0.02 0.04 0.06 0.08 0 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 Df 5 What we want to do in this chapter is to build a model for the evolution of forward rates such that the model provides a reasonable approximation to the true underlying joint distribution whose marginals are given in Figure 4.2. The binomial (and its generalization – the multinomial) model provides such an approach. This process is illustrated in Figure 4.3. 6 .05 1/2 Probability 1/2 .05 Df .1 .1 1/2 .05 Probability 1/2 1/2 1/2 .075 1/2 1/4 .05 .1 .025 1/2 1/2 .075 Df .1 Probability 1/2 .05 1/2 1/2 .075 3/8 1/8 .025 .05 .075 .1 Df .1 1/2 1/2 1/2 ... True Distribution 0 .. .3 Df Figure 4.3: Example of A Binomial Approximation to the True Distribution--A Normal 7 Distribution B The One-Factor Economy 1 The State Space Process EXAMPLE: PROCESS ONE-FACTOR STATE SPACE 8 uuu 3/4 1/4 uu uud 3/4 u 1/4 3/4 3/4 ud udu 1/4 udd 3/4 1/4 3/4 du duu 1/4 dud d 1/4 ddu 3/4 dd time 0 1 2 1/4 ddd 3 Figure 4.4: An Example of a One-Factor State Space Tree Diagram 9 At this time, the up state and the down state have no economic interpretation. They are just used as “place-holders” for an economic state, e.g. “good” or “bad”. The state space process in Fig. 4.4 is called a onefactor model because at each node in the tree, only one of two possibilities can happen (up or down). Each branch also occurs with strictly positive probability. One can conceptualize the tree's being constructed by tossing one coin (one-factor). If, instead, at each node of the tree there were three branches, each with strictly positive probability, it would be called a two-factor model. It would be a two-factor model because it would take two coins to construct the tree. 10 uuu q 1 (uu) q1 (u) 1 uu uu 1 q 1 (uu) u q0 q t (st ) 1 q1 (u) ud q1 (d) 1 q0 1 q t (st ) du st u st • •• u…ud • • • • •• st d d d…du q 1 (dd) 1 d…d 1 q1 (d) dd d…dd 1 q 1 (dd) time 0 1 2 • •• t t+1 • •• Figure 4.5: One Factor State Space Tree Diagram 11 EXAMPLE: ONE-FACTOR BOND CURVE EVOLUTION. ZERO-COUPON The underlying state space process is that contained in Figure 4.4. 12 3/4 .967826 .984222 1 3/4 .947497 .965127 .982699 1 3/4 P(0,4) P(0,3) P(0,2) P(0,1) P(0,0) = .923845 .942322 .961169 .980392 1 .960529 .980015 1 .937148 .957211 .978085 1 .962414 .981169 1 3/4 time 0 1 2 1 .982456 1 1 .977778 1 1 .983134 1 1 .978637 1 1 1/4 1/4 .953877 .976147 1 .981381 1 1/4 3/4 1/4 1 1/4 1/4 3/4 .985301 1 3/4 .979870 1 1 .974502 1 1 1/4 3 4 Figure 4.6: An Example of a One-Factor Bond Price Curve Evolution. Actual Probabilities Along Each Branch of the Tree 13 We can now give the “up” and “down” state an economic interpretation. The “up” state refers to the fact that bond prices are greater in state “u” then they are in state “d”. This is true for the entire tree. We see that as each period occurs, the shortest maturity bond matures and then disappears from the tree The last step in the tree is a residual, not used for analysis. 14 q1( u) P(1, ; u) u(0, )P(0, ) P(1, 1; u) u(0, 1)P(0, 1) P(1, 2; u) u(0, 2)P(0, 2) r(0)P(0, 1) P(1,1; u) 1 1 q1( u) q0 P(2, ; uu) u(1, ; u)P(1, ; u) P(2, 1; uu) u(1, 1; u)P(1, 1; u) P(2, 3; uu) u(1, 3; u)P(1, 3; u) r(1; u)P(1, 2; u) P(2, 2; uu) 1 P(2, ; ud) d(1, ; u)P(1, ; u) P(2, 1; ud) d(1, 1; u)P(1, 1; u) P(2, 3; ud) d(1, 3; u)P(1, 3; u) r(1; u)P(1, 2; u) P(2, 2; ud) 1 P(0, ) P(0, 1) P(0, 2) P(0,1) P(0, 0) 1 1q0 q1(d) P(1, ;d) P(1, 1;d) P(1, 2;d) P(1,1;d) 1 d(0, )P(0, ) d(0, 1)P(0, 1) d(0, 2)P(0, 2) r(0)P(0, 1) 1 q1(d) time 0 1 P(2, ; du) P(2, 1;du) P(2, 3;du) P(2, 2;du) 1 u(1, ;d)P(1, ; d) u(1, 1;d)P(1, 1;d) u(1, 3;d)P(1, 3;d) r(1;d)P(1, 2;d) P(2, ; dd) P(2, 1;dd) P(2, 3;dd) P(2, 2;dd) 1 d(1, ;d)P(1, ;d) d(1, 1;d)P(1, 1; d) d(1, 3;d)P(1, 3;d) r(1; d)P(1, 2;d) 2 Figure 4.7: One Factor Bond Price Curve Evolution 15 Pt 1, ;st u ut, ;st Pt, ;st P t 1, 1;s u u t, 1;s P t, 1; s t t t P t 1, t 2;s u t ut, t 2;st Pt, t 2; st Pt 1, t 1; st u 1 rt;st Pt, t 1;st q 1( u 1 q1( u uu) 1 u) P(, ; u ud) 1 ... 1 qt st q 1(d Pt 1, ;st d dt, ; st Pt, ; st P t 1, 1;s d d t, 1; s P t, 1;s t t t P t 1, t 2;s d d t, t 2; s P t, t 2;s t t t Pt 1, t 1; st d 1 rt;st Pt, t 1;st t P(, ; u P 1, ; u u P 1, 1; u u 1 qt st Pt, ;st P t, 1; s t Pt, t 1; st Pt, t;st 1 u) t+1 d) P(, ; d du) 1 P(, ; d dd) 1 P 1, ;d d P 1, 1;d d 1 1 q1(d d) -1 Figure 4.7: One Factor Bond Price Curve Evolution (continued) 16 We can summarize the evolution of the one-factor zero-coupon bond price curve analytically as in expression (4.3): u( t ,T ; s ) P ( t ,T ; s ) if t t P (t 1,T ; s ) with qt ( st ) 0 t 1 d ( t ,T ; s ) P ( t ,T ; s ) if t t with 1 qt ( st ) 0 s s u t 1 t (4.3) s s d t 1 t where u(t ,T ; st ) d (t ,T ; st ) for t T 1 and u(t , t 1; st ) P (t , t 1; st ) d (t , t 1; st ) P (t , t 1; st ) r (t; st ) P (t , t 1; st ) 1. 17 For simplicity of presentation, we have constructed the economy so that at each trading date, a zero-coupon bond matures and it is removed from trading. In addition, no new zero-coupon bonds are issued. It is an easy adjustment to introduce a newly issued -maturity zero-coupon bond at each trading date. 18 3 The Forward Rate Process This evolution can be derived from the evolution of the zero-coupon bond price curve, given the definition of the forward rate. EXAMPLE: ONE-FACTOR FORWARD RATE CURVE EVOLUTION. 19 1.014918 3/4 1.016941 1.016031 1/4 3/4 1.018607 1.018207 1.017606 1.018972 1/4 3/4 f(0,3) f(0,2) = f(0,1) f(0,0) 1.017857 3/4 1.020286 1.020393 1/4 1.022727 1.02 1.02 1.02 1.02 1/4 3/4 1.021408 1.021808 1.022406 1.019487 1.019193 3/4 1.017155 1/4 1.021830 1/4 3/4 1.023347 1.024436 1.020543 1/4 1.026165 time 0 1 2 Figure 4.8: An Example of a One-Factor Forward Rate Curve. Actual Probabilities Along Each Branch of the Tree 3 20 f 1, 1; u f 1,1;u r 1;u 0, 1f 0, 1 0,1f 0,1 f 1, 1;d f 1,1;d r1;d 0, 1f 0, 1 0,1f 0,1 q0 f 0, 1 f 0,1 f 0,0 r 0 1 q0 time 0 1 Figure 4.9: One Factor Forward Rate Curve Evolution 21 f t 1, 1; s t u t, 1; s t f t, 1; s t f t 1, t 1; s t u r t 1; s t u t, t 1; s t f t, t 1; s t q 1( u u) N/A f 1, 1; u u r 1; u u q t s t 1 q1( u u) N/A f t, 1; s t f t, t; s t rt; s t 1 q t s t q 1(d f t 1, 1; s t d t, 1; s t f t, 1; s t f t 1, t 1; s t d rt 1; s t d t, t 1; s t f t, t 1; s t d) N/A f 1, 1;d d r 1; d d 1 q1(d d) N/A t t+1 -1 Figure 4.9: One Factor Forward Rate Curve Evolution 22 (continued) We can summarize this evolution for an arbitrary time t as in expression (4.5): ( t ,T ; s ) f ( t ,T ; s ) t t with q ( s ) 0 t t f (t 1,T ; s ) t 1 (t ,T ; s ) f (t ,T ; s ) t t with 1 q ( s ) 0 t t where if s s u t 1 t if s s d t 1 t (4.5) 1 T t 1. 23 4 The Spot Rate Process The stochastic process for the spot rate can be deduced from the zero-coupon bond price process's evolution in Figure 4.7 or read off the forward rate curve evolution in Figure 4.9. EXAMPLE: ONE-FACTOR PROCESS EVOLUTION. SPOT RATE 24 1.014918 3/4 1.016031 3/4 1/4 1.018972 1.017606 1/4 3/4 1.017857 3/4 1.020393 1/4 1.022727 r(0) = 1.02 1.017155 3/4 1/4 1.019193 3/4 1/4 1.021830 1.022406 1/4 3/4 1.024436 1.020543 1/4 1.026165 time 0 1 2 Figure 4.10: An Example of a One-Factor Spot Rate Process. Actual Probabilities Along Each Branch of the Tree. 3 25 r(2;uu) u(2,3;uu) q1(u) r(1;u) u(1,2;u) q0 1 q1(u) r(2;ud) d(2,3;ud) r(0) r(2;du) u(2,3;du) q1(d) 1 q0 r(1;d) d(1,2;d) 1 q1(d) time 0 1 r(2;dd) d(2,3;dd) 2 Figure 4.11: One Factor Spot Rate Process 26 rt 1;st u ut 1,t 2;st u q 2(u r 2;u q t st u) r 1;u uu u 1,;u uu r 1;u ud d 1,;u ud r 1; d du u 1, ; d du r 1;d dd d 1, ;d dd u 1 q2(u u) r t;st 1 qt st q 2(d rt 1;st d dt 1,t 2;std r 2; d d 1 q 2(d t t+1 d) d) -2 Figure 4.11: One Factor Spot Rate Process (continued) -1 27 u t 1, t 2; s u t with probability q ( s ) 0 t t r t 1; s t 1 d t 1, t 2; st d with probability 1 qt ( st ) 0 (4.11) for all st and t+1 T-1. 28 Question: Is it possible to generate the zero-coupon bond prices from the spot rate process evolution? Answer: No, not without additional information. Try it! The extension from a one-factor economy to a two-factor economy is straightforward. It just corresponds to adding an additional branch on every node in the appropriate tree (or analytic expression). This procedure for extending the economy to three factors, four factors, and so on is similar. 29 1 E Consistency with Equilibrium The preceding material exogenously imposes a stochastic structure on the evolution of the zero-coupon bond price curve. The evolution, except for the number of factors, is almost completely unrestricted. But a moment's reflection reveals that this cannot be the case. 30 1 A T-maturity zero-coupon bond is, of course, a close substitute (for investment purposes) to a T-1 or a T+1 maturity zero-coupon bond. Therefore, in an economic equilibrium, the returns on these similar maturity zero-coupon bonds cannot be too different. Furthermore, the entire zero-coupon bond curve is pairwise linked in this manner. Consequently, to be consistent with an economic equilibrium, there must be some additional explicit structure required on the parameters. Chapter 7 introduces these restrictions by studying the meaning and existence of arbitrage opportunities. 31
© Copyright 2026 Paperzz