Document

ÐÏ à¡± á
>
þÿ
f
h
þÿÿÿ
c
d
e
u
ÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì¥Á #`
ø ¿
¸‘
bjbj¡ ¡
;´
Õ
Õ
ÿÿ
°@
ô
0º
2
¤
Ä@
Ä@
™
$
L“
$
L“
$
L“
8
ÿÿ
$
„“
|
°@
–
ÿÿ
°@
n
—
D
D™
(
l™
l™
l™
#›
#›
#›
Ï
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
$
h
v
õ
e
›
#›
Ÿ•
°@
Ÿ•
Ÿ•
õ
-
$
$
l™
l™
³
Z
m¦
’
Ï
m¦
m¦
m¦
Ÿ•
æ
$
Ž)
l™
°@
l™
=
Ÿ•
m¦
m¦
ª
Sµ
|
²0
˶
þ
°@
l™
ô–
ÐÖ ž
È
L“
…£
r
ϵ
,
p
0
$
áµ ê
˶
˶ ’
–
–
°@
÷¤
]¹
–
´M
#›
#›
Z
}›
#›
@
m¦
#›
½›
õ
4
ñ›
®
õ
¦
#›
#›
#›
^
Ÿ•
Ÿ•
Ÿ•
Ÿ•
Ä@
Ä@
Ä@
dH
$
Ä@
$
Ä@
$
Ä@
$
(‰
$
Ä@
ÿÿÿÿ
Ä@
Ä@
$
$
(‰
Class
ification: Biological Sciences: Biophysics
Title: Single-Molecule Non-equilibrium Periodic Mg2+-Concentration Jump
Experiments Reveal Details of the Early Folding Pathways of a Large RNA
Author Information:
Xiaohui Qu1,4, Glenna J. Smith2,4, Kang Taek Lee2,4, Tobin R. Sosnick3,4,
Tao Pan3 and Norbert F. Scherer2,4*
Departments of 1Physics, 2Chemistry, 3Biochemistry and Molecular Biology,
and 4Institute for Biophysical Dynamics, University of Chicago, Chicago,
IL 60637
*To whom correspondence should be addressed. E-mail:
HYPERLINK
"mailto:[email protected]"
[email protected] .
Author contributions: X.Q., G.S., K.T.L., T. RN.F.S. designed research;
X.Q. performed research; X.Q. analyzed data; X.Q., N.F.S. wrote the paper
Manuscript Information:
Number of text pages (with references and figure legends): 20, double
spaced, font size 11.
Number of figures: 5 (single column, full width)
Number of tables: 1
Character counts: 47039 with spaces
Abbreviations: CthermoL18, the 260-residue catalytic domain of the RNase
P RNA from Bacillus stearothermophilus, labeled with a FRET pair on the
3’ end and L18 loop; FRET, fluorescence resonance energy transfer; EFRET,
efficiency of FRET, defined as EFRET = IA/( IA+ID), where IA and ID are
the acceptor and donor fluorescence; [Mg2+], Mg2+ concentration; DOF,
degrees of freedom.
Keywords: RNA folding; FRET; single molecule; buffer jump; electrostatic
relaxation; hidden degrees of freedom; memory; cooperativity.
Abstract
The evolution of RNA conformation with Mg2+ concentration (i.e., [Mg2+])
is typically determined from equilibrium titration measurements or nonequilibrium measurements with a single [Mg2+]-jump. Here, the folding of
single RNA molecules is measured in response to a series of periodic
changes of the Mg2+ concentration. The 260-residue catalytic domain of
the RNase P RNA from Bacillus stearothermophilus is immobilized in a
microfluidic flow chamber and the RNA conformational changes are probed
by fluorescence resonance energy transfer (FRET). The kinetics of
population redistribution after a [Mg2+]-jump and the observed
connectivity of FRET states reveal details of the RNA folding pathway
that complement and transcend the information available from equilibrium
single molecule measurements. The FRET trajectories for jumps from
[Mg2+]=0.01 to 0.1mM exhibit 2-state behavior in both directions, whereas
jumps from 0.01mM
to
e"0 . 4 m M
e x h i b i t
t w o - s t a t e
u n f o l d i n g
b u t
m u l t i - s t a t e
f o l d i n g
b e h a v i o r .
T h e
R N A
m o l e c u l e s
i n
t h e
t w o
d i f f e r e n t
c o n f o r m a t i o n s
( i . e .
t h e
l o w
a n d
h i g h
F R E T
s t a t e s )
p r i o r
t o
t h e
[ M g 2 + ]
i n c r e a s e
a r e
o b s e r v e d
t o
u n d e r g o
d y n a m i c s
i n
t w o
d i s t i n c t
r e g i o n s
o f
t h e
f r e e energy landscape that are separated by a high barrier;
that is, each single molecules’ behavior is only infrequently changing on
the > 10 min measurement time. We describe the RNA structural changes
involved in crossing this barrier as a “hidden” degree of freedom because
the changes do not alter the detected FRET value, but do alter the
observed dynamics and kinetics. The FRET state populations do not achieve
their equilibrium values at the end of the 5-10 sec [Mg2+] intervals due
to the long memory of the “hidden” degrees of freedom, thereby creating a
non-equilibrium steady-state condition. This allows probing regions of
the free energy landscape that are infrequently sampled in equilibrium or
single-jump measurements. Because the period of [Mg2+]-jumps is
adjustable, regions of the free energy landscape that are virtually
inaccessible in standard equilibrium measurements or single-jump
experiments can be interrogated in the periodic [Mg2+]-jump experiments.
Introduction
RNA molecules perform both regulatory and catalytic functions ADDIN
EN.CITE
<EndNote><Cite><Author>Alberts</Author><Year>2002</Year><RecNum>23</RecNu
m><record><rec-number>23</rec-number><ref-type name="Book">6</reftype><contributors><authors><author>Alberts,
Bruce</author></authors></contributors><titles><title>Molecular biology
of the cell</title></titles><pages>xxxiv, [1548]
p.</pages><edition>4th</edition><keywords><keyword>Cytology.</keyword><ke
yword>Molecular
biology.</keyword><keyword>Cells.</keyword><keyword>Molecular
Biology.</keyword></keywords><dates><year>2002</year></dates><publocation>New York</pub-location><publisher>Garland
Science</publisher><isbn>0815332181 (hardbound)&#xD;0815340729
(pbk.)</isbn><call-num>See Reference Staff. By Appt in Jefferson Main RR
(MRC) QH581.2 .M64 2002&#xD;See Reference Staff. By Appt in Jefferson
Main RR (MRC) QH581.2 .M64 2002</call-num><urls><relatedurls><url>http://www.loc.gov/catdir/enhancements/fy0652/2001054471-d.html
</url></related-urls></urls></record></Cite></EndNote> (1) . Hence,
adopting the proper conformation(s) is crucial for their function.
Determining the mechanisms by which RNA searches for and finds the proper
tertiary structure (i.e. native state) remains a challenging problem
ADDIN EN.CITE
<EndNote><Cite><Author>Lilley</Author><Year>2005</Year><RecNum>25</RecNum
><record><rec-number>25</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Lilley, D. M.
J.</author></authors></contributors><auth-address>Lilley, DMJ&#xD;Univ
Dundee, Canc Res UK Nucl Acid Struct Res Grp, MSI WTB Complex, Dundee DD1
5EH, Scotland&#xD;Univ Dundee, Canc Res UK Nucl Acid Struct Res Grp,
Dundee DD1 5EH, Scotland</auth-address><titles><title>Structure, folding
and mechanisms of ribozymes</title><secondary-title>Current Opinion in
Structural Biology</secondary-title></titles><periodical><fulltitle>Current Opinion in Structural Biology</full-title><abbr-1>Curr.
Opin. Struct. Biol.</abbr-1><abbr-2>Curr Opin Struct Biol</abbr2></periodical><pages>313323</pages><volume>15</volume><number>3</number><keywords><keyword>peptid
e-bond formation</keyword><keyword>delta virus
ribozyme</keyword><keyword>group-i ribozyme</keyword><keyword>natural
hammerhead ribozyme</keyword><keyword>catalytic metalion</keyword><keyword>acid-base catalysis</keyword><keyword>hairpin
ribozyme</keyword><keyword>active-site</keyword><keyword>crystalstructure</keyword><keyword>tetrahymena
ribozyme</keyword></keywords><dates><year>2005</year><pubdates><date>Jun</date></pub-dates></dates><isbn>0959440X</isbn><accession-num>ISI:000230381600011</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000230381600011</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (2) .
Cations, such as Mg2+, are essential to the RNA folding process; nonspecifically bound cations neutralize the highly charged RNA phosphate
backbone while specifically bound cations help form and stabilize
tertiary interactions and structures ADDIN EN.CITE
<EndNote><Cite><Author>Draper</Author><Year>2005</Year><RecNum>24</RecNum
><record><rec-number>24</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Draper, D.
E.</author><author>Grilley, D.</author><author>Soto, A.
M.</author></authors></contributors><auth-address>Draper, DE&#xD;Johns
Hopkins Univ, Dept Chem, Charles &amp; 34Th St, Baltimore, MD 21218
USA&#xD;Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA&#xA;Johns
Hopkins Univ, Program Mol &amp; Computat Biophys, Baltimore, MD 21218
USA</auth-address><titles><title>Ions and RNA folding</title><secondarytitle>Annual Review of Biophysics and Biomolecular Structure</secondarytitle></titles><periodical><full-title>Annual Review of Biophysics and
Biomolecular Structure</full-title><abbr-1>Annu. Rev. Biophys. Biomol.
Struct.</abbr-1><abbr-2>Annu Rev Biophys Biomol Struct</abbr2></periodical><pages>221243</pages><volume>34</volume><keywords><keyword>magnesium</keyword><keyw
ord>potassium</keyword><keyword>electrostatics</keyword><keyword>poissonboltzmann
theory</keyword><keyword>hydration</keyword><keyword>phenylalanine
transfer-rna</keyword><keyword>molecular-dynamics
simulations</keyword><keyword>dimerization initiation
site</keyword><keyword>x-ray-scattering</keyword><keyword>group-i
intron</keyword><keyword>metal-ions</keyword><keyword>crystalstructure</keyword><keyword>nucleic-acids</keyword><keyword>tertiary
structure</keyword><keyword>ribosomalrna</keyword></keywords><dates><year>2005</year></dates><isbn>10568700</isbn><accession-num>ISI:000230099600010</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000230099600010</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Woo
dson</Author><Year>2005</Year><RecNum>36</RecNum><record><recnumber>36</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Woodson, S.
A.</author></authors></contributors><auth-address>Woodson, SA&#xD;Johns
Hopkins Univ, TC Jenkins Dept Biophys, 3400 N Charles St, Baltimore, MD
21218 USA&#xD;Johns Hopkins Univ, TC Jenkins Dept Biophys, Baltimore, MD
21218 USA</auth-address><titles><title>Metal ions and RNA folding: a
highly charged topic with a dynamic future</title><secondarytitle>Current Opinion in Chemical Biology</secondarytitle></titles><periodical><full-title>Current Opinion in Chemical
Biology</full-title><abbr-1>Curr. Opin. Chem. Biol.</abbr-1><abbr-2>Curr
Opin Chem Biol</abbr-2></periodical><pages>104109</pages><volume>9</volume><number>2</number><keywords><keyword>delta
virus ribozyme</keyword><keyword>tetrahymena-thermophila
ribozyme</keyword><keyword>group-i
ribozyme</keyword><keyword>conformational
switch</keyword><keyword>electrostatic
properties</keyword><keyword>counterion
condensation</keyword><keyword>thermodynamic
framework</keyword><keyword>poisson-boltzmann</keyword><keyword>crystalstructure</keyword><keyword>nucleicacids</keyword></keywords><dates><year>2005</year><pubdates><date>Apr</date></pub-dates></dates><isbn>13675931</isbn><accession-num>ISI:000228607700003</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000228607700003</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (3,
4) . The electrostatic and hydrogen-bond (base pairing) interactions
create a free energy landscape that determines both the conformational
search process and the dynamics related to function.
The free energy landscape of RNA is, in general, believed to be more
rugged than that for proteins; it has been shown that protein
dynamics/kinetics are power law distributed whereas RNA have been shown
to exhibit discrete behavior
ADDIN EN.CITE
<EndNote><Cite><Author>Thirumalai</Author><Year>2005</Year><RecNum>43</Re
cNum><record><rec-number>43</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Thirumalai,
D.</author><author>Hyeon, C.</author></authors></contributors><authaddress>Thirumalai, D&#xD;Univ Maryland, Inst Phys Sci &amp; Technol,
Biophys Program, College Pk, MD 20742 USA&#xD;Univ Maryland, Inst Phys
Sci &amp; Technol, Biophys Program, College Pk, MD 20742 USA&#xA;Univ
Maryland, Inst Phys Sci &amp; Technol, Dept Chem &amp; Biochem, College
Pk, MD 20742 USA</auth-address><titles><title>RNA and protein folding:
Common themes and variations</title><secondarytitle>Biochemistry</secondary-title></titles><periodical><fulltitle>Biochemistry</full-title><abbr-1>Biochemistry</abbr-1><abbr2>Biochemistry</abbr-2></periodical><pages>49574970</pages><volume>44</volume><number>13</number><keywords><keyword>self
-splicing rna</keyword><keyword>group-i
ribozyme</keyword><keyword>single-domain
proteins</keyword><keyword>helix-coil transition</keyword><keyword>offlattice models</keyword><keyword>tetrahymena
ribozyme</keyword><keyword>secondary structure</keyword><keyword>tertiary
structure</keyword><keyword>energy landscape</keyword><keyword>kinetic
traps</keyword></keywords><dates><year>2005</year><pub-dates><date>Apr
5</date></pub-dates></dates><isbn>0006-2960</isbn><accessionnum>ISI:000228099000001</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000228099000001</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Gru
ebele</Author><Year>2002</Year><RecNum>44</RecNum><record><recnumber>44</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Gruebele,
M.</author></authors></contributors><auth-address>Gruebele, M&#xD;Univ
Illinois, Dept Chem, 1209 W Calif St, Urbana, IL 61801 USA&#xD;Univ
Illinois, Dept Chem, Urbana, IL 61801 USA&#xA;Univ Illinois, Dept Phys,
Urbana, IL 61801 USA&#xA;Univ Illinois, Ctr Biophys &amp; Computat Biol,
Urbana, IL 61801 USA</auth-address><titles><title>Protein folding: the
free energy surface</title><secondary-title>Current Opinion in Structural
Biology</secondary-title></titles><periodical><full-title>Current Opinion
in Structural Biology</full-title><abbr-1>Curr. Opin. Struct.
Biol.</abbr-1><abbr-2>Curr Opin Struct Biol</abbr2></periodical><pages>161168</pages><volume>12</volume><number>2</number><keywords><keyword>betahairpin formation</keyword><keyword>transitionstate</keyword><keyword>hydrogenexchange</keyword><keyword>kinetics</keyword><keyword>intermediate</keywo
rd><keyword>perspective</keyword><keyword>mechanisms</keyword><keyword>la
ndscape</keyword><keyword>collapse</keyword><keyword>model</keyword></key
words><dates><year>2002</year><pub-dates><date>Apr</date></pubdates></dates><isbn>0959-440X</isbn><accessionnum>ISI:000175043000004</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000175043000004</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Plo
tkin</Author><Year>2002</Year><RecNum>45</RecNum><record><recnumber>45</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Plotkin, S.
S.</author><author>Onuchic, J. N.</author></authors></contributors><authaddress>Plotkin, SS&#xD;Univ British Columbia, Dept Phys &amp; Astron,
6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada&#xD;Univ Calif San Diego, Dept
Phys, La Jolla, CA 92093 USA</auth-address><titles><title>Understanding
protein folding with energy landscape theory - Part I: Basic
concepts</title><secondary-title>Quarterly Reviews of
Biophysics</secondary-title></titles><periodical><full-title>Quarterly
Reviews of Biophysics</full-title><abbr-1>Q. Rev. Biophys.</abbr-1><abbr2>Q Rev Biophys</abbr-2></periodical><pages>111167</pages><volume>35</volume><number>2</number><keywords><keyword>molecu
lar-dynamics simulations</keyword><keyword>transition-state
ensemble</keyword><keyword>replica symmetrybreaking</keyword><keyword>small globularproteins</keyword><keyword>amino-acid-sequences</keyword><keyword>spinglass models</keyword><keyword>block co-polymers</keyword><keyword>betalactoglobulin</keyword><keyword>statisticalmechanics</keyword><keyword>chymotrypsin inhibitor2</keyword></keywords><dates><year>2002</year><pubdates><date>May</date></pub-dates></dates><isbn>00335835</isbn><accession-num>ISI:000177476300001</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000177476300001</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Smi
th</Author><Year>2007</Year><RecNum>14</RecNum><record><recnumber>14</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Smith, G., Lee, K.-T., Qu, X., Pesic,
J., Xie, Z., Sosnick, T. R., Pan, T., &amp; Scherer, N.
F.</author></authors></contributors><titles><title>Single Molecule
measurements reveal the deeply fluted free energy surface of a large RNA
in collapsed state</title><secondary-title>submitted to J. Mol.
Biol</secondary-title></titles><periodical><full-title>submitted to J.
Mol. Biol</fulltitle></periodical><dates><year>2007</year></dates><urls></urls></record>
</Cite><Cite><Author>Russell</Author><Year>2002</Year><RecNum>11</RecNum>
<record><rec-number>11</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Russell,
R.</author><author>Zhuang, X. W.</author><author>Babcock, H.
P.</author><author>Millett, I. S.</author><author>Doniach,
S.</author><author>Chu, S.</author><author>Herschlag,
D.</author></authors></contributors><auth-address>Herschlag,
D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ,
Dept Phys, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Biochem,
Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Chem, Stanford, CA 94305
USA&#xA;Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA</authaddress><titles><title>Exploring the folding landscape of a structured
RNA</title><secondary-title>Proceedings of the National Academy of
Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr-
1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>155160</pages><volume>99</volume><number>1</number><keywords><keyword>selfsplicing rna</keyword><keyword>tetrahymena-thermophila
ribozyme</keyword><keyword>catalytic rna</keyword><keyword>secondary
structure</keyword><keyword>energy
landscape</keyword><keyword>escherichia-coli</keyword><keyword>ribosomalrna</keyword><keyword>kinetic
traps</keyword><keyword>pathways</keyword><keyword>molecule</keyword></ke
ywords><dates><year>2002</year><pub-dates><date>Jan 8</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000173233300031</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000173233300031</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Guo
</Author><Year>2005</Year><RecNum>51</RecNum><record><rec-number>51</recnumber><ref-type name="Book Section">5</reftype><contributors><authors><author>Guo, W.</author><author>Shea, J.
E.</author><author>Berry, R.
S.</author></authors></contributors><titles><title>The physics of the
interactions governing folding and association of
proteins</title><secondary-title>Cell Injury: Mechanisms, Responses, and
Repair</secondary-title><tertiary-title>Annals of the New York Academy of
Sciences</tertiary-title></titles><pages>3453</pages><volume>1066</volume><dates><year>2005</year></dates><accession
-num>ISI:000236999100003</accession-num><urls><related-urls><url>&lt;Go
to ISI&gt;://000236999100003</url></relatedurls></urls></record></Cite></EndNote> (5-10) . In equilibrium
measurements, which are carried out under constant buffer conditions, the
RNA molecules are in equilibrium with the environment; only spontaneous
conformational fluctuations associated with thermal motion are observed.
While the region near the minimum of the free energy landscape is probed
in equilibrium measurements, non-equilibrium concentration-jump
experiments probe a larger region as the molecules move farther from
their initial equilibrium conformation(s). The non-equilibrium relaxation
to new conformations reveals the pathway(s) the RNA molecules take to the
new minimum free energy state.
Ensemble concentration-jump measurements using rapid mixing techniques
have been widely applied to study RNA and protein folding
ADDIN EN.CITE
<EndNote><Cite><Author>Eigen</Author><Year>1960</Year><RecNum>18</RecNum>
<record><rec-number>18</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Eigen,
M.</author><author>Hammes, G.
G.</author></authors></contributors><titles><title>Kinetic Studies of Adp
Reactions with the Temperature Jump Method</title><secondarytitle>Journal of the American Chemical Society</secondarytitle></titles><periodical><full-title>Journal of the American Chemical
Society</full-title><abbr-1>J. Am. Chem. Soc.</abbr-1><abbr-2>J Am Chem
Soc</abbr-2></periodical><pages>59515952</pages><volume>82</volume><number>22</number><dates><year>1960</year
></dates><isbn>0002-7863</isbn><accessionnum>ISI:A1960WB34900041</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://A1960WB34900041</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Mun
oz</Author><Year>1997</Year><RecNum>19</RecNum><record><rec-
number>19</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Munoz, V.</author><author>Thompson,
P. A.</author><author>Hofrichter, J.</author><author>Eaton, W.
A.</author></authors></contributors><auth-address>Munoz, V&#xD;Niddk,Phys
Chem Lab,Nih,Bldg 5,Bethesda,Md 20892</authaddress><titles><title>Folding dynamics and mechanism of beta-hairpin
formation</title><secondary-title>Nature</secondarytitle></titles><pages>196199</pages><volume>390</volume><number>6656</number><keywords><keyword>sh
ort linear peptide</keyword><keyword>aqueoussolution</keyword><keyword>protein</keyword><keyword>stability</keyword><
keyword>design</keyword></keywords><dates><year>1997</year><pubdates><date>Nov 13</date></pub-dates></dates><isbn>00280836</isbn><accession-num>ISI:A1997YF49400060</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://A1997YF49400060</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Kra
ntz</Author><Year>2000</Year><RecNum>20</RecNum><record><recnumber>20</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Krantz, B.
A.</author><author>Sosnick, T. R.</author></authors></contributors><authaddress>Sosnick, TR&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, 920 E
58th St, Chicago, IL 60637 USA&#xD;Univ Chicago, Dept Biochem &amp; Mol
Biol, Chicago, IL 60637 USA</auth-address><titles><title>Distinguishing
between two-state and three-state models for ubiquitin
folding</title><secondary-title>Biochemistry</secondarytitle></titles><periodical><full-title>Biochemistry</full-title><abbr1>Biochemistry</abbr-1><abbr-2>Biochemistry</abbr2></periodical><pages>1169611701</pages><volume>39</volume><number>38</number><keywords><keyword>hyd
rogen-exchange</keyword><keyword>transitionstate</keyword><keyword>kinetics</keyword><keyword>molecules</keyword><ke
yword>mechanism</keyword><keyword>proteins</keyword><keyword>domain</keyw
ord></keywords><dates><year>2000</year><pub-dates><date>Sep
26</date></pub-dates></dates><isbn>0006-2960</isbn><accessionnum>ISI:000089596200019</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000089596200019</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Fan
g</Author><Year>1999</Year><RecNum>47</RecNum><record><recnumber>47</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Fang, X. W.</author><author>Pan,
T.</author><author>Sosnick, T. R.</author></authors></contributors><authaddress>Pan, T&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, Chicago, IL
60637 USA&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, Chicago, IL
60637 USA</auth-address><titles><title>Mg2+-dependent folding of a large
ribozyme without kinetic traps</title><secondary-title>Nature Structural
Biology</secondary-title></titles><periodical><full-title>Nature
Structural Biology</full-title><abbr-1>Nature Struct. Biol.</abbr1><abbr-2>Nature Struct Biol</abbr-2></periodical><pages>10911095</pages><volume>6</volume><number>12</number><keywords><keyword>group
-i ribozyme</keyword><keyword>rnasep</keyword><keyword>proteins</keyword></keywords><dates><year>1999</year>
<pub-dates><date>Dec</date></pub-dates></dates><isbn>10728368</isbn><accession-num>ISI:000084022300007</accession-
num><urls><related-urls><url>&lt;Go to
ISI&gt;://000084022300007</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Rus
sell</Author><Year>2002</Year><RecNum>49</RecNum><record><recnumber>49</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Russell, R.</author><author>Millettt,
I. S.</author><author>Tate, M. W.</author><author>Kwok, L.
W.</author><author>Nakatani, B.</author><author>Gruner, S.
M.</author><author>Mochrie, S. G. J.</author><author>Pande,
V.</author><author>Doniach, S.</author><author>Herschlag,
D.</author><author>Pollack, L.</author></authors></contributors><authaddress>Pollack, L&#xD;Cornell Univ, Sch Appl &amp; Engn Phys, Dept Phys,
Ithaca, NY 14853 USA&#xD;Cornell Univ, Sch Appl &amp; Engn Phys, Dept
Phys, Ithaca, NY 14853 USA&#xA;Cornell Univ, CHESS, Ithaca, NY 14853
USA&#xA;Stanford Univ, Dept Biochem, Stanford, CA 94305 USA&#xA;Stanford
Univ, Dept Chem, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Phys
&amp; Appl Phys, Stanford, CA 94305 USA&#xA;Yale Univ, Dept Phys, New
Haven, CT 06520 USA</auth-address><titles><title>Rapid compaction during
RNA folding</title><secondary-title>Proceedings of the National Academy
of Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>42664271</pages><volume>99</volume><number>7</number><keywords><keyword>xray-scattering</keyword><keyword>tetrahymena
ribozyme</keyword><keyword>state</keyword><keyword>pathways</keyword><key
word>substrate</keyword><keyword>molecule</keyword><keyword>collapse</key
word><keyword>domain</keyword></keywords><dates><year>2002</year><pubdates><date>Apr 2</date></pub-dates></dates><isbn>00278424</isbn><accession-num>ISI:000174856000027</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000174856000027</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Dow
ney</Author><Year>2006</Year><RecNum>59</RecNum><record><recnumber>59</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Downey, C. D.</author><author>Fiore,
J. L.</author><author>Stoddard, C. D.</author><author>Hodak, J.
H.</author><author>Nesbitt, D. J.</author><author>Pardi,
A.</author></authors></contributors><auth-address>Pardi, A&#xD;Univ
Colorado, Natl Inst Stand &amp; Technol, Dept Chem &amp; Biochem, 215
UCB, Boulder, CO 80309 USA&#xD;Univ Colorado, Natl Inst Stand &amp;
Technol, Dept Chem &amp; Biochem, Boulder, CO 80309 USA&#xA;Univ
Colorado, Natl Inst Stand &amp; Technol, JILA, Boulder, CO 80309
USA</auth-address><titles><title>Metal ion dependence, thermodynamics,
and kinetics for intramolecular docking of a GAAA tetraloop and receptor
connected by a flexible linker</title><secondarytitle>Biochemistry</secondary-title></titles><periodical><fulltitle>Biochemistry</full-title><abbr-1>Biochemistry</abbr-1><abbr2>Biochemistry</abbr-2></periodical><pages>36643673</pages><volume>45</volume><number>11</number><keywords><keyword>p4p6 rna domain</keyword><keyword>group-i</keyword><keyword>tetrahymena
ribozyme</keyword><keyword>hairpin ribozyme</keyword><keyword>hammerhead
ribozyme</keyword><keyword>tertiary structure</keyword><keyword>crystal-
structure</keyword><keyword>transition-state</keyword><keyword>singlemolecule</keyword><keyword>ribonucleasep</keyword></keywords><dates><year>2006</year><pub-dates><date>Mar
21</date></pub-dates></dates><isbn>0006-2960</isbn><accessionnum>ISI:000236320400022</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000236320400022</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (1116) . The population relaxation process is assumed to be well described
by the Fluctuation-Dissipation Theorem, that, together with detailed
balance, allows determination of the equilibrium rate constants
ADDIN
EN.CITE
<EndNote><Cite><Author>Chandler</Author><Year>1987</Year><RecNum>15</RecN
um><record><rec-number>15</rec-number><ref-type name="Book">6</reftype><contributors><authors><author>Chandler,
David</author></authors></contributors><titles><title>Introduction to
modern statistical mechanics</title></titles><pages>xiii, 274
p.</pages><keywords><keyword>Statistical
mechanics.</keyword><keyword>Statistical
thermodynamics.</keyword><keyword>Chemistry, Physical and
theoretical.</keyword></keywords><dates><year>1987</year></dates><publocation>New York</pub-location><publisher>Oxford University
Press</publisher><isbn>019504276X (alk. paper)&#xD;0195042778
(pbk.)</isbn><call-num>Jefferson or Adams Bldg General or Area Studies
Reading Rms QC174.8 .C47 1987&#xD;Main or Science/Business Reading Rms STORED OFFSITE QC174.8 .C47 1987</call-num><urls><relatedurls><url>http://www.loc.gov/catdir/enhancements/fy0602/86017950d.html</url><url>http://www.loc.gov/catdir/enhancements/fy0602/86017950t.html </url></related-urls></urls></record></Cite></EndNote> (17) . The
measured ensemble-averaged kinetics allow constructing minimal kinetic
schemes to describe folding or unfolding.
Single-molecule fluorescence resonance energy transfer (FRET)
measurements of surface immobilized RNA have been a powerful approach for
studying equilibrium conformational dynamics of DNA and RNA
ADDIN
EN.CITE
<EndNote><Cite><Author>McKinney</Author><Year>2005</Year><RecNum>57</RecN
um><record><rec-number>57</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>McKinney, S.
A.</author><author>Freeman, A. D. J.</author><author>Lilley, D. M.
J.</author><author>Ha, T. J.</author></authors></contributors><authaddress>Ha, Tj&#xD;Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL
61801 USA&#xD;Univ Illinois, Dept Phys, Urbana, IL 61801 USA&#xA;Univ
Dundee, Dept Biochem, Canc Res UK, Nucl Acid Res Struct Grp, Dundee DD1
5EH, Scotland</auth-address><titles><title>Observing spontaneous branch
migration of Holliday junctions one step at a time</title><secondarytitle>Proceedings of the National Academy of Sciences of the United
States of America</secondary-title></titles><periodical><fulltitle>Proceedings of the National Academy of Sciences of the United
States of America</full-title><abbr-1>Proc. Natl. Acad. Sci. U. S.
A.</abbr-1><abbr-2>Proc Natl Acad Sci U S A</abbr2></periodical><pages>57155720</pages><volume>102</volume><number>16</number><keywords><keyword>fre
t</keyword><keyword>single
molecule</keyword><keyword>recombination</keyword><keyword>DNA
structure</keyword><keyword>4-way DNA junction</keyword><keyword>single-
molecule</keyword><keyword>sequence dependence</keyword><keyword>crystalstructure</keyword><keyword>nucleicacids</keyword><keyword>recombination</keyword><keyword>spectroscopy</key
word><keyword>replication</keyword><keyword>conformers</keyword><keyword>
proteins</keyword></keywords><dates><year>2005</year><pub-dates><date>Apr
19</date></pub-dates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000228565200017</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000228565200017</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Cos
a</Author><Year>2006</Year><RecNum>56</RecNum><record><recnumber>56</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Cosa, G.</author><author>Zeng, Y.
N.</author><author>Liu, H. W.</author><author>Landes, C.
F.</author><author>Makarov, D. E.</author><author>Musier-Forsyth,
K.</author><author>Barbara, P. F.</author></authors></contributors><authaddress>Barbara, PF&#xD;Univ Texas, Ctr Nano &amp; Mol Sci &amp; Technol,
Dept Chem &amp; Biochem, Austin, TX 78712 USA&#xD;Univ Texas, Ctr Nano
&amp; Mol Sci &amp; Technol, Dept Chem &amp; Biochem, Austin, TX 78712
USA&#xA;Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA</authaddress><titles><title>Evidence for non-two-state kinetics in the
nucleocapsid protein chaperoned opening of DNA
hairpins</title><secondary-title>Journal of Physical Chemistry
B</secondary-title></titles><periodical><full-title>Journal of Physical
Chemistry B</full-title></periodical><pages>24192426</pages><volume>110</volume><number>5</number><keywords><keyword>nucl
eic-acid-chaperone</keyword><keyword>plus-strand
transfer</keyword><keyword>single-molecule</keyword><keyword>reverse
transcription</keyword><keyword>conformational
fluctuations</keyword><keyword>transferrna</keyword><keyword>binding</keyword><keyword>dynamics</keyword><keywor
d>spectroscopy</keyword><keyword>heterogeneity</keyword></keywords><dates
><year>2006</year><pub-dates><date>Feb 9</date></pubdates></dates><isbn>1520-6106</isbn><accessionnum>ISI:000235284300067</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000235284300067</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Zhu
ang</Author><Year>2005</Year><RecNum>9</RecNum><record><recnumber>9</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Zhuang, X.
W.</author></authors></contributors><auth-address>Zhuang, XW&#xD;Harvard
Univ, Dept Chem &amp; Biol Chem, Cambridge, MA 02138 USA&#xD;Harvard
Univ, Dept Chem &amp; Biol Chem, Cambridge, MA 02138 USA&#xA;Harvard
Univ, Dept Phys, Cambridge, MA 02138 USA</authaddress><titles><title>Single-molecule RNA science</title><secondarytitle>Annual Review of Biophysics and Biomolecular Structure</secondarytitle></titles><periodical><full-title>Annual Review of Biophysics and
Biomolecular Structure</full-title><abbr-1>Annu. Rev. Biophys. Biomol.
Struct.</abbr-1><abbr-2>Annu Rev Biophys Biomol Struct</abbr2></periodical><pages>399414</pages><volume>34</volume><keywords><keyword>single-molecule
experiments</keyword><keyword>rna folding</keyword><keyword>rna
catalysis</keyword><keyword>fluorescence resonance energy
transfer</keyword><keyword>optical tweezers</keyword><keyword>selfsplicing rna</keyword><keyword>fluorescence correlation
spectroscopy</keyword><keyword>resonance energytransfer</keyword><keyword>hairpin ribozyme</keyword><keyword>thermophila
ribozyme</keyword><keyword>structural dynamics</keyword><keyword>tertiary
structure</keyword><keyword>mechanical force</keyword><keyword>folding
kinetics</keyword><keyword>transitionstate</keyword></keywords><dates><year>2005</year></dates><isbn>10568700</isbn><accession-num>ISI:000230099600017</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000230099600017</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Rue
da</Author><Year>2004</Year><RecNum>6</RecNum><record><rec-number>6</recnumber><ref-type name='Journal Article'>17</reftype><contributors><authors><author>Rueda, D.</author><author>Bokinsky,
G.</author><author>Rhodes, M. M.</author><author>Rust, M.
J.</author><author>Zhuang, X. W.</author><author>Walter, N.
G.</author></authors></contributors><auth-address>Zhuang, XW&#xD;Harvard
Univ, Dept Chem &amp; Biol Chem, Cambridge, MA 02138 USA&#xD;Harvard
Univ, Dept Chem &amp; Biol Chem, Cambridge, MA 02138 USA&#xA;Harvard
Univ, Dept Phys, Cambridge, MA 02138 USA&#xA;Univ Michigan, Dept Chem,
Ann Arbor, MI 48109 USA</auth-address><titles><title>Single-molecule
enzymology of RNA: Essential functional groups impact catalysis from a
distance</title><secondary-title>Proceedings of the National Academy of
Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</fulltitle></periodical><pages>1006610071</pages><volume>101</volume><number>27</number><keywords><keyword>te
rtiary structure formation</keyword><keyword>hairpin
ribozyme</keyword><keyword>structural
dynamics</keyword><keyword>mechanism</keyword></keywords><dates><year>200
4</year><pub-dates><date>Jul 6</date></pub-dates></dates><isbn>00278424</isbn><accession-num>ISI:000222534200023</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000222534200023</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Dow
ney</Author><Year>2006</Year><RecNum>59</RecNum><record><recnumber>59</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Downey, C. D.</author><author>Fiore,
J. L.</author><author>Stoddard, C. D.</author><author>Hodak, J.
H.</author><author>Nesbitt, D. J.</author><author>Pardi,
A.</author></authors></contributors><auth-address>Pardi, A&#xD;Univ
Colorado, Natl Inst Stand &amp; Technol, Dept Chem &amp; Biochem, 215
UCB, Boulder, CO 80309 USA&#xD;Univ Colorado, Natl Inst Stand &amp;
Technol, Dept Chem &amp; Biochem, Boulder, CO 80309 USA&#xA;Univ
Colorado, Natl Inst Stand &amp; Technol, JILA, Boulder, CO 80309
USA</auth-address><titles><title>Metal ion dependence, thermodynamics,
and kinetics for intramolecular docking of a GAAA tetraloop and receptor
connected by a flexible linker</title><secondarytitle>Biochemistry</secondary-title></titles><periodical><fulltitle>Biochemistry</full-title><abbr-1>Biochemistry</abbr-1><abbr2>Biochemistry</abbr-2></periodical><pages>36643673</pages><volume>45</volume><number>11</number><keywords><keyword>p4p6 rna domain</keyword><keyword>group-i</keyword><keyword>tetrahymena
ribozyme</keyword><keyword>hairpin ribozyme</keyword><keyword>hammerhead
ribozyme</keyword><keyword>tertiary structure</keyword><keyword>crystalstructure</keyword><keyword>transition-state</keyword><keyword>singlemolecule</keyword><keyword>ribonucleasep</keyword></keywords><dates><year>2006</year><pub-dates><date>Mar
21</date></pub-dates></dates><isbn>0006-2960</isbn><accessionnum>ISI:000236320400022</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000236320400022</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (16,
18-21) . By contrast, only a few single-molecule concentration-jump
experiments have been reported for RNA
ADDIN EN.CITE
<EndNote><Cite><Author>Ha</Author><Year>1999</Year><RecNum>13</RecNum><re
cord><rec-number>13</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Ha, T.</author><author>Zhuang, X.
W.</author><author>Kim, H. D.</author><author>Orr, J.
W.</author><author>Williamson, J. R.</author><author>Chu,
S.</author></authors></contributors><auth-address>Chu, S&#xD;Stanford
Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ, Dept Phys,
Stanford, CA 94305 USA&#xA;Scripps Res Inst, Dept Mol Biol, La Jolla, CA
92037 USA&#xA;Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037
USA</auth-address><titles><title>Ligand-induced conformational changes
observed in single RNA molecules</title><secondary-title>Proceedings of
the National Academy of Sciences of the United States of
America</secondary-title></titles><periodical><full-title>Proceedings of
the National Academy of Sciences of the United States of America</fulltitle><abbr-1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl
Acad Sci U S A</abbr-2></periodical><pages>90779082</pages><volume>96</volume><number>16</number><keywords><keyword>ribo
somal-protein s15</keyword><keyword>resonance energytransfer</keyword><keyword>elongational flow</keyword><keyword>roomtemperature</keyword><keyword>dynamics</keyword><keyword>binding</keyword
><keyword>site</keyword></keywords><dates><year>1999</year><pubdates><date>Aug 3</date></pub-dates></dates><isbn>00278424</isbn><accession-num>ISI:000081835500056</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000081835500056</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Zhu
ang</Author><Year>2000</Year><RecNum>10</RecNum><record><recnumber>10</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Zhuang, X.
W.</author><author>Bartley, L. E.</author><author>Babcock, H.
P.</author><author>Russell, R.</author><author>Ha, T.
J.</author><author>Herschlag, D.</author><author>Chu,
S.</author></authors></contributors><auth-address>Herschlag,
D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ,
Dept Phys, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Biochem,
Beckman Ctr B400, Stanford, CA 94305 USA</auth-address><titles><title>A
single-molecule study of RNA catalysis and folding</title><secondarytitle>Science</secondary-title></titles><pages>20482051</pages><volume>288</volume><number>5473</number><keywords><keyword>t
etrahymena-thermophila ribozyme</keyword><keyword>group-i
ribozyme</keyword><keyword>activesite</keyword><keyword>substrate</keyword><keyword>binding</keyword><keyw
ord>dynamics</keyword><keyword>titin</keyword><keyword>pathways</keyword>
<keyword>protein</keyword><keyword>steps</keyword></keywords><dates><year
>2000</year><pub-dates><date>Jun 16</date></pub-dates></dates><isbn>00368075</isbn><accession-num>ISI:000087687000052</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000087687000052</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Rus
sell</Author><Year>2002</Year><RecNum>11</RecNum><record><recnumber>11</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Russell, R.</author><author>Zhuang,
X. W.</author><author>Babcock, H. P.</author><author>Millett, I.
S.</author><author>Doniach, S.</author><author>Chu,
S.</author><author>Herschlag, D.</author></authors></contributors><authaddress>Herschlag, D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305
USA&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xA;Stanford
Univ, Dept Biochem, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Chem,
Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Appl Phys, Stanford, CA
94305 USA</auth-address><titles><title>Exploring the folding landscape of
a structured RNA</title><secondary-title>Proceedings of the National
Academy of Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>155160</pages><volume>99</volume><number>1</number><keywords><keyword>selfsplicing rna</keyword><keyword>tetrahymena-thermophila
ribozyme</keyword><keyword>catalytic rna</keyword><keyword>secondary
structure</keyword><keyword>energy
landscape</keyword><keyword>escherichia-coli</keyword><keyword>ribosomalrna</keyword><keyword>kinetic
traps</keyword><keyword>pathways</keyword><keyword>molecule</keyword></ke
ywords><dates><year>2002</year><pub-dates><date>Jan 8</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000173233300031</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000173233300031</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Zhu
ang</Author><Year>2000</Year><RecNum>10</RecNum><record><recnumber>10</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Zhuang, X.
W.</author><author>Bartley, L. E.</author><author>Babcock, H.
P.</author><author>Russell, R.</author><author>Ha, T.
J.</author><author>Herschlag, D.</author><author>Chu,
S.</author></authors></contributors><auth-address>Herschlag,
D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ,
Dept Phys, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Biochem,
Beckman Ctr B400, Stanford, CA 94305 USA</auth-address><titles><title>A
single-molecule study of RNA catalysis and folding</title><secondarytitle>Science</secondary-title></titles><pages>20482051</pages><volume>288</volume><number>5473</number><keywords><keyword>t
etrahymena-thermophila ribozyme</keyword><keyword>group-i
ribozyme</keyword><keyword>activesite</keyword><keyword>substrate</keyword><keyword>binding</keyword><keyw
ord>dynamics</keyword><keyword>titin</keyword><keyword>pathways</keyword>
<keyword>protein</keyword><keyword>steps</keyword></keywords><dates><year
>2000</year><pub-dates><date>Jun 16</date></pub-dates></dates><isbn>00368075</isbn><accession-num>ISI:000087687000052</accession-
num><urls><related-urls><url>&lt;Go to
ISI&gt;://000087687000052</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (9,
22, 23) . These experiments allowed construction of an RNA folding
pathway.
Here, we use FRET to observe the structural response of single RNA
molecules to periodic Mg2+ concentration ([Mg2+]) jumps (Fig. 1-A) in
order to study the folding of the 260-residue catalytic domain of the
thermophilic RNase P RNA (termed CthermoL18; see
ADDIN EN.CITE
<EndNote><Cite><Author>Smith</Author><Year>2007</Year><RecNum>14</RecNum>
<record><rec-number>14</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Smith, G., Lee, K.T., Qu, X., Pesic, J., Xie, Z., Sosnick, T. R., Pan, T., &amp; Scherer,
N. F.</author></authors></contributors><titles><title>Single Molecule
measurements reveal the deeply fluted free energy surface of a large RNA
in collapsed state</title><secondary-title>submitted to J. Mol.
Biol</secondary-title></titles><periodical><full-title>submitted to J.
Mol. Biol</fulltitle></periodical><dates><year>2007</year></dates><urls></urls></record>
</Cite><Cite><Author>Smith</Author><Year>2005</Year><RecNum>2</RecNum><re
cord><rec-number>2</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Smith, G. J.</author><author>Sosnick,
T. R.</author><author>Scherer, N. F.</author><author>Pan,
T.</author></authors></contributors><auth-address>Scherer, NF&#xD;Univ
Chicago, Dept Biochem &amp; Mol Biol, 920 E 58Th St, Chicago, IL 60637
USA&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, Chicago, IL 60637
USA&#xA;Univ Chicago, Dept Chem, Chicago, IL 60637 USA&#xA;Univ Chicago,
Inst Biophys Dynam, Chicago, IL 60637 USA</authaddress><titles><title>Efficient fluorescence labeling of a large RNA
through oligonucleotide hybridization</title><secondary-title>Rna-a
Publication of the Rna Society</secondary-title></titles><pages>234239</pages><volume>11</volume><number>2</number><keywords><keyword>labeli
ng</keyword><keyword>hybridization</keyword><keyword>fret</keyword><keywo
rd>single molecule</keyword><keyword>singlemolecule</keyword><keyword>energytransfer</keyword><keyword>ribonuclease-p</keyword><keyword>secondary
structure</keyword><keyword>substrate-binding</keyword><keyword>large
ribozyme</keyword><keyword>sites</keyword><keyword>stability</keyword><ke
yword>dynamics</keyword></keywords><dates><year>2005</year><pubdates><date>Feb</date></pub-dates></dates><isbn>13558382</isbn><accession-num>ISI:000226709500014</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000226709500014</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (8,
24) and Supplementary Material for details). The kinetic scheme shown in
Fig. 1-B illustrates the experiment: each [Mg2+]-jump induces a change of
the free energy landscape upon which the RNA population subsequently
redistributes. Alternating forward and reverse jumps create a cycle
ADDIN EN.CITE
<EndNote><Cite><Author>Hill</Author><Year>1989</Year><RecNum>60</RecNum><
record><rec-number>60</rec-number><ref-type name="Book">6</reftype><contributors><authors><author>Hill, Terrell
L.</author><author>Hill, Terrell
L.</author></authors></contributors><titles><title>Free energy
transduction and biochemical cycle kinetics</title></titles><pages>119
p.</pages><keywords><keyword>Thermodynamics.</keyword><keyword>Gibbs&apos
; free
energy.</keyword><keyword>Bioenergetics.</keyword></keywords><dates><year
>1989</year></dates><pub-location>New York</publocation><publisher>SpringerVerlag</publisher><isbn>0387968369</isbn><call-num>Jefferson or Adams
Bldg General or Area Studies Reading Rms QP517.T48 H55 1989</callnum><urls></urls></record></Cite></EndNote> (25) . When the period of the
[Mg2+]-jumps is longer than the slowest relaxation process, the periodic
[Mg2+]-jump measurement gives information equivalent to the single-jump
experiment. However, when the [Mg2+]-jump period is shorter, the
distribution of configurations of the RNA molecules prior to each [Mg2+]jump will be different compared to the single jump experiment. Therefore,
such non-equilibrium steady-state measurements allow probing regions of
the free energy landscape that may otherwise escape detection.
For the experiments reported here, the full [Mg2+]-jump period is 20 sec;
10 sec each for the low and high [Mg2+] intervals. For CthermoL18, this
period is too short for the system to achieve equilibrium prior to the
next jump. This is observed with striking clarity in the kinetics of
relaxation associated with each [Mg2+] interval. The range of [Mg2+]jumps employed, from 0.01mM (i.e., low [Mg2+ ] )
t o
0 . 1 ,
0 . 4 ,
o r
1 . 0 m M
( i . e . ,
h i g h
[ M g 2 + ] ) ,
a l l o w s
p r o b i n g
r e l a t i v e l y
s i m p l e
c o n f o r m a t i o n a l
c h a n g e s
( i . e .
t w o s t a t e
b e h a v i o r
a t
0 . 1 m M )
a n d
c o m p l e x
m u l t i - s t a t e
b e h a v i o r
( a t
e"0 . 4 m M ) .
N o n s p e c i f i c
e l e c t r o s t a t i c
r e l a x a t i o n
o f
t h e
R N A
s t r u c t u r e
i s
o b s e r v e d
d u ring each interval for all conditions. We observe exponential
kinetics in each [Mg2+] interval but the relaxation at high [Mg2+] is not
complete. Furthermore, by way of considering the FRET value just prior to
the jump we identify conformations that are slowly interconverting and
are termed “hidden degree(s) of freedom”. The species on either side of
this barrier have indistinguishable FRET efficiency (EFRET) values but
very different dynamics. Therefore, for single-molecule FRET
measurements, the barrier functions as a “hidden” degree of freedom (DOF)
that exhibits long memory of the RNA structure and hence influences the
individual molecule’s dynamics and kinetics of population relaxation.
Experimental Results
Measurements were conducted at three [Mg2+]-jump
conditions
0
a
d
c
m
u
i
t
.
n
e
o
o
n
n
r
0
d
t
n
l
f
c
a
1 ”!0
S u
a i l
f o r
e c u
o l d
r e a
j e c
.
p
s
m
l
i
s
t
4
p
)
a
e
n
e
o
,
a n d
l e m e n t
.
W e
r
t i o n a l
s
a f t e
g ,
a n d
a s
f o
r i e s
a
:
0 . 0 1
a r y
e f e r
c h a
r
a
a f t
l d i n
r e
s
0 . 0 1 ”!0 .
”!1 . 0 m M
M a t e r i a
t o
t h e
n g e s
o f
[ M g 2 + ]
e r
a
[ M
g .
F o r
egmented into
1 ,
( s e e
F i g .
l
f o r
1
R N A
d e c r e a s e
a s
g 2 + ]
a n a l y s i s ,
unfolding and folding
intervals, and these intervals further separated into two cases according
to whether the molecule occupied the low or high EFFRET state immediately
prior to the [Mg2+]-jump, see Fig. 2 C1-C4. The averaged relaxation
properties of the resulting four sorted sets (unfolding starting low
EFRET, unfolding starting high EFRET, folding starting low EFRET, folding
starting high EFRET) are calculated separately and yield key insights
into the alternate folding pathways.
We observed two classes of RNA conformational change: 1) discrete
transitions characteristic of barrier-crossing events that are observed
during each constant [Mg2+] interval, and 2) smooth transitions only
observed during the 1 second [Mg2+] change. The smooth transitions track
the [Mg2+] change (Fig. 3-A1 inset) during the [Mg2+]-mixing time in a
manner consistent with electrostatic relaxation (i.e. collapse or
expansion) of RNA structure.
Two-State Unfolding and Folding for
[Mg2+
] = 0 . 0 1 ”!0 . 1 m M
E F R E T
t r a j e c t o r i e s
( F i g .
2 - A )
a n d
c u m u l a t i v e
E F R E T
h i s t o g r a m s
( F i g .
2 B )
s h o w
t h a t
t h e
R N A
e x h i b i t s
t w o s t a t e
b e h a v i o r
f o r
b o t h
u n f o l d i n g
a n d
f o l d i n g
i n
t h e
0 . 0 1 ”!0 . 1 m M
e x p e r i m e n t .
T w o - s t a t e
b e h a v i o r
i s
c o n s i s t e n t
w i t h
t h e
e x p e c t a t i o n
f r o m
o u r equilibrium study (Fig. 2 insets, and ref.
ADDIN EN.CITE
<EndNote><Cite><Author>Smith</Author><Year>2007</Year><RecNum>14</RecNum>
<record><rec-number>14</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Smith, G., Lee, K.T., Qu, X., Pesic, J., Xie, Z., Sosnick, T. R., Pan, T., &amp; Scherer,
N. F.</author></authors></contributors><titles><title>Single Molecule
measurements reveal the deeply fluted free energy surface of a large RNA
in collapsed state</title><secondary-title>submitted to J. Mol.
Biol</secondary-title></titles><periodical><full-title>submitted to J.
Mol. Biol</fulltitle></periodical><dates><year>2007</year></dates><urls></urls></record>
</Cite></EndNote> (8) ). The high EFRET peak is more dominant in the
folding interval (Fig. 2-B2) than in the unfolding interval (Fig. 2-B1),
although it is apparent form the peak amplitudes that the population has
not yet achieved equilibrium (Fig. 2-B2, inset).
The kinetics of population relaxation are clearly asymmetric (e.g.
different) depending on the initial EFRET state prior to the [Mg2+]jumps, and this asymmetry is especially apparent in the folding interval.
If an RNA began it’s folding interval from a high EFRET state (Fig.2-C3),
it tends to stay in the high EFRET state with a population relaxation
time constant much longer than the 10 second jump interval. RNA folding
from the low EFRET state (Fig.2-C4), on the other hand, relaxes
relatively quickly, almost achieving equilibrium in 10 seconds. The longlived high EFRET state observed in the first case is obviously a
different conformation than the actively fluctuating high EFRET state
visited in the second case. These two high EFRET conformations,
distinguished only by their kinetics, reveal a property that we call the
“hidden” DOF in CthermoL18. The starting conformation immediately before
a [Mg2+] change has a large effect on the subsequent kinetics and
pathways. Sensitivity of the kinetic rate on initial state was observed
in previous single jump studies
ADDIN EN.CITE
<EndNote><Cite><Author>Ha</Author><Year>1999</Year><RecNum>13</RecNum><re
cord><rec-number>13</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Ha, T.</author><author>Zhuang, X.
W.</author><author>Kim, H. D.</author><author>Orr, J.
W.</author><author>Williamson, J. R.</author><author>Chu,
S.</author></authors></contributors><auth-address>Chu, S&#xD;Stanford
Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ, Dept Phys,
Stanford, CA 94305 USA&#xA;Scripps Res Inst, Dept Mol Biol, La Jolla, CA
92037 USA&#xA;Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037
USA</auth-address><titles><title>Ligand-induced conformational changes
observed in single RNA molecules</title><secondary-title>Proceedings of
the National Academy of Sciences of the United States of
America</secondary-title></titles><periodical><full-title>Proceedings of
the National Academy of Sciences of the United States of America</fulltitle><abbr-1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl
Acad Sci U S A</abbr-2></periodical><pages>90779082</pages><volume>96</volume><number>16</number><keywords><keyword>ribo
somal-protein s15</keyword><keyword>resonance energytransfer</keyword><keyword>elongational flow</keyword><keyword>roomtemperature</keyword><keyword>dynamics</keyword><keyword>binding</keyword
><keyword>site</keyword></keywords><dates><year>1999</year><pubdates><date>Aug 3</date></pub-dates></dates><isbn>00278424</isbn><accession-num>ISI:000081835500056</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000081835500056</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Zhu
ang</Author><Year>2000</Year><RecNum>10</RecNum><record><recnumber>10</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Zhuang, X.
W.</author><author>Bartley, L. E.</author><author>Babcock, H.
P.</author><author>Russell, R.</author><author>Ha, T.
J.</author><author>Herschlag, D.</author><author>Chu,
S.</author></authors></contributors><auth-address>Herschlag,
D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ,
Dept Phys, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Biochem,
Beckman Ctr B400, Stanford, CA 94305 USA</auth-address><titles><title>A
single-molecule study of RNA catalysis and folding</title><secondarytitle>Science</secondary-title></titles><pages>20482051</pages><volume>288</volume><number>5473</number><keywords><keyword>t
etrahymena-thermophila ribozyme</keyword><keyword>group-i
ribozyme</keyword><keyword>activesite</keyword><keyword>substrate</keyword><keyword>binding</keyword><keyw
ord>dynamics</keyword><keyword>titin</keyword><keyword>pathways</keyword>
<keyword>protein</keyword><keyword>steps</keyword></keywords><dates><year
>2000</year><pub-dates><date>Jun 16</date></pub-dates></dates><isbn>00368075</isbn><accession-num>ISI:000087687000052</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000087687000052</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Rus
sell</Author><Year>2002</Year><RecNum>11</RecNum><record><recnumber>11</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Russell, R.</author><author>Zhuang,
X. W.</author><author>Babcock, H. P.</author><author>Millett, I.
S.</author><author>Doniach, S.</author><author>Chu,
S.</author><author>Herschlag, D.</author></authors></contributors><authaddress>Herschlag, D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305
USA&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xA;Stanford
Univ, Dept Biochem, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Chem,
Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Appl Phys, Stanford, CA
94305 USA</auth-address><titles><title>Exploring the folding landscape of
a structured RNA</title><secondary-title>Proceedings of the National
Academy of Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>155160</pages><volume>99</volume><number>1</number><keywords><keyword>selfsplicing rna</keyword><keyword>tetrahymena-thermophila
ribozyme</keyword><keyword>catalytic rna</keyword><keyword>secondary
structure</keyword><keyword>energy
landscape</keyword><keyword>escherichia-coli</keyword><keyword>ribosomalrna</keyword><keyword>kinetic
traps</keyword><keyword>pathways</keyword><keyword>molecule</keyword></ke
ywords><dates><year>2002</year><pub-dates><date>Jan 8</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000173233300031</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000173233300031</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Zhu
ang</Author><Year>2000</Year><RecNum>10</RecNum><record><recnumber>10</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Zhuang, X.
W.</author><author>Bartley, L. E.</author><author>Babcock, H.
P.</author><author>Russell, R.</author><author>Ha, T.
J.</author><author>Herschlag, D.</author><author>Chu,
S.</author></authors></contributors><auth-address>Herschlag,
D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ,
Dept Phys, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Biochem,
Beckman Ctr B400, Stanford, CA 94305 USA</auth-address><titles><title>A
single-molecule study of RNA catalysis and folding</title><secondarytitle>Science</secondary-title></titles><pages>20482051</pages><volume>288</volume><number>5473</number><keywords><keyword>t
etrahymena-thermophila ribozyme</keyword><keyword>group-i
ribozyme</keyword><keyword>activesite</keyword><keyword>substrate</keyword><keyword>binding</keyword><keyw
ord>dynamics</keyword><keyword>titin</keyword><keyword>pathways</keyword>
<keyword>protein</keyword><keyword>steps</keyword></keywords><dates><year
>2000</year><pub-dates><date>Jun 16</date></pub-dates></dates><isbn>00368075</isbn><accession-num>ISI:000087687000052</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000087687000052</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (9,
22, 23) .
RNA Conformational Change: Electrostatic Relaxation versus BarrierCrossing Process
Electrostatic compaction into a nonspecifically collapsed structure has
been shown by time-resolved SAXS to occur in < 100 msec (15). When EFRET
states at low and high [Mg2+] are grouped together (Table 1) according to
electrostatic relaxation connectivity, the EFRET values in each group
show a monotonic increase with [Mg2+], consistent with a progressively
more collapsed RNA structure at higher [Mg2+] due to better electrostatic
screening of the RNA phosphate backbone. This EFRET shift with [Mg2+] is
also observed in the EFRET histograms in the equilibrium FRET
measurements of the same RNA ADDIN EN.CITE
<EndNote><Cite><Author>Smith</Author><Year>2007</Year><RecNum>14</RecNum>
<record><rec-number>14</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Smith, G., Lee, K.T., Qu, X., Pesic, J., Xie, Z., Sosnick, T. R., Pan, T., &amp; Scherer,
N. F.</author></authors></contributors><titles><title>Single Molecule
measurements reveal the deeply fluted free energy surface of a large RNA
in collapsed state</title><secondary-title>submitted to J. Mol.
Biol</secondary-title></titles><periodical><full-title>submitted to J.
Mol. Biol</fulltitle></periodical><dates><year>2007</year></dates><urls></urls></record>
</Cite></EndNote> (8) , although in that case the relationship between
EFRET states cannot be directly observed.
For the [Mg2+] intervals with only two EFRET states populated, the EFRET
states are referred to as low and high EFRET states. For simplicity,
[Mg2+] intervals with multiple EFRET states, group numbers (I-IV) instead
of the specific EFRET values are used to refer to the EFRET states (see
Table 1 and Fig. 4). The transitions between EFRET states from different
electrostatically-related groups (see Table 1 and Fig. 4) are barriercrossing processes that occur during the constant [Mg2+] intervals, while
the transitions between EFRET states from the same group are
electrostatic relaxation processes observed only during the ~1sec [Mg2+]transition time. An exception is the conformational change between states
I and II for the
[Mg2+
j
d
(
[
c
t
u
u
i
M
r
h
m
r
.
g
o
e
p
i
e
2
s
T
F
0
T
F
0
t
h
k
o
0
a
c
e
w
o
.
h
i
.
w
i
i
f
.
r
o
x
o
l
0
e
g
0
o
s
n
- S t a
d i n g
1 ”!1 .
s i n
.
3 1 ”!1 .
- s t a
t o g r
e t i c
t h e
1 ”!0 .
n o t
t r a s
i b i t
0
e
n
h
c o n
n g
t
.
b a
+ ] - t
s i n g
e l e c
d
h
r
r
i
e
r
a
h
t r
t e
f
0 m
g l
A
0 m
t e
a m
s
u n
1 m
s
t ,
c
t i
c
i e
n s
a p
o s
o
o
r
i
p
t
n ,
n s t
c r
t i o
e n i
a t i
U n f o
o r
[ M
M
e - m o l
s h o w
M
j u m
u n f o
s
a n d
a r e
v
f o l d i
M
j u s
h o w n
b o t h
o m p l i
w
a
o
n
n
c
h i c
n t
s s i
t i
g
c
r e
h
[
n
m
o
l
] =
h
M g
g )
e
n c
a x
0 . 0
a p p
2 + ]
a n
( i .
u r r
a t i
1 ”!1
e n s
i n
d
d
e .
e n t
o n )
. 0
b
t e
u r
b a
l y
.
m
o
r
i
r
M
t
v
n
r
w
h
a l
g
i e r
i t h
l d i n g
a n d
M u l t i - S t a t e
g 2 + ] = 0 . 0 1 ”!0 . 4
a n d
e c u l e
t h a t
p
e x p
l d i n g
p o p u
e r y
s
n g
i n
t
d e s
f o r
b
j u m p
c a t e d
t
e
.
l
i
t
c
r
t r a
h e
r i m
E F
a t i
m i l
e r v
r i b
e v i
c o n
m u l
j
0
e
R
o
a
a
e
t
d
t
e
.
n
E
n
r
l
d
y
i
i
c t o r i
0 1 ”!0 .
t s
e x
T
r e l a
t o
t
f o r
,
a n d
.
I n
t i o n s
- s t a t
e s
o f
4
a n d
h i b i t
x a t i o n
h o s e
t h u s
e
f
f
0
e
[
<
o l d i n g
( F i g .
3 ) .
M u l t i - s t a t e
o l d i n g
i s
u n e x p e c t e d
f o r
t h e
. 0 1 ”!0 . 4 m M
j u m p
e x p e r i m e n t
b e c a u s e
q u i l i b r i u m
m e a s u r e m e n t s
f o r
M g 2 + ] d"0 . 4 m M
A D D I N
E N . C I T E
E n d N o t e > < C i t e > < A u t h o r > S m i t h < / A u t h o r
> < Y e a r > 2 0 0 7 < / Y e a r > < R e c N u m > 1 4 < / R e c N u m >
< r e c o r d > < r e c - n u m b e r > 1 4 < / r e c n u m b e r > < r e f - t y p e
n a m e = " J o u r n a l
A r t i c l e " > 1 7 < / r e f t y p e > < c o n t r i b u t o r s > < a u t h o r s > < a u t h o r >
S m i t h ,
G . ,
L e e , K.-T., Qu, X., Pesic, J., Xie, Z.,
Sosnick, T. R., Pan, T., &amp; Scherer, N.
F.</author></authors></contributors><titles><title>Single Molecule
measurements reveal the deeply fluted free energy surface of a large RNA
in collapsed state</title><secondary-title>submitted to J. Mol.
Biol</secondary-title></titles><periodical><full-title>submitted to J.
Mol. Biol</fulltitle></periodical><dates><year>2007</year></dates><urls></urls></record>
</Cite></EndNote> (8) show only two-state trajectories for the majority
of single molecules. This dramatic deviation from equilibrium behavior is
a first indication that the periodic jump technique is able to probe
regions of the free energy surface that are virtually unsampled at
equilibrium.
EFRET histograms (Fig. 3-B1, B3) and trajectories show that RNA molecules
folding from the high EFRET state (IV) always go to the highest EFRET
state (state IV) with only very infrequent transitions to state III*
(Fig. 4). On the other hand, molecules folding from the low EFRET state
(I) evolve to populate four EFRET states (Fig. 3-B2,B4, Table 1), some of
which are intermediate states not observed in equilibrium measurements
(Fig. 3-B insets). The folding kinetics for the two jump conditions will
be discussed separately below.
During the [Mg2+] = 0.4mM folding interval (Fig. 3-C1), RNA molecules
that fold from state I primarily go to state II within 3 sec, and the
subsequent population relaxation is predominantly to state III. There is
also a slow but steady increase in the population of state IV within the
10-sec interval consistent with the expectation from our equilibrium
measurements (Fig. 3-B2 inset). States II and III are thus intermediates
along the folding pathway with state II preceding state III. Since the
populations of EFRET states II and III decrease with increasing period of
the perturbation (data not shown), one should also allow that these
intermediates are sampling conformations in what would be the transition
state region at equilibrium.
F
o l d i n g
u n d e r
t h e
0 . 0 1 ”!1 . 0 m M
j u m p
c o n d i t i o n
( F i g .
3 C 2 )
i s
s i m i l a r ,
a n d
m o l e c u l e s
i n i t i a l l y
i n
s t a t e
I
a g a i n
s t r o n g l y
f a v o r
g o i n g
t o
s t a t e
I I .
T h e
t r a n s i t i o n
i s
f a s t ,
c o m p l e t e
w i t h i n
t h e
~ 1 s
[ M g 2 + ] - c h a n g e .
F r o m
s t a t e
I I ,
R N A
m o l e c u l e s
s h i f t
p o p u l a t i o n
t o
s t ate III, which continues to accumulate within the 10 second
interval. The difference between folding at 0.4mM and folding at 1mM is
that the native state is thermodynamically stable and populated at
equilibrium at 1mM. The native state is characterized by an EFRET value
of 0.45
ADDIN EN.CITE
<EndNote><Cite><Author>Smith</Author><Year>2007</Year><RecNum>14</RecNum>
<record><rec-number>14</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Smith, G., Lee, K.T., Qu, X., Pesic, J., Xie, Z., Sosnick, T. R., Pan, T., &amp; Scherer,
N. F.</author></authors></contributors><titles><title>Single Molecule
measurements reveal the deeply fluted free energy surface of a large RNA
in collapsed state</title><secondary-title>submitted to J. Mol.
Biol</secondary-title></titles><periodical><full-title>submitted to J.
Mol. Biol</fulltitle></periodical><dates><year>2007</year></dates><urls></urls></record>
</Cite></EndNote> (8) , indistinguishable from the EFRET value of state
II (Fig. 3-B4 inset), suggesting similarity in conformation (or distance
between dye molecules) for these two states as probed by FRET. However,
state II is not monotonically populated in the folding interval, as would
be expected for the native state. This contradiction is strong evidence
that state II is not identical to the native state, and that these two
states differ in some hidden DOF. We conclude that the observed axis
responds rapidly to the [Mg2+] change while a hidden DOF relaxes more
slowly. Much longer time ( EMBED Equation.DSMT4
10sec) is required
for both the observed axis and the hidden DOF to relax to the native
state.
Variation of [Mg2+] period
To further establish the sensitivity to hidden DOFs and non-Markovian
dynamics, we varied the period of the perturbation. Figure 5 shows a
comparison of the low EFRET, low [Mg2+] sub-ensemble results for 20 sec
and 10 sec periods (i.e. 10 sec vs. 5 sec [Mg2+] intervals). If the
dynamics were of a 2-state Markovian process one would expect the
relaxation (kinetics) to be the same. However, the shorter period data
relax much faster. In the longer high [Mg2+] interval the RNA molecules
are driven further from the low [Mg2+] steady state (almost equilibrium)
position in the longer high [Mg2+] interval. Since the observed DOF then
has more time to “couple” with the hidden DOF, the dynamics of the
observed DOF become slower (or more non-Markovian). In the language of
this paper, the more the molecule folds in the high [Mg2+] interval the
more difficult it is to unfold in the low [Mg2+] interval.
Discussion
Folding at High [Mg2+] is Slow and Multi-State , Unfolding at Low [Mg2+]
is Fast and Two-State
For the unfolding interval, all three jump experiments exhibit two-state
kinetics, and the population distributions at the end of the 10-sec
interval are close to the equilibrium result (Fig. 2-C1, C2, unfolding
intervals for the 0.01(0.4 and 0.01 (1 mM Mg2+ are not shown for
brevity). This population shift indicates that at low [Mg2+], relaxation
appears to be nearly complete within the 10-sec interval regardless of
the initial EFRET state or original high [Mg2+]. Folding, on the other
hand, is more complicated; multiple intermediate states are involved and
events originating from the low or high EFRET states behave very
differently. The EFRET population distributions at the end of the high
[Mg2+] interval for all three jump conditions (Figs. 2-C3, C4 and 3-C)
are far from their equilibrium distributions. Thus, the RNA population
does not achieve equilibrium in the 10-sec high [Mg2+] interval. This is
consistent with previous observations that folding is slower and more
complicated than unfolding
ADDIN EN.CITE
<EndNote><Cite><Author>Russell</Author><Year>2002</Year><RecNum>11</RecNu
m><record><rec-number>11</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Russell,
R.</author><author>Zhuang, X. W.</author><author>Babcock, H.
P.</author><author>Millett, I. S.</author><author>Doniach,
S.</author><author>Chu, S.</author><author>Herschlag,
D.</author></authors></contributors><auth-address>Herschlag,
D&#xD;Stanford Univ, Dept Phys, Stanford, CA 94305 USA&#xD;Stanford Univ,
Dept Phys, Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Biochem,
Stanford, CA 94305 USA&#xA;Stanford Univ, Dept Chem, Stanford, CA 94305
USA&#xA;Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA</authaddress><titles><title>Exploring the folding landscape of a structured
RNA</title><secondary-title>Proceedings of the National Academy of
Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>155160</pages><volume>99</volume><number>1</number><keywords><keyword>selfsplicing rna</keyword><keyword>tetrahymena-thermophila
ribozyme</keyword><keyword>catalytic rna</keyword><keyword>secondary
structure</keyword><keyword>energy
landscape</keyword><keyword>escherichia-coli</keyword><keyword>ribosomalrna</keyword><keyword>kinetic
traps</keyword><keyword>pathways</keyword><keyword>molecule</keyword></ke
ywords><dates><year>2002</year><pub-dates><date>Jan 8</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000173233300031</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000173233300031</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (9) ;
unfolding involves a spontaneous and complete opening of the RNA
structure, while folding is entropically unfavorable, requiring
structural elements to assemble in the correct order.
Hidden Degrees of Freedom and Long Memory Effect
The crystal structure of RNase P RNA ADDIN EN.CITE
<EndNote><Cite><Author>Kazantsev</Author><Year>2005</Year><RecNum>35</Rec
Num><record><rec-number>35</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Kazantsev, A.
V.</author><author>Krivenko, A. A.</author><author>Harrington, D.
J.</author><author>Holbrook, S. R.</author><author>Adams, P.
D.</author><author>Pace, N. R.</author></authors></contributors><authaddress>Pace, NR&#xD;Univ Colorado, Dept Mol Cellular &amp; Dev Biol,
Boulder, CO 80309 USA&#xD;Univ Colorado, Dept Mol Cellular &amp; Dev
Biol, Boulder, CO 80309 USA&#xA;Stanford Univ, Stanford Synchrotron
Radiat Lab, Menlo Pk, CA 94025 USA&#xA;Univ Calif Berkeley, Lawrence
Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA&#xA;Univ Calif
Berkeley, Lawrence Berkeley Lab, Computat Crystallog Initiat, Berkeley,
CA 94720 USA</auth-address><titles><title>Crystal structure of a
bacterial ribonuclease P RNA</title><secondary-title>Proceedings of the
National Academy of Sciences of the United States of America</secondary-
title></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>1339213397</pages><volume>102</volume><number>38</number><keywords><keyword>ri
bozyme</keyword><keyword>rna crystallography</keyword><keyword>trna
processing</keyword><keyword>metal-ion binding</keyword><keyword>large
ribosomal-subunit</keyword><keyword>pre-transferrna</keyword><keyword>bacillus-subtilis</keyword><keyword>activesite</keyword><keyword>tertiary interaction</keyword><keyword>angstrom
resolution</keyword><keyword>escherichiacoli</keyword><keyword>magnesium-ions</keyword><keyword>precursor
trna(asp)</keyword></keywords><dates><year>2005</year><pubdates><date>Sep 20</date></pub-dates></dates><isbn>00278424</isbn><accession-num>ISI:000232115100009</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000232115100009</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (30)
suggests that the positions labeled with the FRET dyes (3’ end and L18
loop) are not directly involved in the formation of the core structure.
However, it is reasonable to expect that the observed (i.e. labeled) DOF
will report on the structure and dynamics of the unlabeled parts of the
RNA due to structural connectivity
ADDIN EN.CITE
<EndNote><Cite><Author>Smith</Author><Year>2007</Year><RecNum>14</RecNum>
<record><rec-number>14</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Smith, G., Lee, K.T., Qu, X., Pesic, J., Xie, Z., Sosnick, T. R., Pan, T., &amp; Scherer,
N. F.</author></authors></contributors><titles><title>Single Molecule
measurements reveal the deeply fluted free energy surface of a large RNA
in collapsed state</title><secondary-title>submitted to J. Mol.
Biol</secondary-title></titles><periodical><full-title>submitted to J.
Mol. Biol</fulltitle></periodical><dates><year>2007</year></dates><urls></urls></record>
</Cite></EndNote> (8) . All three jump experiments reported here indicate
that the structural changes of the unlabeled parts affect the observed
dynamics of the labeled axis but not the EFRET values. Folding at [Mg2+]
= 0.1mM is characterized by two kinetically distinct high EFRET states:
molecules that fold from an initial high EFRET state end up in a stable
long-lived high EFRET state, while molecules that fold from the low EFRET
state fluctuate quite actively between low and high EFRET states. These
two behaviors result from conformational differences in the hidden DOFs.
Folding at [Mg2+] = 1mM includes transient population of a EFRET state
(state II) with the same EFRET value as the native state, but which
behaves as a kinetic intermediate. Further structural changes in a hidden
DOF that require >> 10 sec are required to achieve the true native state.
Slow dynamics in the hidden DOFs give rise to long memory effects in the
single-molecule EFRET trajectories. Figure S4 shows two RNA molecules
that retain dramatically different dynamics in the observed FRET DOF for
several minutes; some molecules remain in the low or high EFRET states
(Figs. S4-a,b) while other molecules synchronize with the periodic
[Mg2+]-jumps and switch between low and high EFRET states (Fig. S4-c).
Persistent behavior is likely to result from structural/conformational
differences in some hidden DOF.
Stabilizing Effects of Mg2+ on RNA Structure and Cooperative RNA Folding
Mg2+ ions stabilize RNA structure by allowing tertiary contacts to form
through specific ion binding, and by electrostatically screening the
phosphate backbone ADDIN EN.CITE
<EndNote><Cite><Author>Draper</Author><Year>2005</Year><RecNum>24</RecNum
><record><rec-number>24</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Draper, D.
E.</author><author>Grilley, D.</author><author>Soto, A.
M.</author></authors></contributors><auth-address>Draper, DE&#xD;Johns
Hopkins Univ, Dept Chem, Charles &amp; 34Th St, Baltimore, MD 21218
USA&#xD;Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA&#xA;Johns
Hopkins Univ, Program Mol &amp; Computat Biophys, Baltimore, MD 21218
USA</auth-address><titles><title>Ions and RNA folding</title><secondarytitle>Annual Review of Biophysics and Biomolecular Structure</secondarytitle></titles><periodical><full-title>Annual Review of Biophysics and
Biomolecular Structure</full-title><abbr-1>Annu. Rev. Biophys. Biomol.
Struct.</abbr-1><abbr-2>Annu Rev Biophys Biomol Struct</abbr2></periodical><pages>221243</pages><volume>34</volume><keywords><keyword>magnesium</keyword><keyw
ord>potassium</keyword><keyword>electrostatics</keyword><keyword>poissonboltzmann
theory</keyword><keyword>hydration</keyword><keyword>phenylalanine
transfer-rna</keyword><keyword>molecular-dynamics
simulations</keyword><keyword>dimerization initiation
site</keyword><keyword>x-ray-scattering</keyword><keyword>group-i
intron</keyword><keyword>metal-ions</keyword><keyword>crystalstructure</keyword><keyword>nucleic-acids</keyword><keyword>tertiary
structure</keyword><keyword>ribosomalrna</keyword></keywords><dates><year>2005</year></dates><isbn>10568700</isbn><accession-num>ISI:000230099600010</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000230099600010</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (3) .
For all three jump conditions, the RNA molecules were observed to become
compact upon [Mg2+] increase (Fig. 4). This compaction is mainly due to
the nonspecific electrostatic relaxation of the RNA structure, but it has
been shown for other RNA molecules that some tertiary interactions might
also be formed during the electrostatic relaxation process ADDIN EN.CITE
<EndNote><Cite><Author>Woodson</Author><Year>2005</Year><RecNum>36</RecNu
m><record><rec-number>36</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Woodson, S.
A.</author></authors></contributors><auth-address>Woodson, SA&#xD;Johns
Hopkins Univ, TC Jenkins Dept Biophys, 3400 N Charles St, Baltimore, MD
21218 USA&#xD;Johns Hopkins Univ, TC Jenkins Dept Biophys, Baltimore, MD
21218 USA</auth-address><titles><title>Metal ions and RNA folding: a
highly charged topic with a dynamic future</title><secondarytitle>Current Opinion in Chemical Biology</secondarytitle></titles><periodical><full-title>Current Opinion in Chemical
Biology</full-title><abbr-1>Curr. Opin. Chem. Biol.</abbr-1><abbr-2>Curr
Opin Chem Biol</abbr-2></periodical><pages>104109</pages><volume>9</volume><number>2</number><keywords><keyword>delta
virus ribozyme</keyword><keyword>tetrahymena-thermophila
ribozyme</keyword><keyword>group-i
ribozyme</keyword><keyword>conformational
switch</keyword><keyword>electrostatic
properties</keyword><keyword>counterion
condensation</keyword><keyword>thermodynamic
framework</keyword><keyword>poisson-boltzmann</keyword><keyword>crystalstructure</keyword><keyword>nucleicacids</keyword></keywords><dates><year>2005</year><pubdates><date>Apr</date></pub-dates></dates><isbn>13675931</isbn><accession-num>ISI:000228607700003</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000228607700003</url></relatedurls></urls><language>English</language></record></Cite><Cite><Author>Kwo
k</Author><Year>2006</Year><RecNum>50</RecNum><record><recnumber>50</rec-number><ref-type name="Journal Article">17</reftype><contributors><authors><author>Kwok, L.
W.</author><author>Shcherbakova, I.</author><author>Lamb, J.
S.</author><author>Park, H. Y.</author><author>Andresen,
K.</author><author>Smith, H.</author><author>Brenowitz,
M.</author><author>Pollack, L.</author></authors></contributors><authaddress>Pollack, L&#xD;Cornell Univ, Sch Appl &amp; Engn Phys, Ithaca, NY
14853 USA&#xD;Cornell Univ, Sch Appl &amp; Engn Phys, Ithaca, NY 14853
USA&#xA;Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY
10461 USA&#xA;Yeshiva Univ Albert Einstein Coll Med, Ctr Synchrotron
Biosci, Bronx, NY 10461 USA</auth-address><titles><title>Concordant
exploration of the kinetics of RNA folding from global and local
perspectives</title><secondary-title>Journal of Molecular
Biology</secondary-title></titles><periodical><full-title>Journal of
Molecular Biology</full-title><abbr-1>J. Mol. Biol.</abbr-1><abbr-2>J Mol
Biol</abbr-2></periodical><pages>282293</pages><volume>355</volume><number>2</number><keywords><keyword>rna
folding</keyword><keyword>time-resolved small-angle x-ray
scattering</keyword><keyword>electrostatic
relaxation</keyword><keyword>compaction</keyword><keyword>tertiary
structure formation</keyword><keyword>tetrahymena-thermophila
ribozyme</keyword><keyword>x-ray-scattering</keyword><keyword>group-i
ribozyme</keyword><keyword>monovalent
cations</keyword><keyword>peripheral
element</keyword><keyword>pathways</keyword><keyword>domain</keyword><key
word>compaction</keyword><keyword>events</keyword><keyword>p5abc</keyword
></keywords><dates><year>2006</year><pub-dates><date>Jan 13</date></pubdates></dates><isbn>0022-2836</isbn><accessionnum>ISI:000234371900011</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000234371900011</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (4,
28) . Achieving high cooperativity in folding
ADDIN EN.CITE
<EndNote><Cite><Author>Fang</Author><Year>2003</Year><RecNum>32</RecNum><
record><rec-number>32</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Fang, X.
W.</author><author>Srividya, N.</author><author>Golden, B.
L.</author><author>Sosnick, T. R.</author><author>Pan,
T.</author></authors></contributors><auth-address>Sosnick, TR&#xD;Univ
Chicago, Dept Biochem &amp; Mol Biol, 920 E 58th St, Chicago, IL 60637
USA&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, Chicago, IL 60637
USA&#xA;Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA&#xA;Univ
Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA</auth-
address><titles><title>Stepwise conversion of a mesophilic to a
thermophilic ribozyme</title><secondary-title>Journal of Molecular
Biology</secondary-title></titles><periodical><full-title>Journal of
Molecular Biology</full-title><abbr-1>J. Mol. Biol.</abbr-1><abbr-2>J Mol
Biol</abbr-2></periodical><pages>177183</pages><volume>330</volume><number>2</number><keywords><keyword>riboz
yme</keyword><keyword>folding</keyword><keyword>stability</keyword><keywo
rd>cooperativity</keyword><keyword>thermophile</keyword><keyword>ribonucl
ease-p
rna</keyword><keyword>secondary</keyword><keyword>stability</keyword></ke
ywords><dates><year>2003</year><pub-dates><date>Jul 4</date></pubdates></dates><isbn>0022-2836</isbn><accessionnum>ISI:000183824900001</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000183824900001</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (31)
ADDIN EN.CITE
<EndNote><Cite><Author>Fang</Author><Year>2001</Year><RecNum>37</RecNum><
record><rec-number>37</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Fang, X.
W.</author><author>Golden, B. L.</author><author>Littrell,
K.</author><author>Shelton, V.</author><author>Thiyagarajan,
P.</author><author>Pan, T.</author><author>Sosnick, T.
R.</author></authors></contributors><auth-address>Sosnick, TR&#xD;Univ
Chicago, Dept Biochem &amp; Mol Biol, 920 E 58Th St, Chicago, IL 60637
USA&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, Chicago, IL 60637
USA&#xA;Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA&#xA;Argonne
Natl Lab, Argonne, IL 60439 USA&#xA;Univ Chicago, Dept Chem, Chicago, IL
60637 USA&#xA;Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637
USA</auth-address><titles><title>The thermodynamic origin of the
stability of a thermophilic ribozyme</title><secondary-title>Proceedings
of the National Academy of Sciences of the United States of
America</secondary-title></titles><periodical><full-title>Proceedings of
the National Academy of Sciences of the United States of America</fulltitle><abbr-1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl
Acad Sci U S A</abbr-2></periodical><pages>43554360</pages><volume>98</volume><number>8</number><keywords><keyword>subti
lis rnase-p</keyword><keyword>small-angle
scattering</keyword><keyword>crystalstructure</keyword><keyword>ribonuclease-p</keyword><keyword>angstrom
resolution</keyword><keyword>substratebinding</keyword><keyword>domain</keyword><keyword>temperature</keyword><
keyword>secondary</keyword><keyword>perspective</keyword></keywords><date
s><year>2001</year><pub-dates><date>Apr 10</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000168059700020</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000168059700020</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (27)
requires some preorganization of the structure. Topological constraints
of the native state requires sequential formation of the following
helices: P4 first, then P2, then finally P5, with a number of noncanonical stabilizing interactions. Formation of these helices in
different order or combinations may result in intermediate states that
are kinetically stable.
No ensemble kinetic experiments have been reported for the Cthermo
thermophilic ribozyme. However, a rate limiting step along the folding
pathway of a mesophilic homologue has been kinetically characterized in
the ensemble. A folding intermediate was directly observed
ADDIN
EN.CITE
<EndNote><Cite><Author>Fang</Author><Year>2002</Year><RecNum>42</RecNum><
record><rec-number>42</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Fang, X.
W.</author><author>Thiyagarajan, P.</author><author>Sosnick, T.
R.</author><author>Pan, T.</author></authors></contributors><authaddress>Sosnick, TR&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, 920 E
58Th St, Chicago, IL 60637 USA&#xD;Univ Chicago, Dept Biochem &amp; Mol
Biol, Chicago, IL 60637 USA&#xA;Argonne Natl Lab, Argonne, IL 60439
USA&#xA;Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA</authaddress><titles><title>The rate-limiting step in the folding of a large
ribozyme without kinetic traps</title><secondary-title>Proceedings of the
National Academy of Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>85188523</pages><volume>99</volume><number>13</number><keywords><keyword>phen
ylalanine transfer-rna</keyword><keyword>tetrahymena
ribozyme</keyword><keyword>crystal-structure</keyword><keyword>angstrom
resolution</keyword><keyword>p
rna</keyword><keyword>domain</keyword><keyword>pathway</keyword><keyword>
binding</keyword><keyword>core</keyword><keyword>mg2+</keyword></keywords
><dates><year>2002</year><pub-dates><date>Jun 25</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000176478200013</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000176478200013</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (26) ,
and an unfolding intermediate was deduced from a [Mg2+]-chevron analysis
ADDIN EN.CITE
<EndNote><Cite><Author>Fang</Author><Year>1999</Year><RecNum>47</RecNum><
record><rec-number>47</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Fang, X.
W.</author><author>Pan, T.</author><author>Sosnick, T.
R.</author></authors></contributors><auth-address>Pan, T&#xD;Univ
Chicago, Dept Biochem &amp; Mol Biol, Chicago, IL 60637 USA&#xD;Univ
Chicago, Dept Biochem &amp; Mol Biol, Chicago, IL 60637 USA</authaddress><titles><title>Mg2+-dependent folding of a large ribozyme without
kinetic traps</title><secondary-title>Nature Structural
Biology</secondary-title></titles><periodical><full-title>Nature
Structural Biology</full-title><abbr-1>Nature Struct. Biol.</abbr1><abbr-2>Nature Struct Biol</abbr-2></periodical><pages>10911095</pages><volume>6</volume><number>12</number><keywords><keyword>group
-i ribozyme</keyword><keyword>rnasep</keyword><keyword>proteins</keyword></keywords><dates><year>1999</year>
<pub-dates><date>Dec</date></pub-dates></dates><isbn>10728368</isbn><accession-num>ISI:000084022300007</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000084022300007</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (14) .
The rate-limiting step to the native state was described as a small-
amplitude conformational change (i.e. no change in radius of gyration or
burial of surface area) between these two intermediate states ADDIN
EN.CITE
<EndNote><Cite><Author>Fang</Author><Year>2002</Year><RecNum>42</RecNum><
record><rec-number>42</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Fang, X.
W.</author><author>Thiyagarajan, P.</author><author>Sosnick, T.
R.</author><author>Pan, T.</author></authors></contributors><authaddress>Sosnick, TR&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, 920 E
58Th St, Chicago, IL 60637 USA&#xD;Univ Chicago, Dept Biochem &amp; Mol
Biol, Chicago, IL 60637 USA&#xA;Argonne Natl Lab, Argonne, IL 60439
USA&#xA;Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA</authaddress><titles><title>The rate-limiting step in the folding of a large
ribozyme without kinetic traps</title><secondary-title>Proceedings of the
National Academy of Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>85188523</pages><volume>99</volume><number>13</number><keywords><keyword>phen
ylalanine transfer-rna</keyword><keyword>tetrahymena
ribozyme</keyword><keyword>crystal-structure</keyword><keyword>angstrom
resolution</keyword><keyword>p
rna</keyword><keyword>domain</keyword><keyword>pathway</keyword><keyword>
binding</keyword><keyword>core</keyword><keyword>mg2+</keyword></keywords
><dates><year>2002</year><pub-dates><date>Jun 25</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000176478200013</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000176478200013</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (26) .
No additional Mg2+ ions are bound in this step, which argues for a local
consolidation of RNA structure around a prebound Mg2+ ion. This lack of
change in global structural dimensions is consistent with the
indistinguishable EFRET values of states III and III* and would allow
these states to lie on either side of the major barrier (Fig. 1-B).
However, further experiments are reuired to prove that our hidden DOF is
the major barrier to folding.
In the mesophilic homologue, the folding rate at high [Mg2+] is more than
one order of magnitude slower than the unfolding rate at very low cation
concentration
ADDIN EN.CITE
<EndNote><Cite><Author>Fang</Author><Year>2002</Year><RecNum>42</RecNum><
record><rec-number>42</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Fang, X.
W.</author><author>Thiyagarajan, P.</author><author>Sosnick, T.
R.</author><author>Pan, T.</author></authors></contributors><authaddress>Sosnick, TR&#xD;Univ Chicago, Dept Biochem &amp; Mol Biol, 920 E
58Th St, Chicago, IL 60637 USA&#xD;Univ Chicago, Dept Biochem &amp; Mol
Biol, Chicago, IL 60637 USA&#xA;Argonne Natl Lab, Argonne, IL 60439
USA&#xA;Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA</authaddress><titles><title>The rate-limiting step in the folding of a large
ribozyme without kinetic traps</title><secondary-title>Proceedings of the
National Academy of Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr-
1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>85188523</pages><volume>99</volume><number>13</number><keywords><keyword>phen
ylalanine transfer-rna</keyword><keyword>tetrahymena
ribozyme</keyword><keyword>crystal-structure</keyword><keyword>angstrom
resolution</keyword><keyword>p
rna</keyword><keyword>domain</keyword><keyword>pathway</keyword><keyword>
binding</keyword><keyword>core</keyword><keyword>mg2+</keyword></keywords
><dates><year>2002</year><pub-dates><date>Jun 25</date></pubdates></dates><isbn>0027-8424</isbn><accessionnum>ISI:000176478200013</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000176478200013</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (26) .
This is qualitatively consistent with our observation that for all three
jump conditions unfolding is largely complete within the 10-sec low
[Mg2+] interval while folding is far from equilibrium within the 10-sec
high [Mg2+] interval (Figs. 2-C, 3-C). Thus our conclusion of the
existence of high barriers in the [Mg2+] jump experiments of CthermoL18
RNA qualitatively agrees with the ensemble kinetic measurements of the
mesophilic homologue.
Free Energy Landscape
The connectivity of the EFRET states along the folding pathway (Figs. 2C, 3-C, 4) and the rate constants for interconversion between two
connected EFRET states (Table S1) are readily obtained from the singlemolecule RNA response to [Mg2+]-jumps monitored over time. Although each
jump experiment differs in detail (e.g., the barrier heights and number
of free energy basins), a qualitative free energy landscape with the
major features of all three jump experiments can be illustrated as in
Fig. 1-B. A [Mg2+] change causes the free energy landscape to shift with
subsequent RNA population redistribution towards equilibrium on the new
free energy landscape. Molecules take one of two alternative folding
pathways depending on which EFRET state (low (I) or high (II)) a molecule
occupies prior to the [Mg2+]-jump. The two folding pathways are separated
by a high barrier that correspon d s
t o
a
s t r u c t u r a l
c h a n g e
i n
s o m e
h i d d e n
D O F .
T h i s
b a r r i e r
i s
s o
h i g h
t h a t
t r a n s i t i o n s
o v e r
i t
a r e
o n l y
r a r e l y
o b s e r v e d .
F o r
t h e
0 . 0 1 ”!0 . 4 m M
a n d
0 . 0 1 ”!1 . 0 m M
j u m p
c o n d i t i o n s ,
t h e
E F R E T
h i s t o g r a m s
( F i g .
3 - B ) ,
c o n n e c t i v i t y
o f
t h e
E F R E T
s t a t e s
( F i g .
4 ) ,
a n d
( r a re) observation of transitions over the barrier (Fig. 3-A2 lower
trajectory, arrow) allow assignment of the barrier between states III and
III*; they posses the same observed EFRET value but are kinetically
distinct and therefore on the opposite sides of the barrier.
Probing regions of the free energy landscape that are inaccessible to
equilibrium results
In contrast to perturbation experiments with only a single jump, the
period of the periodic jump experiment can be used to probe
macromolecular free energy landscapes. When the period of [Mg2+]-jumps is
shorter than the timescale for relaxation, the distribution of RNA
conformations at the end of an interval will not have reached
equilibrium. The response of this non-equilibrium distribution of
starting conformations to the next [Mg2+]-jump will depend on how far the
system is from each of the two asymptotic equilibrium distributions. The
system’s “distance” from equilibrium is controlled by the length of the
periodic [Mg2+] jumps. Fig. 5 shows that the ribozyme is perturbed less
during the 5 second interval (vs. 10 sec interval), and so it relaxes
more quickly. If one assumes linear response (but near equilibrium) then
the relaxation rate should be independent of perturbation. The observed
dependence of relaxation kinetics on the length of [Mg2+] jump period is
evidence that a non-linear (or non-Markovian) response describes the RNA
dynamics in this experiment. Additionally, the RNA populations driven for
different periods cannot be equilibrating to the same distributions of
states. Therefore, different regions of the free energy surface are
probed with different period lengths. The result of the period-dependence
is a direct manifestation of memory in the dynamics. With a long enough
sequence of periodic jump cycles, the molecules are best described by a
non-equilibrium steady state distribution of conformations
ADDIN
EN.CITE
<EndNote><Cite><Author>Tietz</Author><Year>2006</Year><RecNum>54</RecNum>
<record><rec-number>54</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Tietz,
C.</author><author>Schuler, S.</author><author>Speck,
T.</author><author>Seifert, U.</author><author>Wrachtrup,
J.</author></authors></contributors><auth-address>Tietz, C&#xD;Univ
Stuttgart, Inst Phys 3, D-70550 Stuttgart, Germany&#xD;Univ Stuttgart,
Inst Phys 3, D-70550 Stuttgart, Germany&#xA;Univ Stuttgart, Inst Theoret
Phys 2, D-70550 Stuttgart, Germany</authaddress><titles><title>Measurement of stochastic entropy
production</title><secondary-title>Physical Review Letters</secondarytitle></titles><periodical><full-title>Physical Review Letters</fulltitle><abbr-1>Phys. Rev. Lett.</abbr-1><abbr-2>Phys Rev Lett</abbr2></periodical><pages>050602</pages><volume>97</volume><number>5</number>
<keywords><keyword>free-energy differences</keyword><keyword>fluctuation
theorem</keyword><keyword>steadystates</keyword><keyword>equality</keyword><keyword>dynamics</keyword></k
eywords><dates><year>2006</year><pub-dates><date>Aug 4</date></pubdates></dates><isbn>0031-9007</isbn><accessionnum>ISI:000239520300011</accession-num><urls><related-urls><url>&lt;Go to
ISI&gt;://000239520300011</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (32) .
In one limit for a 2-state system, what appear to be new intermediates
may actually be conformations that are those of the transition state
separating two basins at equilibrium (note state II in Figure 3C1).
Conclusions
We developed and applied a single-molecule periodic [Mg2+]-jump method,
to study the Mg2+-induced folding of CthermoL18 RNA. The observed
connectivity of EFRET states and the associated rate constants allow
construction of a detailed free energy landscape. We find that molecules
starting from the two different interconverting conformations (i.e. the
low and high EFRET states) before a [Mg2+] increase traverse two distinct
regions of the landscape, which are separated by a very high free energy
barrier. This rate limiting step involves only changes in the hidden DOF
and does not induce detectable change in the EFRET value. The slow
dynamics, apparent in the hidden DOF, give rise to more details of the
free energy landscape and clearly reveal long memory effects in the
single-molecule EFRET trajectories. The fact that the relaxation dynamics
depend on the magnitude (duration) of the perturbation for a fixed [Mg2+]
clearly indicates that the response is non-Markovian as is expected for a
non-equilibrium steady state system with long memory.
Many important RNA folding questions can be studied with this approach,
such as the origin and properties of long memory effects, and cooperative
folding of large RNAs at high [Mg2+]. Quantitative modeling of the
observed dynamics, such as a Generalized Langevin Equation simulation
with a memory kernel ADDIN EN.CITE
<EndNote><Cite><Author>Min</Author><Year>2006</Year><RecNum>55</RecNum><r
ecord><rec-number>55</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Min,
W.</author><author>Xie, X. S.</author></authors></contributors><authaddress>Xie, XS&#xD;Harvard Univ, Dept Chem &amp; Chem Biol, Cambridge,
MA 02138 USA&#xD;Harvard Univ, Dept Chem &amp; Chem Biol, Cambridge, MA
02138 USA</auth-address><titles><title>Kramers model with a power-law
friction kernel: Dispersed kinetics and dynamic disorder of biochemical
reactions</title><secondary-title>Physical Review E</secondarytitle></titles><periodical><full-title>Physical Review E</fulltitle></periodical><pages>010902(R)</pages><volume>73</volume><number>1</
number><keywords><keyword>single-molecule
kinetics</keyword><keyword>chemical-reactions</keyword><keyword>enzymatic
dynamics</keyword><keyword>brownian
dynamics</keyword><keyword>relaxation</keyword><keyword>bottleneck</keywo
rd><keyword>proteins</keyword><keyword>escape</keyword><keyword>decay</ke
yword></keywords><dates><year>2006</year><pubdates><date>Jan</date></pub-dates></dates><isbn>15393755</isbn><accession-num>ISI:000235008500008</accessionnum><urls><related-urls><url>&lt;Go to
ISI&gt;://000235008500008</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (33) ,
will provide more insights into RNA folding mechanisms. Finally,
measurements with a set of different [Mg2+]-jump periods will allow
construction of a more comprehensive free energy landscape which is
inaccessible from equilibrium measurements and traditional single-jump
techniques.
Materials and Methods
Details of data acquisition and analysis are described in the
Supplementary Material.
Acknowledgements
We thank the Ismagilov group, especially Helen Song, for help with making
PDMS devices and discussions about microfluidic systems. This work was
supported by National Institutes of Health (GM067961), and the Burroughs
Wellcome Fund Interfaces ID 1001774 with a fellowship to XQ. NFS thanks
the John S. Guggenheim Foundation for a fellowship.
References:
ADDIN EN.REFLIST 1. Alberts, B. (2002) Molecular biology of the cell
(Garland Science, New York).
2.
Lilley, D. M. J. (2005) Current Opinion in Structural Biology 15,
313-323.
3.
Draper, D. E., Grilley, D. & Soto, A. M. (2005) Annual Review of
Biophysics and Biomolecular Structure 34, 221-243.
4.
Woodson, S. A. (2005) Current Opinion in Chemical Biology 9, 104109.
5.
Thirumalai, D. & Hyeon, C. (2005) Biochemistry 44, 4957-4970.
6.
Gruebele, M. (2002) Current Opinion in Structural Biology 12, 161168.
7.
Plotkin, S. S. & Onuchic, J. N. (2002) Quarterly Reviews of
Biophysics 35, 111-167.
8.
Smith, G., Lee, K.-T., Qu, X., Pesic, J., Xie, Z., Sosnick, T. R.,
Pan, T., & Scherer, N. F. (2007) submitted to J. Mol. Biol.
9.
Russell, R., Zhuang, X. W., Babcock, H. P., Millett, I. S.,
Doniach, S., Chu, S. & Herschlag, D. (2002) Proceedings of the National
Academy of Sciences of the United States of America 99, 155-160.
10.
Thirumalai, D., Lee, N., Woodson, S. A., Klimov, D. K. (2001) Annu.
Rev. Phys. Chem 52, 751-762.
11.
Eigen, M. & Hammes, G. G. (1960) Journal of the American Chemical
Society 82, 5951-5952.
12.
Munoz, V., Thompson, P. A., Hofrichter, J. & Eaton, W. A. (1997)
Nature 390, 196-199.
13.
Krantz, B. A. & Sosnick, T. R. (2000) Biochemistry 39, 11696-11701.
14.
Fang, X. W., Pan, T. & Sosnick, T. R. (1999) Nature Structural
Biology 6, 1091-1095.
15.
Russell, R., Millettt, I. S., Tate, M. W., Kwok, L. W., Nakatani,
B., Gruner, S. M., Mochrie, S. G. J., Pande, V., Doniach, S., Herschlag,
D. & Pollack, L. (2002) Proceedings of the National Academy of Sciences
of the United States of America 99, 4266-4271.
16.
Downey, C. D., Fiore, J. L., Stoddard, C. D., Hodak, J. H.,
Nesbitt, D. J. & Pardi, A. (2006) Biochemistry 45, 3664-3673.
17.
Chandler, D. (1987) Introduction to modern statistical mechanics
(Oxford University Press, New York).
18.
McKinney, S. A., Freeman, A. D. J., Lilley, D. M. J. & Ha, T. J.
(2005) Proceedings of the National Academy of Sciences of the United
States of America 102, 5715-5720.
19.
Cosa, G., Zeng, Y. N., Liu, H. W., Landes, C. F., Makarov, D. E.,
Musier-Forsyth, K. & Barbara, P. F. (2006) Journal of Physical Chemistry
B 110, 2419-2426.
20.
Zhuang, X. W. (2005) Annual Review of Biophysics and Biomolecular
Structure 34, 399-414.
21.
Rueda, D., Bokinsky, G., Rhodes, M. M., Rust, M. J., Zhuang, X. W.
& Walter, N. G. (2004) Proceedings of the National Academy of Sciences of
the United States of America 101, 10066-10071.
22.
Ha, T., Zhuang, X. W., Kim, H. D., Orr, J. W., Williamson, J. R. &
Chu, S. (1999) Proceedings of the National Academy of Sciences of the
United States of America 96, 9077-9082.
23.
Zhuang, X. W., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T.
J., Herschlag, D. & Chu, S. (2000) Science 288, 2048-2051.
24.
Smith, G. J., Sosnick, T. R., Scherer, N. F. & Pan, T. (2005) Rna-a
Publication of the Rna Society 11, 234-239.
25.
Hill, T. L. & Hill, T. L. (1989) Free energy transduction and
biochemical cycle kinetics (Springer-Verlag, New York).
26.
Fang, X. W., Thiyagarajan, P., Sosnick, T. R. & Pan, T. (2002)
Proceedings of the National Academy of Sciences of the United States of
America 99, 8518-8523.
27.
Fang, X. W., Golden, B. L., Littrell, K., Shelton, V.,
Thiyagarajan, P., Pan, T. & Sosnick, T. R. (2001) Proceedings of the
National Academy of Sciences of the United States of America 98, 43554360.
28.
Kwok, L. W., Shcherbakova, I., Lamb, J. S., Park, H. Y., Andresen,
K., Smith, H., Brenowitz, M. & Pollack, L. (2006) Journal of Molecular
Biology 355, 282-293.
29.
Lambert, M. N., Vocker, E., Blumberg, S., Redemann, S., Gajraj, A.,
Meiners, J. C. & Walter, N. G. (2006) Biophysical Journal 90, 3672-3685.
30.
Kazantsev, A. V., Krivenko, A. A., Harrington, D. J., Holbrook, S.
R., Adams, P. D. & Pace, N. R. (2005) Proceedings of the National Academy
of Sciences of the United States of America 102, 13392-13397.
31.
Fang, X. W., Srividya, N., Golden, B. L., Sosnick, T. R. & Pan, T.
(2003) Journal of Molecular Biology 330, 177-183.
32.
Tietz, C., Schuler, S., Speck, T., Seifert, U. & Wrachtrup, J.
(2006) Physical Review Letters 97, 050602.
33.
Min, W. & Xie, X. S. (2006) Physical Review E 73, 010902(R).
Tables
Table 1 EFRET values at the peak positions of the EFRET histograms in
Figs. 2-B and 3-B
[Mg2+] 0.01mM 0.1mM 0.4mM 1mM
EFRET Values 0.19 0.21 0.25 0.25 state
I
0.41 0.45 state II
0.62 0.7 state III
0.7 0.76 0.8 0.85 state
IV
Error: +/- 0.02(upper bound). The EFRET states are separated into four
groups (I-IV) according to their structural relation by electrostatic
relaxation.
Figure Captions
Figure 1 Schematic of the periodic [Mg2+]-jump experiment and cycling of
the energy landscape. A): [Mg2+] profile applied in the experiments. The
lengths of the high and low [Mg2+] intervals are both 10 sec with
50uL/min flow rate for all the experiments reported here. The solid line
shows the idealized [Mg2+] change over time. The overlaid dotted data
shows the averaged brightness of isolated Cy3 molecules in one field of
view. B): Schematic free energy landscape for the periodic [Mg2+]-jump
experiment. Circles represent the population in each EFRET level. The
vertical dashed lines show that the EFRET value of each EFRET state
shifts to a higher value at higher [Mg2+] due to electrostatic
relaxation. The solid arrows (lower left panel) represent the folding
pathways observed for molecules starting from the low or high EFRET
state. These two cases are separated by a high barrier associated with
the hidden DOF. The dashed double arrows are meant to indicate that
transitions over the high barrier of the hidden DOF are seldom observed
within the 10-sec [Mg2+] step. The number of basins, exact barrier
heights or well depths, EFRET values and population at each EFRET state
are different for the three [Mg2+]-jump conditions. (Note: the
coordinates to the left and right of the large barrier are different due
to the presence of the state of the hidden DOF. The figure is a 1-dim
representation of a 2-dim energy landscape.). C) Locations of the L18
loop (Cy3, green spheres) and 3’ end (Cy5, red spheres) on the tertiary
structure model of Cthermo from
ADDIN EN.CITE
<EndNote><Cite><Author>Kazantsev</Author><Year>2005</Year><RecNum>35</Rec
Num><record><rec-number>35</rec-number><ref-type name="Journal
Article">17</ref-type><contributors><authors><author>Kazantsev, A.
V.</author><author>Krivenko, A. A.</author><author>Harrington, D.
J.</author><author>Holbrook, S. R.</author><author>Adams, P.
D.</author><author>Pace, N. R.</author></authors></contributors><authaddress>Pace, NR&#xD;Univ Colorado, Dept Mol Cellular &amp; Dev Biol,
Boulder, CO 80309 USA&#xD;Univ Colorado, Dept Mol Cellular &amp; Dev
Biol, Boulder, CO 80309 USA&#xA;Stanford Univ, Stanford Synchrotron
Radiat Lab, Menlo Pk, CA 94025 USA&#xA;Univ Calif Berkeley, Lawrence
Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA&#xA;Univ Calif
Berkeley, Lawrence Berkeley Lab, Computat Crystallog Initiat, Berkeley,
CA 94720 USA</auth-address><titles><title>Crystal structure of a
bacterial ribonuclease P RNA</title><secondary-title>Proceedings of the
National Academy of Sciences of the United States of America</secondarytitle></titles><periodical><full-title>Proceedings of the National
Academy of Sciences of the United States of America</full-title><abbr1>Proc. Natl. Acad. Sci. U. S. A.</abbr-1><abbr-2>Proc Natl Acad Sci U S
A</abbr-2></periodical><pages>1339213397</pages><volume>102</volume><number>38</number><keywords><keyword>ri
bozyme</keyword><keyword>rna crystallography</keyword><keyword>trna
processing</keyword><keyword>metal-ion binding</keyword><keyword>large
ribosomal-subunit</keyword><keyword>pre-transferrna</keyword><keyword>bacillus-subtilis</keyword><keyword>activesite</keyword><keyword>tertiary interaction</keyword><keyword>angstrom
resolution</keyword><keyword>escherichiacoli</keyword><keyword>magnesium-ions</keyword><keyword>precursor
trna(asp)</keyword></keywords><dates><year>2005</year><pubdates><date>Sep 20</date></pub-dates></dates><isbn>00278424</isbn><accession-num>ISI:000232115100009</accession-
num><urls><related-urls><url>&lt;Go to
ISI&gt;://000232115100009</url></relatedurls></urls><language>English</language></record></Cite></EndNote> (30) .
Figure 2
T h e
0 . 0 1 ”!0 . 1 m M
[ M g 2 + ] - j u m p
e x p e r i m e n t .
( A ) :
T y p i c a l
s i n g l e - m o l e c u l e
t r a j e c t o r y .
T h e
[ M g 2 + ]
p r o f i l e
( s o l i d
s q u a r e
w a v e )
s u p e r i m p o s e d
o n
t h e
F R E T
t r a j e c t o r y
f o r
a
s i n g l e
R N A
m o l e c u l e .
( B ) :
C u m u l a t i v e
E F R E T
h i s t o g r a m s
f o r
f o l d i n g
a n d
u n f o l d i n g .
T h e
h i s t o g r a m s are constructed from all the single-molecule EFRET
trajectories in one field of view (~100 RNA molecules are observed
simultaneously). Insets: Equilibrium EFRET histograms (C): Population
relaxation kinetics of the low (black) and high (gray) EFRET states.
These curves are constructed by sorting all folding and unfolding
trajectory segments according to EFRET state prior to the [Mg2+]-jump,
and calculating the fraction of molecules that occupy this state at each
later time point. The decays are well
approx
0
6
7
>
G
V
W
`
b
d
s
t
w
“
°
¿
À
Á
Õ
ß
â
ë
óèóèÝÒǼ±¦š¦„ÒyÒyÒnbWKW
h?
• h"3[ CJ H* aJ
h?
• hC}( CJ aJ
h?
• hï@š 5 •CJ aJ
h?
• h$ - CJ aJ
h?
• hu<y CJ aJ
h?
• hßL´ CJ aJ
h?
• hô ½ CJ aJ
h?
• h[|ƒ CJ H* aJ
h?
• h[|ƒ CJ aJ
h?
• h%‡ CJ aJ
h?
• h„_M CJ aJ
h?
• hef± CJ aJ
h?
• h
v° CJ aJ
h?
• hø ø CJ aJ
h?
• h)]} CJ aJ
h?
• h)]} 5 •CJ aJ
0
À
Á
Õ
C
ß
Y
Z
î
ï
c
”
¨
Ì
Í
J
K
Û
Þ
ô
ô
Ó
ô
Ó
ô
Ë
é
Ó
Þ
Ó
Ó
$
$
$
$
Ó
Ã
dà
dà
a$
dà
a$
dà
a$
dà
a$
Ó
»
gd«Z·
gdnF´
gd¡^¢
gdG)Ó
gd)]}
dà
ë
N
´
R
¶
"
S
Þ
&
Z
ß
Ó
»
gdWcO
dà
Ø•
-•
·‘
î
ó
'
\
ö
Ó
Ã
gdè ä
þþþ
ø
]
3
h
>
i
A
‹
B
‘
C
’
M
–
õêÞêÓÇÓêÞê¼Þ¼ê¼Þ±¥š„xšxxšx„š„mb
hG)Ó CJ aJ
h?
h¡^¢ CJ aJ
h?
hK ó CJ H* aJ
h?
h¯O¨ CJ aJ
h?
hK ó CJ aJ
h?
h"3[ CJ aJ
h?
h¯O¨ 5 •CJ aJ
h?
h•98 CJ aJ
h?
hde¼ CJ aJ
h?
h˜~
CJ H* aJ
h?
• h˜~
CJ aJ
h?
• h"3[ CJ H* aJ
h?
• hC}( CJ aJ
h?
• h® K CJ aJ $
•
•
•
•
•
•
•
•
•
•
h?
?
@
A
V
W
X
Y
Z
o
w
‰
î
ï
$
D
c
v
“
¨
©
¹
º
¿
ñâñÐâñâñÁ¶®§ §”ˆ}u}ju}^ˆMu
• hé2² CJ OJ QJ ^J aJ
• hÈ~¨ 5 •CJ aJ
h?
• hÃ^( CJ aJ
h?
h?
hËnj
h
h$
hè
•
•
•
CJ aJ
h?
Ö CJ aJ
h?
- 5 •CJ aJ
h?
ä 5 •CJ aJ
•
h?
h˜~
•
•
•
•
h?
hè ä
h?
hè ä 5 • h?
hO3F CJ aJ
h?
h± * CJ aJ mH
sH
•
•
•
# • j
hG)Ó CJ
hG)Ó CJ
hG)Ó CJ
h?
U aJ
U aJ
aJ mH
j
h?
h?
sH
¿
Å
Ë
Ì
Í
Û
!
<
q
s
¢
¦
È
Ì
Ð
Ñ
Õ
Ö
Ø
Ù
ã
ä
ê
ë
ô
!
I
J
K
õíßη« ·•‰•‰•‰•‰•‰•‰•‰•~r~rg_T
• hËnj CJ aJ
h?
h$ - CJ aJ
h?
h¬$8 CJ aJ
h?
h +¨ CJ H* aJ
h?
h +¨ CJ aJ
h?
h F@ CJ H* aJ
h?
h F@ CJ aJ
h?
hÏ>> CJ aJ
h?
håtÕ 6 •CJ aJ
h?
håtÕ CJ aJ
h?
håtÕ 5 •CJ aJ
hËnj
CJ OJ QJ ^J aJ
•
•
•
•
•
•
•
•
•
hËnj CJ
OJ
QJ
^J
aJ
h$ -
hËnj CJ aJ
hé2² CJ aJ
T
’
²
Ñ
Ò
Ú
Û
ä
•
h?
K
!
#
;
A
M
W
b
c
g
v
‚
óèÝèÕǼ±¦››„››¦±ynycXMX
hef± CJ aJ
h?
hZ 2 CJ aJ
h?
h YÌ CJ aJ
h?
h¹;M CJ aJ
h?
hÆ!- CJ aJ
h?
hé
CJ aJ
h?
• h5x¨ CJ H* aJ
h?
• h5x¨ CJ aJ
h?
• hØd
CJ aJ
h?
• hF
CJ aJ
h?
• h«o CJ aJ
h?
• hÑ<ˆ 5 •>* CJ aJ
h?
• h»X‡ 5 • h?
• h"l• CJ aJ
h?
• h$ - CJ aJ
h?
• h$ - 5 •CJ aJ
‚
•
•
•
•
•
•
h?
‘
•
—
•
Ÿ
¥
§
°
±
É
Õ
ä
ï
ð
ù
D
U
hG 4 6 •CJ aJ
hG 4 CJ aJ
hú(. CJ aJ
hp › CJ aJ
hTyÀ CJ H* aJ
hTyÀ CJ aJ
h§pî CJ aJ
h5x¨ CJ aJ
h2Ez CJ aJ
hØd
CJ aJ
h?
• h¹;M CJ aJ
• hÃ4M CJ aJ
• h‡ 7 CJ aJ
• h UG CJ aJ
• hZ 2 CJ H* aJ
• hZ 2 CJ aJ
• hu T CJ aJ
q
û
#
%
4
H
N
h
h?
• h-Xµ CJ aJ
• h•gj CJ aJ
• h®!í CJ H* aJ
• h®!í CJ aJ
• h¯Lu CJ aJ
• h%iH CJ aJ
• hé
CJ aJ
h?
• h2Ez CJ H* aJ
• h2Ez CJ aJ
• h•
•
•
•
•
•
•
•
•
•
•
p
q
õêÞÓȽ²½²§½§œ½‘†½{od½YNBY
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
s
,
x
h?
h?
h?
h?
h?
h?
h?
h?
w
.
ˆ
€
N
Œ
Ÿ
p
’
£
¤
§
«
ÿ
4
6
“
ù
t
|
õêßêÔÉê¾ê³§³œ³‘†{o{†{‘†‘†‘{d‘{‘d{Y
Š CJ aJ
• hX47 CJ
• hÙ7Ÿ CJ
• h
h?
aJ
aJ
h?
h?
hÀ CJ aJ
h?
• hù4| CJ aJ
h?
• hÃ4M CJ aJ "’
¾
Æ
Ú
ö
,
:
>
Z
^
b
f
¾
È
Ú
*
6
Ÿ
¡
°
õêõßÔÉÔÉÔõ¾²§ÔõÔõœ‘†{peZOD
h?
• h Vp CJ aJ
h?
• hÝ(c CJ aJ
h?
• h
XÙ CJ aJ
h?
• hé
CJ aJ
h?
• hU Ð CJ aJ
h?
• h'l¡ CJ aJ
h?
• hê)B CJ aJ
h?
• h„ Ï CJ aJ
h?
• h<=< CJ aJ
h?
• hQ)² CJ aJ
h?
• hsaì CJ H* aJ
h?
• hsaì CJ aJ
h?
• h½|Â CJ aJ
h?
• h®!í CJ aJ
h?
• hÓ- CJ aJ
h?
• hI ¯ CJ aJ
h?
• h¦`8 CJ aJ
°
Æ
Ý
í
ï
ð
ö
þ
!
<
B
C
G
J
U
k
u
v
y
ƒ
Ž
•
·
Ê
Ó
Ö
Ø
ã
m
}
õêõêõßêßÔÉ߾߾߳ßꨏ’‡|¾|p|êeZeêê
h?
• hU Ð CJ aJ
h?
• hês^ CJ aJ
h?
• hÉ § CJ H* aJ
h?
• hÉ § CJ aJ
h?
• hx\@ CJ aJ
h?
• hÙ4„ CJ aJ
h?
• h2Ez CJ aJ
h?
• h‚~ CJ aJ
h?
• hœdø CJ aJ
h?
• hé
CJ aJ
h?
• h© ‚ CJ aJ
h?
• h Vp CJ aJ
h?
• hV~4 CJ aJ
h?
• hÄA€ CJ aJ
h?
• hÝ(c CJ aJ #}
ˆ
’
¤
´
À
Ï
Û
Ü
Ý
ö
ø
»
½
Ð
Ñ
Ý
Þ
ó
ï
ð
ó
ô
õêßÔßÔßêɾ²¾²¾§™§Žƒxƒm^S^H^
h?
• hC R CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• hC R CJ U aJ
h?
• h%. CJ aJ
h?
• h87 CJ aJ
h?
• hLfa CJ aJ
h?
• hü^z CJ aJ
h?
• hï0] 5 •>* CJ aJ
h?
•
•
h/WL
h±7
CJ H*
• h±7
CJ aJ
• h§pî
• h2Ez
• hÄA€
• h¤:r
• hV~4
CJ
aJ
aJ
h?
CJ
CJ
CJ
CJ
CJ
h?
h?
aJ
aJ
aJ
aJ
aJ
h?
h?
h?
h?
ô
÷
û
ý
þ
*
+
0
6
>
@
M
Y
Z
±
Î
ßÔqf[f[ßLAL
h?
• hŒm6 CJ aJ
j
h?
• hØ Â CJ U aJ
h?
• hØ Â CJ aJ
h?
• hY ( CJ aJ
h?
• hÆf CJ aJ
h?
• h(DÅ CJ aJ
h?
• h“~9 CJ aJ
h?
• h] ² CJ aJ
h?
• hé
CJ aJ
h?
• hsR¡ CJ aJ
h?
• h$Qá CJ aJ
h?
• h¶ ¨ CJ aJ
h?
• hÑ4 CJ aJ
h?
• h_
CJ aJ
h?
• hÜ8^ CJ aJ
h?
• h O# CJ aJ
h?
• h·i„ CJ aJ
Ç" Ê" Ë" Í" à" â" ñ"
#
Ï
#
Æ"
Ç"
õêßÔɾ³¨’¨‡|
#
#
•
•
•
•
#
#
# $# J# h# ƒ# •# ›# ¤# µ# ¾# ¿# À#
õæÛÐĹйй®£®Û®˜Û®®Û®‚shsõs®]£R h?
h û CJ aJ
h?
h¸W1 CJ aJ
h?
hŒm6 CJ aJ
j
h?
h{
‡0
ˆ0
Ž0
•0
•0
‘0
•0
¯0
Y CJ U aJ
h?
• h¶R” CJ aJ
• hŸ"Í CJ aJ
• hÕ•© CJ aJ
• hÜ8^ CJ aJ
• h“~9 CJ aJ
• h¶ ¨ CJ aJ
• h•Y¦ CJ H* aJ
• h•Y¦ CJ aJ
• h)L CJ aJ
• hØ Â CJ U aJ
• h¤S¢ CJ aJ
¯0 Ñ0 ï0 þ0 ÿ0
1 §1 ®1 ¯1
2
³¨³¾³¾³ ˜ ‰~‰s‰¾h]
• hæ3N CJ aJ
• h••— CJ aJ
• hy „ CJ aJ
• hŒm6 CJ aJ
• hy „ CJ U aJ
h?
h?
h?
h?
h?
h?
h?
h?
j
h?
h?
1
2
h?
h?
h?
j
+1 /1 L1 M1 f1 p1 q1 r1 |1 }1 ~1 •1 ž
52 62 ÙP ÚP àP áP ãP çP þP õêßÔßõßõÉê¾³¾¨
h?
h?
hqT
CJ
aJ
h3h< CJ aJ
h?
h2`z CJ aJ
h?
h-[{ CJ aJ
h?
h0’ CJ aJ
h?
hF6 CJ aJ
h?
hÞ%s CJ aJ
h?
h û CJ aJ
h?
h•J- CJ aJ
h?
h•Y¦ CJ aJ
Þ
M1 NS
ƒ´ rÄ ½Ê ¾Ê ÓÊ öÏ ´Ñ µÑ
Ò È× ºô »ô
õ iú ï
ï
ß
ß
ï
ï
ï
×
Ë
Ë
Ë
Ã
·
«
«
£
—
„Ð dà
`„Ð gdY2
dà
gdY2
„Ð dà
`„Ð gdµ
F
„Ð dà
`„Ð gdÛ7k
dà
gd3;Ò
„Ð dà
`„Ð gdµ+¼
dà
gd«Z·
„Ð dà
7$ 8$ H$ `„Ð gd '
„Ð dà
7$ 8$ H$ `„Ð gd«Z·
þP ÿP
Q
Q ,Q 5Q 6Q 8Q HQ MQ QQ
VQ xQ ÍQ ÓQ ÝQ ÞQ ïQ ñQ òQ öQ
R 3R 6R 7R CR PR `R aR bR gR wR õêßÔêÔßɾ³ê¨ê’‡¾’¾|¾q¾f[PÔ
’
h?
• h 7§ CJ aJ
h?
• hp CJ aJ
h?
• hIe_ CJ aJ
h?
• hÆxð CJ aJ
h?
• h•J- CJ aJ
h?
• hÞ-• CJ aJ
h?
• hX: CJ aJ
h?
• hqo) CJ aJ
h?
• h2Ez CJ aJ
h?
• h
~H CJ aJ
h?
• h·i„ CJ aJ
h?
• hŸ@& CJ aJ
h?
• h¶ J CJ aJ
h?
• h••— CJ aJ
h?
• hæ3N CJ aJ
h?
• hÜ8^ CJ aJ wR ~R ‰R •R ¡R ¨R ©R µR ÁR ÄR ÙR
S
S
•
•
•
•
•
•
•
•
y
S
S
S
S
S
S !S "S 'S /S 3S GS LS MS NS WS dS iS õê
ßÔßÉÔÉß¾³¨¾¾¨¨’‡’³ß|qf[P
h?
• hz • CJ aJ
h?
• h°
CJ aJ
h?
• hÉ4Á CJ aJ
h?
• h0’ CJ aJ
h?
• hþ
CJ aJ
h?
• hqo) CJ aJ
h?
• h <À CJ aJ
h?
• h«'8 CJ aJ
h?
• hp CJ aJ
h?
• h·i„ CJ aJ
h?
• híz: CJ aJ
h?
• hca CJ aJ
h?
• h¶ J CJ aJ
h?
• h¯Lu CJ aJ
h?
• hB, CJ aJ
h?
• h+P| CJ aJ -iS jS wS •S ®S ¸S »S ÇS ÎS ÏS ÐS ¦s §s ®s
¯s ±s µs õs ös
t
t t
t !t ?t @t At Gt Vt Yt õêßÔêɾê߯¤¯™¯ŽƒxêxmbWmLWLbxê
h?
• h{E CJ aJ
h?
• hx3Ó CJ aJ
h?
• hè]^ CJ aJ
h?
• hÊ Œ CJ aJ
h?
• hç{ CJ aJ
h?
• hz • CJ aJ
h?
• hpE• CJ aJ
h?
• hi@• CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• h|U8 CJ U aJ
h?
• h%ut CJ aJ
h?
• hbRE CJ aJ
h?
• hÉ4Á CJ aJ
h?
• h¶ J CJ aJ
h?
• hãX¨ CJ aJ
h?
• htY› CJ aJ
Yt vt wt xt yt £x ¤x ¨x ©x «x µx Óx Øx åx
æx üx ýx -y
y qy •y ±y ½y Øy ày ãy äy åy
›
› ›
› "› õêßÐÅкÐõ¯¤¯™Ž¤ŽƒxƒmƒmƒbƒßSÅSºSƒ
j
h?
• hÙ{" CJ U aJ
h?
• h“Aá CJ aJ
h?
• h ' CJ aJ
h?
• h’+¶ CJ aJ
h?
• hæ3N CJ aJ
h?
• h2Ez CJ aJ
h?
• h|U8 CJ aJ
h?
• hz • CJ aJ
h?
• h_ Ÿ CJ aJ
h?
• hi@• CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• hžeŽ CJ U aJ
h?
• hþ
CJ aJ
h?
•
•
›
h{E CJ aJ
h?
hç{ CJ aJ
"› 5› 7› J› W› X› ]› c› €›
m´ y´ õêßÔõɾ³¨’ƒxƒmƒbWLAÔ
• h `È CJ aJ
h?
• h®x
ƒ›
„›
…›
2´
3´
>´
h?
?´
S´
Z´
k´
CJ aJ
h?
h3tÍ CJ aJ
h?
h¯Lu CJ aJ
h?
h`h CJ aJ
h?
hŒm6 CJ aJ
j
h?
hÖF‰ CJ U aJ
h?
hþ
CJ aJ
h?
• h¹b CJ aJ
h?
• h™;ß CJ aJ
h?
• hwm• CJ aJ
h?
• h§-c CJ aJ
h?
• hé"> CJ aJ
h?
• h|U8 CJ aJ
h?
• hXoÒ CJ aJ
h?
• h ' CJ aJ
h?
• h{E CJ aJ
y´ ‚´ ƒ´ ‡´ Œ´
´ δ Ï´ д Þ´ à´ ó´ õ´ ÷´ ý´ þ
´
µ
µ µ
µ
µ -µ µ 'µ 2µ õêßÔɾ³¾É§É§ÉœÉ‘†‘{peZOD
h?
• hÓe
CJ aJ
h?
• híz: CJ aJ
h?
• h[Zê CJ aJ
h?
• hË7õ CJ aJ
h?
• h# Ï CJ aJ
h?
• h:
í CJ aJ
h?
• h}jc CJ aJ
h?
• hfd_ CJ aJ
h?
• h§ Ô CJ aJ
h?
• hAN& CJ H* aJ
h?
• hú<t CJ aJ
h?
• hýa[ CJ aJ
h?
• hAN& CJ aJ
h?
• hrG™ CJ aJ
h?
• hÖYu CJ aJ
h?
• hz • CJ aJ
h?
• hd ¢ CJ aJ
2µ 9µ Lµ lµ sµ •µ ƒµ „µ :¾ ;¾ B¾ C¾ D¾ _¾
c¾ k¾ m¾ p¾ •¾ •¾ ‘¾ ¬¾ ¶¾ ¸¾ ¹¾ õêßÔßɺ¯º¤º™ÉŽêƒxmbWxL@L
h?
• hÁ~C CJ H* aJ
h?
• hÁ~C CJ aJ
h?
• hû
CJ aJ
h?
• h c CJ aJ
h?
• hT3â CJ aJ
h?
• h¦S• CJ aJ
h?
• h¤z CJ aJ
h?
• híz: CJ aJ
h?
• h¹Nä CJ aJ
h?
• h`h CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• h
"^ CJ U aJ
h?
•
•
•
•
•
•
•
•
•
•
•
¿
•
•
•
•
•
•
•
•
•
•
í
•
•
•
•
•
•
Ã
Ã
•
•
•
•
•
•
•
•
•
•
•
•
Q
•
•
•
Ä
•
•
•
•
+
•
•
•
•
h# Ï CJ aJ
h?
hrG™ CJ aJ
h?
hÅ% CJ aJ
h?
h[Zê CJ aJ
h?
h—&Ú CJ aJ
¹¾ º¾ ¾¾ Ǿ ʾ ì¾ ø¾ ü¾
¿ #¿ %¿ '¿ 2¿ [¿ \¿ ]¿ f g k l n oÂ
• õêßÔɾÔ߳߳¨¾’ƒxƒmƒbW¾WKõ
h?
hûFP CJ H* aJ
h?
hûFP CJ aJ
h?
hV ž CJ aJ
h?
hi@• CJ aJ
h?
hŒm6 CJ aJ
j
h?
hi@• CJ U aJ
h?
h†v- CJ aJ
h?
hQI• CJ aJ
h?
hfd_ CJ aJ
h?
h:
CJ aJ
h?
h¦S• CJ aJ
h?
h•J- CJ aJ
h?
h >g CJ aJ
h?
hÁ~C CJ aJ
h?
h´hJ CJ aJ
h?
h UG CJ aJ
• • œÂ - ¿Â Ñ Ó å êÂ
Ã
"à 4à 7à 9à ?à Fà Jà Wà gà tà uà và “à ”Ã
Îà Ûà &Ä õêßÔêȽê½ê²ê§œ…§zœ½œoœ½dYœ…zœ½
h¯Hd CJ aJ
h?
h ¦ CJ aJ
h?
h•G CJ aJ
h?
h€0¾ CJ aJ
h?
h UG CJ aJ
h?
hû û CJ H* aJ
h?
hû û CJ aJ
h?
höP¤ CJ aJ
h?
h‡ ¸ CJ aJ
h?
hÀ%— CJ aJ
h?
hûFP CJ H* aJ
h?
hA
CJ aJ
h?
hÄ\¨ CJ aJ
h?
hûFP CJ aJ
h?
hßhì CJ aJ
&Ä 'Ä 1Ä KÄ UÄ oÄ qÄ rÄ •Ä –
™Ä žÄ ¡Ä £Ä ©Ä «Ä ´Ä µÄ »Ä ¼Ä ½Ä ÂÄ ÐÄ ÜÄ
íÄ õêßÔõÉõ¾³¨¨‘†¨{p¨¨e¨‘¨ZO
h?
h} 8 CJ aJ
h?
hth• CJ aJ
h?
h -§ CJ aJ
h?
h+
CJ aJ
h?
hpHj CJ aJ
h?
h UG CJ aJ
h?
hä z CJ H* aJ
h?
h¿8Ò CJ aJ
h?
•Â
…Â
ˆÂ
ŠÂ
˜Ã
œÃ
h?
žÃ
¤Ã
àÄ
âÄ
ãÄ
ìÄ
•
•
•
•
•
•
•
•
Å
hä z CJ aJ
h?
hB È CJ aJ
h?
hÙ$ê CJ aJ
h?
hû û CJ aJ
h?
hÀ%— CJ aJ
h?
hÎCO CJ aJ
h?
h ¦ CJ aJ
h?
hÐ | CJ aJ
íÄ îÄ ïÄ
Å TÅ VÅ ³Å µÅ ÁÅ ÎÅ
ÑÅ
ÓÅ
ÙÅ
ðÅ
òÅ
øÅ
ÿÅ
Æ
Æ
Æ
Æ
Æ
Æ
"Æ &Æ 2Æ 6Æ BÆ RÆ VÆ ZÆ `Æ hÆ jÆ
Æ ÊÆ ÌÆ ÐÆ
Ç
Ç
Ç
õêßÔßÉÔ½Ô²ê¦ê²›Ô››²›²›²›²›Ô››²„›„²„²yn²
h?
• h©? CJ aJ
h?
• híz: CJ aJ
h?
• hD ü CJ aJ
h?
• h:
í CJ H* aJ
h?
• h:
í CJ aJ
h?
• h4-¼ CJ H* aJ
h?
• hh~ä CJ aJ
h?
• hca CJ H* aJ
h?
• hyH¥ CJ aJ
h?
• hca CJ aJ
h?
• hpHj CJ aJ
h?
• h4-¼ CJ aJ
h?
• hð õ CJ aJ ) Ç
Ç <Ç XÇ ^Ç rÇ ÀÇ ÈÇ äÇ üÇ
È
È
È
È
È &È 'È RÈ TÈ }È •È AÉ BÉ DÉ _É „É …É –É —
É ›É •É ¢É £É ¿É ÁÉ óÉ ÿÉ
Ê
Ê
•
•
•
•
•
•
•
•
•
•
•
•
•
•
½Ê
Ê õêõßõêõêõÔÉê¾Ôê³É§É§Éœ‘œ‘†¾†z¾†o‘oœoœod
h?
hè#„ CJ aJ
h?
h„ Ï CJ aJ
h?
h1V¼ CJ H* aJ
h?
h1V¼ CJ aJ
h?
hâtç CJ aJ
h?
hüCq CJ aJ
h?
h¦S• CJ H* aJ
h?
h4-¼ CJ aJ
h?
h1N> CJ aJ
h?
h¦S• CJ aJ
h?
hQ[Ê CJ aJ
h?
h©? CJ aJ
h?
hh~ä CJ aJ
h?
hh!à CJ aJ ' Ê )Ê /Ê 3Ê 4Ê ;Ê <Ê IÊ ]Ê ŠÊ šÊ ¢Ê »Ê ¼Ê
¾Ê ËÊ ÒÊ ÓÊ ûÊ ýÊ
Ì (Ì bÌ
Ì ´Ì õêßÔõÉõԾɾÉÔ³¨šŒ~sgs\sQF
h?
• h bk CJ aJ
h?
• híz: CJ aJ
h?
• h‡k1 CJ aJ
h?
• hµ+¼ CJ H* aJ
h?
• hµ+¼ CJ aJ
h?
• hs2½ 5 •>* CJ aJ
h?
• h
`& 5 •>* CJ aJ
h?
• hå•O 5 •>* CJ aJ
h?
• h4-¼ CJ aJ
h?
• h¯T¥ CJ aJ
h?
• h„ Ï CJ aJ
h?
• hè#„ CJ aJ
h?
• hî ç CJ aJ
h?
• hQ6@ CJ aJ
h?
• hü8˜ CJ aJ
h?
• h1V¼ CJ aJ
´Ì ÌÌ þÌ
Í :Í >Í TÍ lÍ vÍ xÍ „Í ŽÍ ’Í ¦Í
¼Í ¾Í ÀÍ ÞÍ îÍ ôÍ þÍ
Î
Î
]Î
cÎ
’Î
Î
¥Î
«Î
¬Î
·Î
ÈÎ
ÊÎ
ãÎ
èÎ
ñÎ
ûÎ
Ï
Ï
•
•
•
•
•
•
•
•
•
•
•
•
•
•
õêõêÞêÓõÈõ½±½õêõ¦õ›õõ›õ›õ„›õ›õxõ›mbm›
h^ • CJ aJ
h?
h f) CJ aJ
h?
h £ CJ H* aJ
h?
h £ CJ H* aJ
h?
h&QÆ CJ aJ
h?
hÔTú CJ aJ
h?
hÁ Z CJ aJ
h?
h-{— CJ H* aJ
h?
h-{— CJ aJ
h?
hnj CJ aJ
h?
híz: CJ aJ
h?
hgKË CJ H* aJ
h?
hgKË CJ aJ
h?
h £ CJ aJ &
h?
Ï
BÏ FÏ aÏ eÏ }Ï •Ï šÏ žÏ
@Ñ BÑ ´Ñ µÑ ¿Ñ ÎÑ ÕÑ ÜÑ
éõéõéõÞõÖ˿˿˿˿˴¨œ¨‚¨wk`wk`w
• h•-U CJ aJ
h?
• hÛ7k CJ H* aJ
h?
• hÛ7k CJ aJ
h?
• h3;Ò 5 •CJ H* aJ
h?
• h;JË 5 •CJ aJ
h?
• hÊ'Í 5 •CJ aJ
h?
• h3;Ò 5 •CJ aJ
h?
• hÜt CJ aJ
h?
• hY2 CJ H* aJ
h?
• hY2 CJ aJ
èÏ
Ò
ôÏ
Ò
õÏ öÏ ˜Ð šÐ åÐ çÐ
Ñ
Ñ
Ò $Ò RÒ vÒ ~Ò ¨Ò ¬Ò õéõ
h?
h £ CJ aJ
h?
h¦S• CJ aJ
h?
h f) CJ H* aJ
h?
h f) CJ aJ #¬Ò ´Ò ÈÒ ÎÒ
Ó
Ó .Ó 8Ó FÓ ®Ó °Ó ÀÓ
!Ô "Ô +Ô ,Ô -Ô ÐÖ ÑÖ ÔÖ ÕÖ ÛÖ âÖ æÖ üÖ
×
×
•
•
•
Ô
Ô
×
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
×
×
× × !× õêõêßÔÉÔõ¾ê³ê¨ÉꏎƒŽx޳êl³ê³a¨V¨ê
h?
h¸2„ CJ aJ
h?
h}x· CJ aJ
h?
hÛ7k CJ H* aJ
h?
hy „ CJ aJ
h?
hŒm6 CJ aJ
j
h?
h‰a- CJ U aJ
h?
h‰a- CJ aJ
h?
h•-U CJ aJ
h?
hÄQÐ CJ aJ
h?
h|&b CJ aJ
h?
hÊ'Í CJ aJ
h?
hØE; CJ aJ
h?
h«Mª CJ aJ
h?
hÛ7k CJ aJ
h?
hr)7 CJ aJ !!× (× 7× 8× J× K× V× e× ~× ²× Å× Ç× È× É× Ì× Ô× Õ×
0Ø 4Ø :Ø KØ MØ SØ TØ õêßêÔÉõ¾³¾õÉꨏ’‡|¨‡¨p¨‡dYN
h?
• h32v CJ aJ
h?
• h U
CJ aJ
h?
• h¶b³ CJ H* aJ
h?
• h^ • CJ H* aJ
h?
• h|&b CJ aJ
h?
• h¶b³ CJ aJ
h?
• h²
CJ aJ
h?
• hµ
j CJ aJ
h?
• h^ • CJ aJ
h?
• hóuœ CJ aJ
h?
• h@( CJ aJ
h?
• hÄQÐ CJ aJ
h?
• h•-U CJ aJ
h?
• h}x· CJ aJ
h?
• hÛ7k CJ aJ
h?
• h\PM CJ aJ
TØ —
Ø œØ žØ ÌØ ÐØ ÖØ
Ù
Ù
Ù
Ù -Ù )Ù .Ù cÙ eÙ •Ù
”Ù ±Ù ÕÙ âÙ äÙ èÙ ïÙ ñÙ õÙ
Ú
Ú
Ú
Ú vÚ zÚ §Ú -Ú õêõêÞêõÒÇõ¼õ±õ±¦š¦ê¦±¦±¦±„¼Ç¼x¼ÇlÇa
• hóuœ CJ aJ
h?
• h• ß CJ H* aJ
h?
• h$3î CJ H* aJ
h?
• h^ • CJ aJ
h?
• hk(† CJ aJ
h?
• hÁ Z CJ H* aJ
h?
• hÁ Z CJ aJ
h?
• hÑ]ã CJ aJ
h?
• h$3î CJ aJ
h?
• h• ß CJ aJ
h?
• h @¶ CJ H* aJ
h?
• hú î CJ H* aJ
h?
• hú î CJ aJ
h?
• h @¶ CJ aJ $-Ú ±Ú ²Ú ¿Ú ÀÚ ÏÚ ÔÚ çÚ îÚ
Û
î×
Ø
/Ø
ƒÙ
‰Ù
ŠÙ
h?
Û
%Û +Û ?Û KÛ SÛ TÛ UÛ VÛ XÛ ZÛ eÛ fÛ rÛ ˆÛ •Û œÛ •Û ŸÛ
üÛ ýÛ þÛ «ô óèÝÒÝÒÝÇÝèÝǼǼ±¦¼›¼è¼„¦„y„ncTc
j
h?
• höqÇ CJ U aJ
h?
• höqÇ CJ aJ
h?
• hÑ]ã CJ aJ
h?
• hç K CJ aJ
h?
• h\Lf CJ aJ
h?
• h<!… CJ H* aJ
h?
• h<!… CJ aJ
h?
• hœ ƒ CJ aJ
h?
• hú î CJ aJ
h?
• h° § CJ aJ
h?
• hµ F CJ aJ
h?
• h• ß CJ aJ
h?
• h$3î CJ aJ
h?
• hóuœ CJ aJ
h?
• hóuœ CJ H* aJ
«ô ¬ô ·ô ¸ô ¹ô ºô »ô
õ ›õ Ÿõ ºõ ¼õ
ö
ö Sö Uö ¢ö ¤ö ñ
ö õö
÷
÷ !÷ %÷ e÷ f÷
ú
ú
ú
ú
@ú Dú tú vú ‘ú •ú -ú ±ú Úú
·û »û Mü Oü {ü •ü äü æü Fý
»”»¯»£»¯»¯»¯»£»¯»¯»¯»¯»£»¯»£»£»
j
• hY2 CJ U aJ
h?
• hY2 CJ H* aJ
h?
• hY2 CJ H* aJ
h?
• hY2 CJ aJ
h?
• hY2 5 •CJ aJ
h?
• hÄAš CJ aJ
Þú úú üú
û
û Rû Vû xû |û
þ Žþ ðåðåÝÒÆ»¯»£»¯»£»£»¯»£»¯»”»”
h?
h3;Ò CJ aJ
h?
höqÇ CJ aJ
j
höqÇ CJ U aJ
:Žþ
•
•
h?
’þ
ôþ
øþ
¾ÿ
Àÿ
Âÿ
Äÿ
ôÿ
öÿ
$
*
.
0
D
`
b
d
t
ª
°
‰{‰o‰­dYdNCN h?
• hœ(† CJ aJ
h?
• hå_ CJ aJ
h?
• hHzW CJ aJ
h?
• h^]- CJ aJ
h?
• h©fi 5 •CJ aJ
h?
• h7E 5 •CJ H* aJ
h?
• h7E 5 •CJ aJ
h?
• hfE£ 5 •CJ aJ
h?
• h$(y 5 •CJ aJ
h?
• h» j 5 •CJ aJ
h?
• h%%Ó 5 •CJ aJ
h?
• hµ F CJ aJ
hY2
hY2 5 •CJ aJ
h?
• hY2 5 •CJ aJ
h?
• hY2 CJ aJ
h?
• hY2 CJ H* aJ
iú Âÿ Äÿ b
ä
ú
á
}
~
š
!
"
Œ
ˆ& ‰& º& ó
ç
ß
Ç
Ç
Ç
·
¯
£
“
dà
gd<x
Æ
¸
„Ð dà
`„Ð gd¶W
Æ
¸
dà
gd¶W
dà
gd«Z·
dà
gd$_ú
²
º
óèóèÜÐŹ­¡­¹•­
Ó
Ó
¿
Ç
‹
‹
dà
gd
7
„Ð
dà
`„Ð gd•g
„Ð
„Ð
„Ð
dà
dà
dà
`„Ð gd
`„Ð gdµ
`„Ð gdY2
…
F
dà
º
Î
gdgTd
Ò
è
N
`
f
n
Ž
¤
ô
"
4
<
P
p
r
„
Œ
ž
¶
º
Ð
ü
•
•
•
•
•
•
•
•
•
$
>
N
h?
h“We CJ aJ
h l¨ CJ aJ
h) ñ CJ aJ
h … CJ aJ
hG… CJ aJ
hfE£ CJ aJ
hq;I CJ aJ
hÜ t CJ aJ
hÚ{
T
h?
h?
h?
h?
h?
h?
h?
h?
õêßÔɾ²¾§¾œ¾‘œ§¾œ¾†{†p†{eZ†¾Ôeß
•
CJ H* aJ
hÚ{
h?
CJ aJ
h?
h’cÒ CJ aJ
h?
h3/í CJ aJ
h?
hhBú CJ aJ
h?
hHzW CJ aJ
h?
h^]- CJ aJ V
\
^
•
¤
¾
ê
ú
Ð
Ñ
Ò
Ö
×
Ü
÷
‚˜³ß³wlalVÔVÔ
h?
• hØHø CJ aJ
h?
• h ZK CJ aJ
h?
• h. h CJ aJ
h?
• hÑ]ã CJ aJ
h?
• hy „ CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• hû#s CJ U aJ
h?
• h … CJ H* aJ
h?
• h … CJ aJ
h?
• h“We CJ aJ
h?
• hhBú CJ aJ
h?
• hÖ r CJ aJ
h?
• h-OÒ CJ aJ
h?
• hå_ CJ aJ
h?
• håqˆ CJ aJ ä
å
é
õ
;
?
C
D
E
n
o
s
y
z
õéÞÓȽӲ§œ§‘§†{o§½dY§Ó§õéN§
• h•E. CJ aJ
h?
• h†V> CJ aJ
h?
• hš&þ CJ aJ
h?
• h½ è CJ H* aJ
h?
• h {¢ CJ aJ
h?
• hÏ~< CJ aJ
h?
• hðzp CJ aJ
h?
• h)n€ CJ aJ
h?
• hOv. CJ aJ
h?
• hâ`l CJ aJ
h?
• h`C÷ CJ aJ
h?
• h6F¸ CJ aJ
h?
• hò + CJ aJ
h?
• h¹d> CJ aJ
h?
• hÈ)É CJ H* aJ
h?
• hÈ)É CJ aJ
z
ƒ
‰
Ö
ß
à
ç
ô
•
•
•
•
•
T
"
*
õêßêÔÉ꾳ꨏ’‡{êpeêZOCê
• h½ è CJ H* aJ
h?
h?
ü
,
.
e
I
â
P
4
ã
U
<
@
P
R
Ì
Í
õêßÔßɾ߳ɳ߳§³˜˜
ä
b
e
.
j
5
m
·
Á
Ã
h?
•
õ
”
ö
ž
ú
Ÿ
• h {¢ CJ
• hµlw CJ
• hóuœ CJ
• h`C÷ CJ
• h? ¸ CJ
• hÏ~< CJ
• h3s½ CJ
• h? ¸ CJ
• hè
E CJ aJ
• hOv. CJ
• h+#j CJ
• hâ`l CJ
• h-OÒ CJ
• hØHø CJ
• hûi CJ
• hø
aJ
aJ
aJ
aJ
H* aJ
aJ
aJ
aJ
h?
aJ
aJ
aJ
aJ
aJ
aJ
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
¯ CJ aJ
*
+
/
3
7
@
T
z
…
•
‘
™
›
¢
£
¤
¥
©
±
Ä
Æ
Õ
è
õêßÔɾ³¨’‡¨|qf[PE:E
• h&
h?
Ñ CJ aJ
h?
• hŽ Þ CJ aJ
• h.6_ CJ aJ
• hŸ?[ CJ aJ
• hÎo‰ CJ aJ
• hë*K CJ aJ
• hµlw CJ aJ
• hýX• CJ aJ
• hÓW¦ CJ aJ
• h) Å CJ aJ
• h @Ý CJ aJ
• h}2 CJ aJ
• h»• CJ aJ
• hh µ CJ aJ
• h‘ Ï CJ aJ
• h"+× CJ aJ
• h?r› CJ aJ
• h? ¸ CJ aJ
ò
ø
ù
ú
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
è
$
%
.
/
E
I
j
p
v
|
}
‚
†
¦
M
P
]
h
i
q
s
t
õêõßÔÈÔ½Ô²§œ²‘²†{†{†²†²Ô²pÔpeZ
• h‘uD CJ aJ
h?
• hXg CJ aJ
h?
• h
Wn CJ aJ
h?
• hh µ CJ aJ
h?
• hù}· CJ aJ
h?
• h}2 CJ aJ
h?
• h) Å CJ aJ
h?
• hK 9 CJ aJ
h?
• h•g
CJ aJ
h?
• h }- CJ aJ
h?
• h¨ Ð CJ H* aJ
h?
• h¨ Ð CJ aJ
h?
• hËM9 CJ aJ
h?
• hŽ Þ CJ aJ
h?
• h.6_ CJ aJ -t
h?
z
¤
¥
â
ý
à
á
T
h
l
‚
†
Ž
¢
Ì
Ø
.
@
H
J
‚
†
–
š
¶
Ì
Ô
à
î
ú
D
F
ï
õêßêßÓßêȽ²§Èœ
ÈêœÈêœê‘ê…zœoêœoœoœoœÈoÈo
h?
• h'pG CJ aJ
h?
• h]Où CJ aJ
h?
• h•g
CJ H* aJ
h?
• h â CJ aJ
h?
• hC A CJ aJ
h?
• h
Wn CJ aJ
h?
• h$K[ CJ aJ
h?
• h((0 CJ aJ
h?
• h4Qñ CJ aJ
h?
• h¤-Ž CJ H* aJ
h?
• h¤-Ž CJ aJ
h?
• h•g
CJ aJ
h?
• h 8 CJ aJ '
»
¼
¿
À
Â
Ø
Þ
â
ì
ô
.
R
g
i
“
Ù
Ý
í
"
(
I
Q
U
c
m
q
|
~
‰
óèÝÎÃÎÃÎè¸èóèÃè-èÝè¢è¢è—
èÝèÝÃŒÃŒŒÃŒvk
h?
• hûi CJ aJ
h?
• h•g
CJ aJ
h?
• hqjq CJ aJ
h?
• h((0 CJ aJ
h?
• h•*} CJ aJ
h?
• h¤-Ž CJ aJ
h?
• h•"M CJ aJ
h?
• hìq‚ CJ aJ
h?
• h4Qñ CJ aJ
j
h?
• h4Qñ CJ U aJ
h?
• h â CJ aJ
h?
• h'pG CJ aJ
h?
• h'pG CJ H* aJ
'‰
ª
²
µ
¹
¼
¾
Æ
È
Í
Î
í
ï
#
0
3
4
V
^
_
ȃxmƒÓƒbWx
h?
• h š CJ aJ
h?
• h
æ CJ aJ
h?
• h ;ê CJ aJ
h?
• hst
CJ aJ
h?
• hó3 CJ aJ
jÛ
h?
• hó3 EHüÿU
juå•J
h?
• hó3 PJ U V
a
j
k
{
|
õêõêõÞêõêÓêÓȽ²«›Ž²ƒ½Ó
h?
hó3
j
h?
hó3 U
h?
h7M´ CJ aJ
h?
h â CJ aJ
h?
hh µ CJ aJ
h?
h×UO CJ H* aJ
h?
hûi CJ aJ
h?
h×UO CJ aJ
}
~
ˆ
Š
Ž
•
š
•
¥
³
è
<
@
c
e
o
p
¥
§
¾
Þ
ê
ì
Š
Õ
×
!
"
,
õêÞÒÞÄÞ¹®¹®¹¢¹–¹–¹®Š®•¹–¹•¹–¹®Š®Š®¹se
• h Ÿ 5 •>* CJ aJ
h?
• h”c< 5 •CJ aJ
h?
• hj
ê CJ aJ
h?
• h â CJ H* aJ
h?
• hå
•
•
•
•
•
•
•
•
|
I
K
š
œ
h?
M
ê CJ H* aJ
• hå
h?
ê CJ H* aJ
h?
• h â CJ aJ
• hå
h?
ê CJ
• h
aJ
h?
7 5 •CJ H* aJ
• h â 5 •CJ aJ
• h
h?
h?
7 5 •CJ aJ
h?
• h P CJ aJ
h?
• h•g
CJ aJ %,
@
B
r
t
‹
v
w
„
î
M
O
Ø
÷
- •- ‚- ƒ- É% Ê% Í% Î% Ï%
ͳͳͧͳͧͧͳ͜ͳ͔…Í…Í…zÍzÍzÍæn
• h·v= 5 •CJ aJ
h?
• hø]A CJ aJ
j
h?
• h$_ú CJ U aJ
…
Œ
*& Q&
h?
Ž
Ú
Ü
>
B
]
_
ê
x&
•&
ˆ&
‰&
£&
òæØæØæÍ¿Í¿
hY2 CJ aJ
h â CJ aJ
h$_ú CJ H*
h$_ú CJ H*
h$_ú CJ aJ
h$_ú CJ aJ
h$_ú 5 •CJ
h$_ú 5 •CJ
hD|
•
•
•
•
•
•
•
•
h?
h?
aJ
h?
aJ
j àð h?
h?
h?
H* aJ
h?
aJ
h?
5 •>* CJ aJ +£& ¹& º& ½& Ï& Þ& ß&
/
/ !/ "/ #/ +/ 0/ 5
/ >/ Z/ p/ s/ x/ €/ •/ •/ °/ ²/ Á/ Õ/ ú/ ü/ '0 óçÜÑÜ·¬Â
ܡܖÜÑ–Ñ–‹Ñ€‹Ñuj_uT
h?
• hª[ù CJ aJ
h?
• hC'‹ CJ aJ
h?
• h¢C: CJ aJ
h?
• h
EÙ CJ aJ
h?
• h‡{‚ CJ aJ
h?
• håED CJ aJ
h?
• hõv CJ aJ
h?
• h,I CJ aJ
h?
• hñ ž CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• h8pû CJ U aJ
h?
• h<x CJ aJ
h?
• h8pû CJ aJ
h?
• h<x 5 •CJ aJ
h?
• hü;1 5 •CJ aJ
'0 +0 @0 N0 e0 f0 g0
3
3
3
3
3
3 (3 C3 H3 L3 f3 p3
Á3 Ì3 Ï3 Ñ3 Õ3
4 õêßêÔźůÅêÔ¤Ô¤™ß™ß™Žƒ™ƒwƒ™ƒlaUal
• hÜ8V CJ H* aJ
h?
• hÜ8V CJ aJ
h?
• h>A CJ aJ
h?
• hhF4 CJ H* aJ
h?
• hhF4 CJ aJ
h?
• hª[ù CJ aJ
h?
• hž„ CJ aJ
h?
• h‰/ä CJ aJ
h?
• h‹
CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• h‹
CJ U aJ
h?
• h%rR CJ aJ
h?
• h>i} CJ aJ
h?
• h
EÙ CJ aJ
h?
• h‘ ) CJ aJ !
4
v3
h?
•3
Š3
¤3
¯3
´3
¸3
¹3
¿3
4
4
4
4 44 >4 E4 I4 t4 x4 ¨4 ¬4 â4 æ4 ï4
H5 L5 N5 Q5 z5 ~5 •5 …5 •5 Ÿ5 £5 É5 ê5 ë5
J6 õéõÞõÓõéõéõéõéõȽȽ²Ó¦Ó²š²Ó²š²Ó²„Ó„yn
• hw#Ú CJ aJ
h?
• h<x CJ aJ
h?
• h¼
CJ aJ
h?
• hM,I CJ aJ
• h kÞ CJ H*
• hÜ8V CJ H*
• h kÞ CJ aJ
• h˜m CJ aJ
• hû<- CJ aJ
• hÜ8V CJ aJ
• h>A CJ aJ
• h´%ó CJ H*
• h´%ó CJ aJ
×6 Ú6 Ý6 æ6
7 p7 t7 Â7
• hÑE` CJ H*
• hÑE` CJ H*
• hÑE` CJ aJ
• h¼
•
•
•
•
•
•
•
•
•
•
•
•
CJ aJ
hÔb²
h˜m
hAL•
h„9Y
hî~®
h<x
hÒi„
hû Ÿ
hÄO‰
h<x
hw#Ú
h qæ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
ð4 )5 <5 >5
6 .6 26 A6
h?
h?
aJ
aJ
h?
h?
h?
h?
h?
h?
h?
aJ
h?
&J6 O6 U6 V6 [6 ]6 ^6 j6 |6 }6 ‹6 ·6 »6
ì6 ñ6 ÷6
7
7 Ä7 í7 ñ7
8 õêßÔßÉ߾ɾ߲§œ‘†ß{†{ßpßeYeMeYe h?
aJ
h?
aJ
h?
h?
h?
aJ
h?
aJ
h?
aJ
h?
aJ
h?
aJ
h?
H* aJ
h?
aJ
h?
aJ
h?
aJ
h?
aJ
h?
aJ
h?
aJ -º& ]6
n8
o8
¸8
É^
9u
s~
t~
Š~
Ó6
…
…
g…
«‘
Ÿ
„Ð
¬‘
»
¸‘
ó
ç
»
Ÿ
dà
dà
`„Ð gdø
“
gd«Z·
Û
Û
Ó
³
Ç
Ç
§
‹
„Ð
„Ð
„Ð
„Ð
dà
dà
dà
dà
dà
gd‡-¬
`„Ð gdÍ ÷
`„Ð gdz*
`„Ð gdõ><
`„Ð gd@
dà
gdq5E
dà
gdõ><
Ù
„Ð dà
`„Ð gd®r„Ð dà
`„Ð gd<x
8
8 &8 28 38 =8 L8 Y8 \8 `8 k8 l8 m
8 n8 o8 z8 ˆ8 Š8 ›8 ·8 ¸8 º8 ¼8 Â8 Ù8 Ý8 å8 õêõßõÔõßêßɾ³¨
œ‚vk_TkIT
h?
• hÛ•? CJ aJ
h?
• hµ Ž CJ aJ
h?
• hlVÙ CJ H* aJ
h?
• hlVÙ CJ aJ
h?
• hðpÆ 5 •CJ aJ
h?
• hõ>< 5 •CJ H* aJ
h?
• hõ>< 5 •CJ aJ
h?
• h•ZÝ 5 •CJ aJ
h?
• hõ>< CJ aJ
h?
• hë Ñ CJ aJ
h?
• h®r- CJ aJ
h?
• h<x CJ aJ
h?
• hÑE` CJ aJ
h?
• h„9Y CJ aJ
h?
• hTq¯ CJ aJ
h?
• hÔb² CJ aJ
å8 æ8 ï8
9
9
9 "9 $9 %9 79 B9 W9 X9 3@
4@ 7@ 8@ :@ Y@ \@ k@ {@ |@ ƒ@ ‹@ “@ õêßÔÉÔß꾳ꤙ¤Ž¤ƒxmbWLAbm
h?
• hû<- CJ aJ
h?
• hî~® CJ aJ
h?
• h¼
CJ aJ
h?
• hÌ&Û CJ aJ
• híoú CJ aJ
• h tÇ CJ aJ
• hlVÙ CJ aJ
• h¤S¢ CJ aJ
• hŒm6 CJ aJ
• h<~û CJ U aJ
• hÛ•? CJ aJ
• h 6* CJ aJ
• hD 9 CJ aJ
• hqbÖ CJ aJ
• hµ Ž CJ aJ
• hÛn• CJ aJ
• hˆu CJ aJ
“@
A
A 8A AA BA WA
o›d…o…UJU
• hŒm6 CJ aJ
• hÐ
h?
h?
h?
h?
h?
j
h?
h?
h?
h?
h?
h?
h?
h?
•@
—@
XA eA fA
h?
j
h?
@
§@
lA
¨@
mA
¯@
˜A
º@
™A
Ê@
VO
Ï@
WO
Û@
ô@
õ@
óèÝÒǼ輱¦±¦›…zod
t CJ U
• hS o
• hÅ@¢
• hµ Ž
• h @–
• hé•É
• hF<¿
• h<~û
• híoú
• hð3.
• hl\õ
• hc˜
• hÔb²
• hqbÖ
• híoú
Y] ¡]
aJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
CJ
¥]
h?
aJ
aJ
aJ
aJ
aJ
aJ
aJ
aJ
aJ
aJ
aJ
aJ
aJ
H* aJ
©] Â]
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
h?
WO ^O _O aO ‰O ŠO ¦U §U «U
Ã] É] Ó] ì] î] ð] ö] ø] ý]
-U
^
S]
T]
X]
^
•
•
•
•
•
•
#^ •^ £^ Æ^
h?
hz* CJ aJ
hõ>< CJ aJ
hÄO‰ CJ aJ
hÝ01 CJ aJ
hžBA CJ aJ
hl
Ç^
h?
h?
h?
h?
h?
È^
É^
ú^
õæÛÐÁÐÁÐÁÐÁÐÁж« • « « Š Š • •ŠŠti^
‰ CJ aJ
• hA˜ CJ
• h¬ra CJ
• h&`ì CJ
• hÕ;7 CJ
• hÕ;7 CJ
• h¯ 4 CJ
• hÐ
h?
aJ
aJ
aJ
U aJ
aJ
aJ
h?
h?
j
h?
h?
h?
j
h?
t CJ U aJ
h?
• hñ ž CJ aJ $ú^ !_ ˆ_ ‰_ Ö_ ×_ «f ¬f °f ±f âf ãf çf éf
ûf üf Êk Ëk Ïk Ðk ýk
l œl •l qs rs vs ws ‰s ‹s õs ÷s 1
t Ct [t _t ~t •t ›t •t Ÿt ¡t Ñt 8u ru tu Úu Ûu ¯| °| ´|
µ| G} I} ”} –} ó} õ} s~ õêßêÐêÐêÐêÅê¹êÐêÐêÐê®êÐêÐêÐê¹ê¹ê£ê—
ê£ê£ê£ê£ê¹êÐêÐêÐê¹ê¹ê¹ê
h?
• hz* CJ H* aJ
h?
• hÕ;7 CJ aJ
h?
• hL € CJ aJ
h?
• hz* CJ H* aJ
h?
• hŒMÃ CJ aJ
j
h?
• hz* CJ U aJ
h?
• hû Ÿ CJ aJ
h?
• hz* CJ aJ
h?
• hJvÔ CJ aJ :s~ t~ Š~ ‹~ ž~ ¢~ £~ §~ ¸~ Û~ ò~ ÷~
•
•
• #• +• 6• >• A• J• w• y• •• €• –
•
€ õéÞÓÈÓ¼Ó±¦›¦Ó¼Ó…zoÓÞcÞXÞM
h?
• hŽk® CJ aJ
h?
• h J CJ aJ
h?
• hŒ<M CJ H* aJ
h?
• h &¬ CJ aJ
h?
• h #Q CJ aJ
h?
• hZ } CJ aJ
h?
• hÅ & CJ aJ
h?
• hìS» CJ aJ
h?
• hÍhJ CJ aJ
h?
• h•_É CJ aJ
h?
• h ì CJ H* aJ
h?
• h"^ê CJ aJ
h?
• h ì CJ aJ
h?
• hŒ<M CJ aJ
h?
• hq5E 5 •CJ aJ
h?
• h@
Ù CJ aJ
€
€
€ '€ .€ 1€ C€ ^€ s€ €
—€ ±€ ²€ µ€ º€ ¿€ Á€ Ë€ Ò€ è€ ï€ ð€
• õêßÔɾê¾Ô¾³¨‘†{ߨßpeÔe¨eßZߨR
€€ ‚€
• •
ƒ€
†€
ˆ€
•€
h½ Ÿ CJ aJ
h?
h91v CJ aJ
h?
hüTW CJ aJ
h?
hm•= CJ aJ
h?
hJ m CJ aJ
h?
hŒ<M CJ aJ
h?
hÈUÐ CJ H* aJ
h?
hÈUÐ CJ aJ
h?
hœ} CJ aJ
h?
hw E CJ aJ
h?
hŽk® CJ aJ
h?
hc0á CJ aJ
h?
h
CJ aJ
h?
• h‘)n CJ aJ
h?
• hñ Å CJ aJ
h?
• h Sf CJ aJ - • )• i• j• n• z• Š• ‹• Œ•
• °• ²• ¸• ¹•
º• ä• å• æ• ë• ó• D‚ F‚ `‚ b‚ f‚ h‚ ~‚ Ž‚ ¸‚ º‚ È‚ õêõÞê
Óêõêȼ±ê¦›…z…›o›dYdN›Y›Y
h?
• h”gœ CJ aJ
h?
• h91v CJ aJ
h?
• h : CJ aJ
h?
• hn*/ CJ aJ
h?
• hŒ $ CJ aJ
h?
• hìF CJ aJ
h?
• h¸V‘ CJ aJ
h?
• hÍ ÷ CJ aJ
h?
• hìS» CJ aJ
h?
• h UG CJ aJ
h?
• hÈUÐ CJ H* aJ
h?
• hÈUÐ CJ aJ
h?
• hm•= CJ aJ
h?
• h{Zß CJ H* aJ
h?
• h
; CJ aJ
h?
• h{Zß CJ aJ -È‚ Ò‚ ð‚ ò‚ ô‚ ü‚
ƒ \ƒ dƒ lƒ Žƒ –
ƒ ¼ƒ ă ƃ ΃ ܃ ìƒ îƒ úƒ üƒ
„
„
„
„ -„ :„ ;„ @„ K„
R„ S„ Y„ Z„ d„ |„ õêõêßÔßɽɲɧɽɲœÉ‘§‘§Éœ²†{†‘ÉpÉeÉ
h?
• hm•= CJ aJ
h?
• h"Rþ CJ aJ
h?
• hÇ3@ CJ aJ
h?
• h (‡ CJ aJ
h?
• hü
H CJ aJ
h?
• hT\ CJ aJ
h?
• hútŽ CJ aJ
h?
• h?S½ CJ aJ
h?
• h
+x CJ H* aJ
h?
• h
+x CJ aJ
h?
• hn*/ CJ aJ
h?
• h¢P CJ aJ
h?
•
•
•
•
•
•
•
•
•
•
•
•
•
•
…
…
hš8+ CJ
hÍ ÷ CJ
aJ
aJ
h?
#|„ •„
‚„
ƒ„
•„
•„
°„
´„
Ä
æ„
…
… g… v… ‚… ß… á… %† '† À†
õßÔɽɲɧœ‘…zozozczXzczXzMXM h?
• h+j CJ aJ
h?
• h wÎ CJ aJ
h?
• hø
ц
‡
‡
$‡
2‡
E‡
N‡
i‡
t‡
õê
•
•
CJ H* aJ
hÕ;7 CJ
hø
h?
aJ
h?
CJ aJ
h?
• h‡-¬ 5 •CJ aJ
• hŒMÃ CJ aJ
• hÍ ÷ CJ aJ
• hÀ & CJ aJ
• hm•= CJ aJ
• h
; CJ H* aJ
h?
• h
; CJ aJ
h?
• hüTW CJ aJ
• h • CJ aJ
• hL € CJ aJ
• h
h?
h?
h?
h?
h?
h?
h?
h?
cn CJ aJ -t‡ ‚‡ Ї ܇ Þ‡ å‡ î‡
ˆ
ˆ -ˆ ˆ "ˆ #ˆ +ˆ 4ˆ Jˆ Kˆ Lˆ Uˆ [ˆ ]ˆ jˆ mˆ âˆ
A‰ E‰ S‰ f‰ w‰ |‰ •‰ œ‰ •‰ ž‰ À‰ ݉
Š
‰
%‰
'‰
.‰
4‰
Š
Š
Š
Š $Š |Š ÓŠ èŠ
§õ§õ§õ§È²õ²õ²õ²õ²ÈÈ…
h?
• h-Cw CJ aJ
h?
• h •a CJ aJ
h?
• h¤ ] CJ H* aJ
h?
• h¤ ] CJ aJ
h?
• hœ ~ CJ aJ
h?
• h‰qÈ CJ aJ
h?
• hø
ñŠ
j‹
k‹
õêßÓßêõȽȽȽÈõ½ÈßÈßȽȲ§›§²§õ
CJ aJ
h?
• hçe CJ H* aJ
h?
• hçe CJ aJ
h?
• hs!G CJ aJ
h?
• h wÎ CJ aJ 4k‹ l‹ Ò• Ó• ו
Ñ‘ Ó‘ ï‘ ñ‘ ò‘ ó‘ ø‘ þ‘ ÿ‘
åÚåÏÁ³¨¨’¨†¨{¨’p¨†¨eYeNe
h?
• hûkc CJ aJ
h?
• hU º CJ H* aJ
h?
• hU º CJ aJ
h?
• hPHì CJ aJ
h?
• hDgŸ CJ aJ
h?
• h &` CJ H* aJ
h?
• h-Cw CJ aJ
h?
• hôX• CJ aJ
h?
• h &` CJ aJ
h?
• hGGV 5 •>* CJ aJ
h?
• hë Ñ 5 •>* CJ aJ
h?
• hõ>< CJ aJ
h?
• h •a CJ aJ
h?
• hø
Ø•
’
Ú• ¨‘ «‘ ¬‘ ·‘ ¸‘ »‘ É‘
’ 5’ S’ W’ ~’ ·’ ¹’ ðåðåð
•
CJ aJ
hø
j
h?
CJ
“
U
aJ
-¹’
¼’
Æ’
Þ’
æ’
ð’
“
“
?
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
”
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
“
“
ú“ ü“
&“
”
*“ 3“ :“ ;“ <“ ?“ A“ K“ L“ z“ Õ“ Ú“ è“ é“
” !” "” &” ,” õêßêßÔßɾ³¾§¾Éœ‘ê…ßêœêÉzozÉdÉê‘êX‘
hDgŸ CJ H* aJ
h?
hA ‡ CJ aJ
h?
hQ/Ð CJ aJ
h?
h:Vþ CJ aJ
h?
hDgŸ CJ H* aJ
h?
hÕ
CJ aJ
h?
h/kï CJ aJ
h?
hôX• CJ H* aJ
h?
hu R CJ aJ
h?
hôX• CJ aJ
h?
h¤ O CJ aJ
h?
hM5 CJ aJ
h?
hÈR CJ aJ
h?
hDgŸ CJ aJ
h?
hPHì CJ aJ ",” .” ?” L” M” Q” [” \” ]” a” j” o” }” “” ”” ˜”
ä” å” æ” R• T• }• Š• Õ• Ö• *– V–
õêßÔßɾԾ³ß¨¨’¨ß†ßÔߏzodêY
h?
hô- CJ aJ
h?
hR-9 CJ aJ
h?
h-Cw CJ aJ
h?
hìy¥ CJ H* aJ
h?
h 3ü CJ H* aJ
h?
hn7ô CJ aJ
h?
hìy¥ CJ aJ
h?
h7 € CJ aJ
h?
h+. CJ aJ
h?
hê:: CJ aJ
h?
hÕ
CJ aJ
h?
hÚ ‰ CJ aJ
h?
h 3ü CJ aJ
h?
hQ/Ð CJ aJ
h?
hDgŸ CJ aJ -¸‘ Ö• w• x• Ž• ä• å• ö• XŸ ½Ÿ
‚
Ë
§”
Ó”
ó“
h
×”
¡
V¡
-¡
Ð
/¢
÷¢
«
«
\£
ç
¹£
ó
ç
«
«
ç
È
¸
«
«
«
«
ß
«
«
«
„Ð
„0ý^„Ð `„0ýgdŒm6
„Ð
dà
7$ 8$ H$ `„Ð gd] •
dà
gd«Z·
$ „Ð dh
`„Ð a$ gd-JŸ
dà
gd-JŸ
„Ð dà
`„Ð gd«Z·
„Ð dà
`„Ð gd 3ü
V– W– [– \– |– ‰– ‹– Ž– «– ´– Æ– È–
ö– ø–
—
—
Sœ Tœ Xœ Yœ ]œ vœ zœ {œ •œ ‘œ “œ šœ Äœ Æœ òœ ÷œ øœ õêß
ÔêȽ²§²œ²‘²‚w‚l‚²œaœ²œ²½êÈêVê
h?
• hÁiû CJ aJ
h?
• hÚ ‰ CJ aJ
h?
• hi@• CJ aJ
h?
• hŒm6 CJ aJ
j
h?
• h .Q CJ U aJ
h?
• hU ¢ CJ aJ
h?
• h–M• CJ aJ
h?
• h p4 CJ aJ
h?
• hî/ý CJ aJ
h?
• h§_´ CJ aJ
h?
• hQ/Ð CJ H* aJ
h?
• h¯ õ CJ aJ
h?
• hô- CJ aJ
h?
• hQ/Ð CJ aJ
h?
• hy
· CJ aJ
øœ
• 6• S• e• f• v• w• x• Ž• ˜• ®•
ž
ž
ž +ž Lž Pž õêßÔÉê¾³¥š„š„vk`U`UJ?J
• h·6ª CJ aJ
h?
• heD© CJ aJ
h?
• hlB CJ aJ
h?
• hÆ•g CJ aJ
h?
• h¥eR CJ aJ
h?
• hïsd 5 •>* CJ aJ
h?
• h-JŸ CJ aJ
h?
• h“r“ CJ aJ
h?
• h°z CJ aJ
h?
• h-JŸ 5 •>* CJ aJ
h?
• hïsd CJ aJ
h?
• hU º CJ aJ
h?
• hÁg£ CJ aJ
h?
• hŽ
Ö•
â•
å•
h?
õ•
ö•
ÿ•
_ CJ aJ
• h—Fß CJ
• hQ/Ð CJ
• hóh” CJ
Ÿ
Ÿ
h?
aJ
aJ
aJ
h?
h?
Pž cž
wž
yž
¨ž
»ž
¼ž
½ž
ž
Æž
óž
ôž
üž
Ÿ
Ÿ
•
•
•
•
•
•
•
KŸ LŸ WŸ XŸ YŸ kŸ lŸ
h?
hŒm6 6 •CJ aJ
h?
hŒm6 CJ aJ
j
h?
hÎUq CJ U aJ
h?
hÎUq CJ aJ
h?
hZ ª 5 •>* CJ aJ
h?
h» Ó 5 •>* CJ aJ
h?
hŸY
‚Ÿ
ŸŸ
ØŸ
õêßÔɾ꾳Ծ¨³¾’¨„vk\k\QEQ
CJ aJ
h?
h)Y• CJ aJ
h?
hOKO CJ aJ
h?
hlB CJ aJ
h?
h.a¿ CJ aJ
h?
h L© CJ aJ
h?
ha/˜ CJ aJ
h?
h·6ª CJ aJ
h?
heD© CJ aJ
h?
hûkc CJ aJ
ØŸ ýŸ þŸ
>
t
u
x
›
¾
¿
Á
ð
ü
¡ #¡ H¡ I¡ L¡ €¡ Ÿ¡
¡ £¡
¢ š¢ é¢ ê¢ í¢ û¢ 9£ N£ O£ Q£ Z£ •£ ©£ ª£ -£ þ£
¤
¤
¤ =¤ I¤ J¤ M¤ Œ¤ ¥¤ ¦¤ ¨¤ [¥ ª¥ «¥ ®¥
¦ (¦ )¦ ,¦
P¦ |¦ î¦ =§ >§ B§ ¿§ Þ§ ß§ ã§
¨ >¨ ?¨ B¨ óèÜèóèÜèóèÜèóèÜèó
èÜèóèÜèóèóèÜèÑÅѹÑèóèÜèóèÜèóèÜèóèÜèóèÜèóèÜèóèóèÜèóèÜèóèÜ
h?
• hxar 5 •CJ aJ
h?
• hxar 6 •CJ aJ
h?
• hxar CJ aJ
h?
• hŒm6 5 •CJ aJ
h?
• hŒm6 CJ aJ
h?
• hŒm6 6 •CJ aJ
I¹£
¤ [¤ ´¤ º¥ 8¦ ¢¦ N§ ï§ L¨
•
•
•
•
•
•
•
•
•
ý
¢
©
Á©
Cª
ò
·ª
1«
Ó«
ò
Ÿ¬
Ô-
£®
ò
ò
ò
ò
å
Н
˯
ò
ò
ò
ò
¯
ò
ò
ò
dŒm6
C-
å
ί
ò
ò
ò
̯
Ö¯
ò
.°
ò
ò
ò
ò
ò
dà
ò
í
gd"~2
g
„Ð „0ý^„Ð `„0ýgdŒm6
B¨ ª¨ ù¨ ú¨ þ¨ b© ±© ²© µ©
7ª …ª ©ª ªª -ª ܪ
« t« ë Ä« Ç« @¬ •¬ •¬ “¬
9- ±- Ä- Å- È- A® •® ‘® •® ñ®
¯
+ª 2ª 3ª
- 4- 5-
¯
¯ f¯ }¯ ~¯ •¯ ª¯ »¯ ¼¯ ¿¯ ̯ ͯ ί Ö¯
õÝõéõÝõéõÝõéõéõÝõéõÝõéõÝõéõÝõéõÝõéõÝõéõÝõéõÝõÎõ©ž’
• h"~2 CJ H* aJ
h?
• h"~2 CJ aJ
h?
• h"~2 5 •CJ aJ
h?
• h"~2 5 •>* CJ aJ
h?
• hnNR CJ aJ
j
h?
• hÎUq CJ U aJ
h?
• hŒm6 5 •CJ aJ
h?
• hŒm6 6 •CJ aJ
h?
• hŒm6 CJ aJ 9ã¯
°
° ° 1° 3° O° T° ç° ë° \± ]± d± l± m± u± v±
б ѱ Ó± Õ± -²
² õéÞõÒõéõéõ͍‘Štht]tRFRF
• hU I CJ H* aJ
h?
• hU I CJ aJ
h?
• hŒM› CJ aJ
h?
• hª â CJ H* aJ
h?
• hª â CJ aJ
h?
• h· ³ CJ aJ
ݯ ߯
h?
ã¯
õéõÝõé
ˆ± “±
h?
•±
ʱ
ͱ
•
•
•
•
•
•
•
•
•
•
h?
hU I
hU I
h•?ò
h•O
hU I
h"~2
h"~2
hã0f
h"~2
h"~2
h?
5 •CJ aJ
h?
CJ aJ
h?
5 •>* CJ aJ
h?
5 •>* CJ aJ
h?
5 •>* CJ aJ
h?
CJ H* aJ
h?
CJ aJ
h?
CJ H* aJ
h?
CJ aJ
.° 5° <°
ó
ó
B°
H°
L°
ó
M°
ó
ó
ó
$ $ If
a$ gdÄ M° N° [° 7
$
#
„q „q
s Ö
$ If
]„q ^„q a$ gdÄ - È
Öˆ
kdR
8 p ¨
$
$ If
–
à d œ € 8
8
„
t
à
Ö0
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ Ö
ÿ
s aö s ytÄ [° `° e°
ó
ÿ
ÿ
ÿ
j°
ÿ
ÿÿÿÿÿ Ö
ÿ
ÿ
ÿ
ÿÿÿÿÿ4Ö
o°
w°
ó
8 ÿÿÿÿ
ÿ
ÿ
ÿ
ó
ÿ
ÿ
4Ö
8
ÿÿÿÿ
ÿ
ÿ
ÿ Ö
ó
8
ö
ÿ
ö
ÿ
ö
ÿ
ó
Ö
ÿ
$ $ If
a$ gdÄ w° x° y° z° {° 5
)
)
)
$ $ If
$ $ If
a$ gdÄ - É
–s 4 Ö
kd
Öˆ
8 p ¨
à d œ ì 8
8
8
„
t
à
Ö0
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ Ö
ÿ
ÿ
ÿ
s aö s ytÄ {° €° …° ް •°
É kdÂ
s 4 Ö
ÿ
ÿ Ö
ÿ
ÿ
ó
$
ÿ
ÿ4Ö
8
ÿ
ÿ
ÿ
ÿ
ÿ
4Ö
ó
–
$ If
Öˆ
ÿ
ÿ Ö
ÿ
ó
8 p ¨
8
ö
ÿ
ö
ÿ
)
ö
ÿ
Ö
ÿ
à d œ
8
8
„
t
à
Ö0
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ Ö
ÿ
s aö s ytÄ -
ÿ
ÿ
ÿ
8
8
ÿ
ÿ
ÿ
ÿ Ö
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ4Ö
ÿ
8
ÿ
ÿ
4Ö
ÿ
ÿ
ÿ Ö
ö
ÿ
ö
ÿ
ö
ÿ
Ö
ÿ
°
$ $ If
›° ¥° ó
ó
a$ gdÄ -
•°
ó
•°
‘°
’°
ó
—
ó
ó
$ $ If
a$ gdÄ ¥° ¦° §° «° °° 5
)
)
)
s
$
4
$ If
Ö
a$ gdÄ -
É
kdn
$
Öˆ
$ If
8 p ¨
–
à d œ
8
8
8
„
t
Ö0
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ Ö
ÿ
ÿ
ÿ
s aö s ytÄ °° ´° ¹° ° ð
É kd
s 4 Ö
8
ÿ
à
ÿ Ö
ÿ
ÿ
ó
$
ÿ
ÿ
ÿ
ÿ4Ö
ÿ
8
ÿ
ÿ
4Ö
ó
–
$ If
Öˆ
ÿ
ÿ Ö
ÿ
ó
8 p ¨
ö
ÿ
ö
ÿ
)
ö
ÿ
Ö
ÿ
à d œ
8
8
„
t
à
Ö0
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ Ö
ÿ
s aö s ytÄ -
ÿ
ÿ
ÿ
8
8
ÿ
ÿ
ÿ
ÿ Ö
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ4Ö
ÿ
8
ÿ
ÿ
4Ö
ÿ
ÿ
ÿ Ö
ö
ÿ
ö
ÿ
ö
ÿ
Ö
ÿ
$ $ If
a$ gdÄ Ã° İ m± Ò¿ Ó¿ Nu Ou
}
} ì• í• Ø• Ü• Þ• â• ä• è• ê•
î• ð•
•
• -• • ÷
ï
ç
ß
ß
×
×
Ò
÷
÷
÷
Ð
Ð
Ð
Ð
Ð
Ð
Ð
Ð
È
Ð
Ð
Ð
$ a$ gd!+Á
gd¸/û
dà
gd€Z—
dà
gdU I
dà
gd×$²
dà
gdnNR
dà
gd"~2
² "² +² 5² 8² 9² ¡² £² -³ ³
³ "³ (³ A³ V³ X³ Y³ l³ •³ ™³ ¡³ º³ ʳ γ Þ³ â³
´
´ -´
±´ Ï´ ø´
µ =µ Gµ Hµ Oµ bµ õíõíâõÖõËÀ˵ªµžµ“µ‡|qµ‡µ‡µžµ‡µfµfµf
µf
h?
• hóEF CJ aJ
h?
• h SÜ CJ aJ
h?
• hVnÑ CJ aJ
h?
• h×$² CJ H* aJ
h?
• h8BÚ CJ aJ
h?
• h×$² CJ H* aJ
h?
• h
7Ó CJ aJ
h?
• h×$² CJ aJ
h?
• hi~Å CJ aJ
h?
• h;*Ñ CJ aJ
h?
• hU I CJ H* aJ
h?
• h$_ú CJ aJ
hÄAš CJ aJ
h?
hU I CJ aJ %bµ fµ tµ •µ ”µ šµ œµ ϵ Þµ áµ åµ
¶
¶ /¶ 1¶ 7¶ J¶ Ÿ¶ ¯¶ ƶ
·
· ;· <· Y· Z· Œ· •· Ê¿ Ë¿ Ï¿ п Ñ¿ Ò¿ Ó¿ õêßÔßÈ߽߱߱ßȦ›ß•
ß…ßzozoz`z`z`zßY
•
h?
h×$²
j
h?
h—3= CJ U aJ
h?
h8BÚ CJ aJ
h?
h—3= CJ aJ
h?
hKu² CJ aJ
h?
hÁIª CJ aJ
h?
hyWÖ CJ aJ
h?
h UG CJ aJ
h?
h×$² CJ H* aJ
h?
h 7& CJ aJ
h?
h×$² CJ H* aJ
h?
h$_ú CJ aJ
h?
h×$² CJ aJ
h?
hóEF CJ aJ
h?
h^ Û CJ aJ "Ó¿ Û¿
À $À (À ®À ²À ŽÁ –
àÁ / 3 • œÂ • ¡Â Ñ ó õ ù ÿÂ
à "à Xà fà jà •Ã
ƒÃ ‰Ã äÃ
Ä
t 1t 3t ?t Ft Gt Pt Ut Yt pt tt zt {t ~t
„t Št Žt ¥t ©t ²t ùt óèÝÑÝÑÝźÝÅݺÝÅݯÝÅݯݤÝÅÝÑݤݢÝÑ—
ݺŒÝŒÝÅÝŒºŒÝŒÝźÝ
h?
• hrqš CJ aJ
h?
• hþlƒ CJ aJ
U
h?
• h 2l CJ aJ
h?
• hyXÐ CJ aJ
h?
• hÊMn CJ aJ
h?
• h • CJ H* aJ
h?
• h • CJ H* aJ
h?
• h • CJ aJ
h?
• hŒM› CJ aJ
h?
• hà(ï 5 •CJ aJ
3imated by exponential fits after the 1-2 sec.
[Mg2+]-transition time. Unfolding from the high (C1) or low (C2) EFRET
states; Folding from the high (C3) or low (C4) EFRET state. Circles after
the split of the time axis show the equilibrium population distributions.
Vertical lines at ~2sec show when the [Mg2+]-transition period ends.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Á
Figure 3 [Mg2+]-jump experiments for
0 . 0
1 ”!0 . 4 m M
( A 1 ,
B 1 ,
B 2 ,
C 1 )
a n d
0 . 0 1 ”!1 . 0 m M
( A 2 ,
B 3 ,
B 4 ,
C 2 ) .
A ) :
R e p r e s e n t a t i v e
s i n g l e - m o l e c u l e
t r a j e c t o r i e s .
T h e
i n s e t s
o f
( A 1 )
s h o w
t h e
s m o o t h
E F R E T
c h a n g e
( d o t s )
d u e
t o
e l e c t r o s t a t i c
r e l a x a t i o n
o v e r l a p
w i t h
t h e
m e a s u r e d
[ M g 2 + ]
p r o f i l e s
( s o l i d
l i n e s ) .
T h e last high [Mg2+]
step of the lower trajectory in (A2) shows a rarely observed transition
(arrow) over the high barrier associated with the hidden DOF (Fig. 1-B)
whose signature is a transition from the state IV to state III. B):
Cumulative EFRET histograms for molecules folding from the high(B1,B3) or
low(B2,B4) EFRET states. Insets: Equilibrium EFRET histograms. In (B, C),
blue-state I; green-state II; red-state III; purple-state IV (state
definition: ref. Table 1). C): Population relaxation kinetics for
molecules folding from the low EFRET state. Molecules starting from the
high EFRET state only show occasional transitions to state III and
negligible transitions to other EFRET states (data not shown). Two-state
behavior similar to that observed in the
0.
e
o
f
n
x
b
o
o
p e r i m
s e r v e
r
t h e
t
s h o
0
e n t
( F i g s .
2 d
a t
t h e
l o w
s e
t w o
j u m p
c
w n ) .
1
B
[
o
”!0 . 1 m M
1 ,
C 1 ,
C 2 )
i s
M g 2 + ]
i n t e r v a l
n d i t i o n s
( d a t a
F i g u r e
4
C o n n e c t i v i t y
b e t w e e n
E F R E T
s t a t e s
f o r
t h e
t h r e e
[ M g 2 + ] - j u m p
c o n d i t i o n s :
A )
[ M g 2 + ] = 0 . 0 1 ”!0 . 1 m M ;
B )
[ M g 2 + ] = 0 . 0 1 ”!0 . 4 m M / 1 . 0mM. The solid double-headed
arrows represent RNA conformational fluctuations that happen during the
constant [Mg2+] interval and involve barrier crossing with time constants
on the order of seconds. The solid single-headed arrows represent
electrostatic relaxation of the RNA structure, which follows the [Mg2+]transition curve. In (B), for the
[Mg2+
b
s
[
s
e
d
c
d
a
t
M
i
l
i
r
o
r r i
a t e
g 2 +
m u l
e c t
f f e
o s s
u b l
u
u
u
v &v (v
b„W„Wb„y
• h+ e CJ
• h>
e r
I
] t a
r o
r e
i n
e 2u
0v
aJ
] =
c r o
I
a l
t r a n
n e o u
s t a t
n t
f
g
p r
h e a d
4u 5u
^v `v
h?
0 . 0 1 ”!1
s s i n g
s o
h a p
s i t i o n
s l y
w i
i c
r e l
r o m
o t
o c e s s e
e ùt
u
6u Mu Nu
bv dv fv
h?
. 0 m M
b e t w
p e n s
t i m
t h
t
a x a t
h e r
s
( s
c
e e
d
e ,
h e
i o
b a
h o
o n d i t i o n ,
n
s t a t e
I
u r i n g
t h e
Ou
nv
Xu
vv
[u
žv
Wu
pv
t h e
a n d
n .
T h i s
i s
r r i e r
w n
a s
s o l i d
]u
v -v
õêßÔßȽ²ß§›„ymy„b„bW„
à CJ aJ
h?
• hû!š CJ H* aJ
h?
• hû!š CJ aJ
h?
• h€Z— CJ aJ
h?
• h€Z— 5 •CJ aJ
h?
• hyXÐ 5 •CJ aJ
h?
• h^xÊ CJ aJ
h?
• h¦}' CJ aJ
h?
• hþlƒ CJ aJ
h?
• h • CJ H* aJ
h?
• hÆLÉ CJ aJ
h?
• h • CJ aJ
h?
• hÊMn CJ aJ
h?
• h«5‰ CJ aJ -žv Øv
Üv
w
w
$w ,w Äw Èw Øw øw
x
x $x [x cx qx ˜x Ÿx
x Çx Ìx áx
ãx óx ÷x
y
y
y
y
y !y &y .y 0y õêßÔßÈß¼ßÔß¼±ß¦ß›ß›ß…ß
êyên¦nc¦cX¦
h?
• hÞ^è CJ aJ
h?
• h/`‹ CJ aJ
h?
• hS
ø CJ aJ
h?
• h€Z— CJ H* aJ
h?
• h^b± CJ aJ
h?
• hCJ aJ
h?
• hû!š CJ aJ
h?
• hÆH· CJ aJ
h?
• hqHC CJ aJ
h?
• h•- CJ H* aJ
h?
• h•- CJ H* aJ
h?
• hÊMn CJ aJ
h?
• h•- CJ aJ
h?
• h€Z— CJ aJ
h?
• h•V CJ aJ "0y :y =y Ay Hy Jy Ry ^y _y cy py Úy ôy
z
z !z %z z .z Oz Sz Zz _z -z ±z ¸z õêÞÓêȽȱȦț…y…ncWcLcWc
h?
• h•Nc CJ aJ
h?
• hô$å CJ H* aJ
h?
• hô$å CJ aJ
h?
• h^b± CJ aJ
h?
• h - CJ H* aJ
h?
• h - CJ aJ
h?
• hÔ Á CJ aJ
h?
• hd(… CJ aJ
h?
• hbtÒ CJ aJ
h?
• h€Z— CJ H* aJ
h?
• hÆH· CJ aJ
h?
• h€Z— CJ aJ
h?
• h/`‹ CJ aJ
h?
• hS
ø CJ H* aJ
h?
• hS
ø CJ aJ
h?
• hÞ^è CJ aJ
¸z Éz Ëz Íz ùz <| B| D| J| N| †| Š| ž| ¼|
Ú|
}
}
}
}
} B} J} b} j} |} €} ž} õêßÔɾɾÉ߲ߧÉßœ•‰}rf
r[rOr
h?
• h×$² CJ H* aJ
h?
• hN4ð CJ aJ
h?
• h×$² CJ H* aJ
h?
• h×$² CJ aJ
h?
• h= – 5 •CJ aJ
h?
• h×$² 5 •CJ aJ
h?
• hU I
h?
• h€Z— CJ aJ
h?
• hŸ]p CJ aJ
h?
• h - CJ H* aJ
h?
• h^CË CJ aJ
h?
• h@f[ CJ aJ
h?
• h f³ CJ aJ
h?
• h - CJ aJ
h?
• hô$å CJ aJ
h?
• hû"W CJ aJ
ž} ¨} ²} ¶} Ô} Þ} â}
~
~ S~ m~ q~ s~ }~
‚~ ˆ~
~ Ù~ à~
•
• 5• 7• K• S• W• [• ^•
€
€ ,€ ”€ ž€ Ê€ ΀ Ò€ h•
‚
Œ
Œ ,Œ õêÞõêÞêÓêȽ±¦½ê›êÓêêÞê…½z½±½z½¦½±o½zmz½
U
h?
• hÍ$Þ CJ aJ
h?
• hÀ ` CJ aJ
h?
• h h CJ aJ
h?
• hÓeu CJ aJ
h?
• hâEb CJ aJ
h?
• h!"· CJ aJ
h?
• h¦"ƒ CJ H* aJ
h?
• h¦"ƒ CJ aJ
h?
• hh ø CJ aJ
h?
• hN4ð CJ aJ
h?
• h×$² CJ H* aJ
h?
• h×$² CJ aJ
h?
• hšR¦ CJ aJ (d arrows) and thus is represented by hollow singleheaded arrows. States III and III* in (B) have indistinguishable EFRET
values within experimental error but differ in dynamic behavior due to
difference in hidden DOF. The transitions between III and III* are very
rarely observed, thus not represented by arrows. For EFRET states that
are not connected by single-headed arrows at [Mg2+]-jump, direct
transitions between them during [Mg2+]-transition time are rarely
observed in experiments.
Figure
p e r
f r a
E F R
u n f
i n
e i t
p e r
5
i
c
E
o
a
h
i
P a g e
Relaxation k
o d
l e n g
t i o n a l
T
s t a t e
l d i n g
f
0 . 0 1 ”!0
e r
1 0
(
o d s .
P AGE
i n e t
t h .
p o p u
f o r
r o m
. 1 m M
Ë%)
o
14
of
i c s
S h o w
l a t i
m o l
t h e
j u m
r
2 0
NUMPAGES
a
n
o
e
l
p
r e
a
n
c u
o w
e
( X
20
d e
r e
o f
l e s
E F
x p e
)
s
p e n
t h e
t h e
t h
R E T
r i m
e c o
d e n t
o n
l o w
a t
a r e
s t a t e
e n t
w i t h
n d
,
:Œ @Œ JŒ sŒ uŒ yŒ Œ šŒ ÛŒ :• ?• C• l• s• €• ‚• ˆ• ‘•
°• ´• ¶• • Ç• ê• ë• ì• í• õ• RŽ õêßêßÓßÈß½²¦²ê²š„y²šny„²êc
WL
h?
• hÞ6s CJ aJ
h?
• hÞ6s 5 •CJ aJ
h?
• hÛK. CJ aJ
h?
• h!"· CJ aJ
h?
• h•jä CJ aJ
h?
• hî| CJ aJ
h?
• h UG CJ aJ
h?
• h×$² CJ H* aJ
h?
• h×$² CJ H* aJ
h?
• h×$² CJ aJ
h?
• h‘`Ç CJ aJ
h?
• hÍ$Þ CJ aJ
h?
• h h CJ H* aJ
h?
• h h CJ aJ
h?
• h¦"ƒ CJ aJ
h?
• h- ¢ CJ aJ
RŽ ´Ž ¼Ž (• 0• œ• ž•
• ¤• °• ²• ´• ¸• Ö•
Ø• Ú• Þ• à• ä• æ• ê• ì• ð• ú• ü•
•
•
•
•
Œ
•
•
•
•
•Œ§«§ˆ·
•
•
•
-•
¶‘
·‘
¸‘
õéõéõÞÓÞõÞÂÓõ·¯«¯«¯«¯«§•—•Œ•—•—
hÈ\Ó
h½ Ÿ 0J mH nH u
h$_ú 0J
j
h$_ú 0J U
h$_ú
h||×
j
h||× U
h?
• hÞ6s CJ aJ
h?
• h¬gu CJ OJ QJ ^J aJ
h?
• h¬gu CJ aJ
h?
• hVv- CJ aJ
h?
• hå6Á CJ H* aJ
h?
• hå6Á CJ aJ '•
• !• "• #• $• %• &• '• (• )• *• +• ,• • .• /• 0• 1• 2• 3• 4• 5• 6• 7• 8• 9• :• ;• <• ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
<• =• >• ?• @• A• B• C• D• E• F• G• H• I•
J• K• L• M• N• O• P• Q• R• S• T• U• V• W• X• Y• ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
Y• Z• [• \• ]• ^• _• `• a• b• c• d• e• f•
g• h• i• j• k• l• m• n• o• p• q• r• s• t• u• v• ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
v• w• x• y• z• {• |• }• ~• •• €• •• ‚• ƒ•
„• …• †• ‡• ˆ• ‰• Š• ‹• Œ• •• Ž• •• •• ‘• ’• “• ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
“• ”• •• –• —
• ˜• ™• š• ›• œ• •• ž• Ÿ•
• ¡• ¢• £• ¤• ¥• ¦• §• ¨• ©•
ª• «• ¬• -• ®• ¯• °• ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
°• ±• ²• ³•
´• µ• ¶• ·• ¸• ¹• º• »• ¼• ½• ¾• ¿• À• Á• • Õ Ä• Å• Æ
• Ç• È• É• Ê• Ë• Ì• Í• ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
͕ Ε ϕ Е
Ñ• Ò• Ó• Ô• Õ• Ö• ו Ø• Ù• Ú• Û• Ü• Ý• Þ• ß• à• á• â•
ã•
ä•
å•
æ•
ç•
è•
ý
ý
ê•
ý
ð•
‘
ý
ò•
‘
ñ•
‘
ó•
‘
ý
ý
ô•
‘
ý
ý
ý
ý
֥
ø•
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
õ• ö•
‘ ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ï•
‘
ý
ý
ý
ý
î•
‘
ý
ý
ý
ý
‘
‘
é•
ý
ý
ê• ë• ì• í•
ù• ú• û• ü• ý• þ• ÿ•
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
‘
‘
‘
‘
‘
‘
‘
‘
!‘
‘
"‘
‘
#‘
ý
ý
‘
$‘
‘
‘
‘
‘
ý
ý
‘
ý
ý
‘
ý
‘
ý
‘
‘
-‘
‘
ý
ý
ý
ý
‘
ý
ý
ý
ý
‘
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
$‘ %‘ &‘ '‘ (‘ )‘ *‘
+‘ ,‘ ‘ .‘ /‘ 0‘ 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9‘ :‘ ;‘ <‘ =‘ >‘ ?‘
@‘ A‘ ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
A‘ B‘ C‘ D‘ E‘ F‘ G‘ H‘ I‘
J‘ K‘ L‘ M‘ N‘ O‘ P‘ Q‘ R‘ S‘ T‘ U‘ V‘ W‘ X‘ Y‘ Z‘ [‘ \
‘ ]‘ ^‘ ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
^‘ _‘ `‘ a‘ b‘ c‘ d‘ e‘ f‘
g‘ h‘ i‘ j‘ k‘ l‘ m‘ n‘ o‘ p‘ q‘ r‘ s‘ t‘ u‘ v‘ w‘ x‘
y‘ z‘ {‘ ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
{‘ |‘ }‘ ~‘ ‘ €‘ •‘ ‚‘ ƒ‘
„‘ …‘ †‘ ‡‘ ˆ‘ ‰‘ Š‘ ‹‘ Œ‘ •‘ Ž‘ •‘ •‘ ‘‘ ’‘ “‘ ”‘ •‘
–‘ —
‘ ˜‘ ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
˜‘ ™‘ š‘ ›‘ œ‘ •‘ ž‘ Ÿ‘
‘ ¡‘
¢‘ £‘ ¤‘ ¥‘ ¦‘ §‘ ¨‘ ©‘ ª‘ «‘ ¬‘ ­‘ ®‘ ¯‘ °‘ ±‘ ²‘ ³‘
´‘ µ‘ ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
ý
µ‘ ¶‘ ·‘ ¸‘ ý
ý
õ
°à=!°
"°
#•
$•
dà
%°
gd"~2
°Ð °Ð
9
0 1•h /R
:pZ=
°Ð/
•Ð
Û
ÐÉêyùºÎ
n f s c h
m a i l t o : n f
:
Ü è è
ð
#
ð
D
Œ‚ ª K©
e r e @ u c h i c a g o . e d u
àÉêyùºÎ Œ‚ ª K©
s c h e r e @ u c h i c a g o . e d u
w
D d
ð0
²
A
ÿ
ð
`! ðÇ
½ƒ¥Y´ ô Œ0Û­ ¢*
>€d ”Âht!ÑÂÄGŒ VºÂF
€2
ðó
À
½ƒ¥Y´ ô Œ0Û­ ¢ÿ Ï
€
`
Hµ
! •
þxÚMQ»N A =3
ˆåºê¢D
¤’Z
,ý ÿÁ‚Ú 0±ÖÊÊ蚘˜ˆw†•8™›{æ¾ï †Q@‰2€£
qü$œ1 1Þëõ$Zd ž-ÈÿâB|ŸuÙ ¡¹! Sè‰`¤¡‘¥Kxˆt›J H‚^T i»q’kU @—
UFE=.Ð8×Ù*Õ ¾yûGŽƒ 1
£ñ´tN7/ 5 •ÀäíS ËwÍu }ù³ù5RxõQà EÓFX
@¦ (U¯÷ã w>ÿ ?£›Ì¦skÀØ^ñÌ(•¶ìzñ0Q9r2ö±SGØŸ+–•º¾ã4õÝJÙ>CXÉ¶Ê • ¹ •óZÑ©
'¾Áp ŒÄ–ÌNrÉȸšºm ™÷™iÂQÕ€kº³ngË"¤©
¡:¦;o¥ÜŽ´l’¾L 0æ­¤eºâ jˆÑ-ŒÓ! ýŒBoÚ5@¤ø®Oã ÿ¹ ?ÀúÄy<j –
¯{ùkT'žmÕ N œQ Äp%SDîËs }-e ¼‘G‘ù¿
t٦
s !v
:V
t à
s aö
s !v
:V
t à
s aö
s !v
:V
t à
s aö
s !v
:V
t à
s aö
s !v
:V
t à
s aö
$ $ If
–
h 5Ö
8 5Ö
–s
ö
ö
,Ö
ÿÿÿÿÿÿÿÿ4Ö
s ytÄ - ¶ $
h 5Ö
8 5Ö
–s 4
ö
ö
)v
s ytÄ - ª $
h 5Ö
8 5Ö
–s 4
ö
ö
+Ö
s ytÄ - ª $
h 5Ö
8 5Ö
–s 4
ö
ö
+Ö
s ytÄ - ª $
h 5Ö
8 5Ö
–s 4
ö
ö
+Ö
s ytÄ -
8 5Ö
,Ö
8 5Ö
5Ö
$ If
8 5Ö
8 5Ö
–
8 5Ö
+Ö
,Ö
,Ö
$ If
–
8 5Ö
8 5Ö
,Ö
5Ö
8 5Ö
$ If
–
8 5Ö
8 5Ö
,Ö
5Ö
8 5Ö
$ If
–
8 5Ö
8 5Ö
,Ö
5Ö
8 5Ö
8 5Ö
„ 5Ö
„ 5Ö
8 5Ö
5Ö
„ 5Ö
8 5Ö
„ 5Ö
8 5Ö
„ 5Ö
8 #v
„ #v
8
8 #v
8 #v
„ #v
8
8 /Ö
„ 5Ö
8 5Ö
8 5Ö
8 #v
„ 5Ö
„ 5Ö
8 4Ö
8 #v
8 #v
„ #v
8
8 #v
8 #v
„ #v
8
8 #v
8 #v
„ #v
8
8 4Ö
„ 5Ö
8 4Ö
„ 5Ö
8 4Ö
!
.
@
R
"
/
A
S
e
d
w
‰
˜
ª
¼
T
f
x
Š
™
«
½
Ï
Î
á
ó
#
0
B
U
g
y
‹
š
¬
¾
Ð
â
ô
$
1
C
V
h
z
Œ
›
¿
Ñ
ã
õ
%
2
D
E
W
i
{
•
œ
®
À
Ò
ä
ö
&
3
F
X
j
|
Ž
*
7
I
[
m
•
‘
±
Ã
\
n
’
²
Ä
³
Å
×
é
û
ü
]
o
Æ
Ø
ê
,
9
K
•
“
¢
´
¡
Ö
è
ú
+
8
J
€
Ÿ
Õ
ç
ù
H
Z
•
°
Â
)
6
l
~
ž
Ô
æ
ø
G
Y
•
¯
Á
(
5
k
}
•
Ó
å
÷
'
4
^
p
‚
”
£
µ
Ç
Ù
ë
ý
:
L
_
q
ƒ
•
¤
¶
È
Ú
ì
þ
;
M
`
r
„
–
¥
·
É
Û
í
ÿ
<
N
s
…
>
P
b
t
†
?
Q
c
u
‡
v
ˆ
—
¦
¸
Ê
Ü
î
=
O
a
§
¹
Ë
Ý
ï
¨
º
Ì
Þ
ð
©
»
Í
ß
ñ
à
ò
!
.
@
"
/
A
#
0
B
$
1
C
%
2
D
&
3
'
4
(
5
)
6
*
7
+
8
J
,
9
K
E
F
G
H
I
R
S
T
U
V
W
X
Y
Z
þÿÿÿ\
]
^
ýÿÿÿýÿÿÿýÿÿÿg
j
þÿÿÿê
ù
l
m
n
o
p
ÿÿÿw
x
y
z
{
|
}
~
•
€
R o o t
E n t r y
À
ÿÿÿÿÿÿÿÿÿÿÿÿ
o c u m e n t
ÿÿÿÿÿÿÿÿ
c t P o o l
F
pm:ž
È i
@
:
L
;
M
_
q
<
N
`
r
=
>
O
a
s
P
b
t
?
Q
þÿÿÿ
v
ý
ÿÿÿÿÿÿÿÿ
D a t a
[
W o r d D
;´
O b j e
ÿÿÿÿ
4 3 7 3
À
F
ÐÖ ž
ÐÖ ž
È ÐÖ ž
È pm:ž
È
È
_ 1 2 5 0 9 4
ÿÿÿÿÿÿÿÿ
Î
O l e
ÿÿÿÿÿÿÿÿÿÿÿÿ
O b j
C o m p
ÿÿÿÿ
i
þÿÿÿ
ÿÿÿÿ
þÿÿÿþÿÿÿ
O b j I n f o
ÿÿÿÿ
þÿÿÿ
þÿÿÿ
þÿÿÿ
þÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
þÿ
ÿÿÿÿ Î
À
F
MathType 5.0 Equation
EF
MathType
Equation.DSMT4 ô9²q
ÃÊ
Ìæ
D © ¤æ
DSMT5
WinAllBasicCodePages
Times New
Roman
Symbol
Courier New
MT Extra
!/E•D/APô G_APò-APô A ôEô%ô•B_A ô C_A ô•Eô*_Hô•A ô @ô•A•Hô A*_D_Eô_Eô_A
‹k"?
N a t i v e
ÿÿÿÿÿÿÿÿÿÿÿÿ
e
E q u a t i o n
æ
1 T a b l
ÿÿÿÿ
a r y I n f o r m a t i o n
ÿÿÿÿ
S u m m a r y I n f o r m a t i o n
\
D
@ñÿ
k
8
†
D
œ
º
(
S u m m
D o c u m e n t
ÿÿÿÿÿÿÿÿÿÿÿÿ
N o r m a l
tH
CJ _H aJ
D A@òÿ¡ D
mH nH
sH
D e f a u l t
P a r a g r a p h
F o n t
R i@óÿ³ R
T a b l e
N o r m a l
l 4Ö
aö
( k ôÿÁ (
N o
ö
4Ö
L i s t
4 U@¢ ñ 4
Ì
H y p e r l i n k
>* ph
f
. X@¢
.
a.
E m p h a s i s
6 •] •* W@¢
*
a.
S t r o n g
5 •\ ’ e@
" ’
v°
Æ2
P
H T M L
” ( ¼
P r e f o r m a t t e d
7
ä x
4
È#\'ð*„. 2¬5@9
B* CJ
OJ
QJ
^J
aJ
ph
j š@³ 3 j
‡zô
T a b l e
G r i d
7 :V
‚ ³ C
Ö0
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
zqþ
T a b l e
G r i d
5
» :V
Ö0
jÖ
jÖ#
€Ö
…Ö
ÿ
†Ö
ÿ
jÖ
…Ö
ÿ
†Ö
ÿ
…Ö
ÿ
ÿ
ÿ
†Ö
ÿ
…Ê
5
jÖ
…Ö
\ …Ê
5
\
†Ö
B ^@
ÿ
R B
‡Ö
¯O¨
N o r m a l
( W e b )
¤d
¤d [$ \$
4 @
b 4
!+Á
Æ
à À!
H e a d e r
4
@
r 4
!+Á
Æ
à À!
F o o t e r
. )@¢ • .
!+Á
P a g e
N u m b e r
!
.
@
R
"
/
A
S
e
d
w
‰
˜
ª
¼
T
f
x
Š
™
«
½
Ï
Î
á
ó
#
0
B
U
g
y
‹
š
¬
¾
Ð
â
ô
$
1
C
V
h
z
Œ
›
¿
Ñ
ã
õ
%
2
D
E
W
i
{
•
œ
®
À
Ò
ä
ö
&
3
F
X
j
|
Ž
*
7
I
[
m
•
‘
±
Ã
\
n
’
²
Ä
³
Å
×
é
û
ü
]
o
Æ
Ø
ê
,
9
K
•
“
¢
´
¡
Ö
è
ú
+
8
J
€
Ÿ
Õ
ç
ù
H
Z
•
°
Â
)
6
l
~
ž
Ô
æ
ø
G
Y
•
¯
Á
(
5
k
}
•
Ó
å
÷
'
4
^
p
‚
”
£
µ
Ç
Ù
ë
ý
:
L
_
q
ƒ
•
¤
¶
È
Ú
ì
þ
;
M
`
r
„
–
¥
·
É
Û
í
ÿ
<
N
s
…
>
P
b
t
†
?
Q
c
u
‡
v
ˆ
—
¦
¸
Ê
Ü
î
=
O
a
§
¹
Ë
Ý
ï
¨
º
Ì
Þ
ð
©
»
Í
ß
ñ
à
ò
!
.
@
R
"
/
A
S
e
d
w
‰
˜
x
ÿÿÿÿ
|
#
0
B
T
f
$
1
C
U
g
x
y
Š
‹
ü» „
u
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
%
2
D
V
h
&
3
E
W
i
'
4
F
X
j
|
(
5
G
Y
k
}
)
6
H
Z
l
~
*
7
I
[
m
•
z
{
€
Œ
•
Ž
•
•
‘
’
r
ÿÿÿÿ
s
ÿÿÿÿ
v
ÿÿÿÿ
y
ÿÿÿÿ
ÿÿÿÿ
{
0
ÿÿÿÿ
ÿÿÿÿ
+
8
J
\
n
,
9
K
]
o
•
‚
“
”
ÿÿÿÿ
z
:
L
^
p
;
M
_
q
ƒ
•
<
N
`
r
„
–
w
ÿÿÿÿ
=
O
a
s
…
>
P
b
t
†
u
‡
—
t
ÿÿÿÿ
ÿÿÿÿ
M
?
Q
c
v
ˆ
}
ÿÿÿÿ
ÿÿÿÿ
„
ÿÿÿÿ
ÿÿÿÿ
•
ÿÿÿÿ
~
ÿÿÿÿ
ÿÿÿÿ
‚
5
•
ÿÿÿÿ
ÿÿÿÿ
ƒ
€
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿ
ÿÿÿÿ
!
ÿÿÿÿ
ÿÿÿÿ
$
'
*
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
.
ÿÿÿÿ
"
+
!
ÿÿÿÿ
%
(
-
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
#
&
)
,
ÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
-
ÿÿÿÿ
…
ÿÿÿÿ
1
†
ÿÿÿÿ
/
"
ÿÿÿÿ
4
ÿÿÿÿ
3
#
ÿÿÿÿ
6
$
ÿÿÿÿ
7
%
ÿÿÿÿ
8
&
ÿÿÿÿ
9
'
ÿÿÿÿ
:
(
ÿÿÿ
ÿ
;
)
ÿÿÿÿ
<
*
ÿÿÿÿ
=
+
ÿÿÿÿ
>
,
ÿÿÿÿ
?
ÿÿÿÿ
@
.
ÿÿÿÿ
A
/
ÿÿÿÿ
B
0
ÿÿ
ÿÿ
C
1
ÿÿÿÿ
D
2
ÿÿÿÿ
E
3
ÿÿÿÿ
F
4
ÿÿÿÿ
G
5
ÿÿÿÿ
H
6
ÿÿÿÿ
I
7
ÿÿÿÿ
J •
‚
ƒ
„
…
†
‡
ˆ
‰
Š
‹
Œ
•
Ž
•
•
‘
’
“
”
•
–
—
˜
™
š
›
œ
•
ž
Ÿ
¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
í
ë
ì
þÿÿÿî
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
þÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ 8
ÿÿÿÿ
K
9
ÿÿÿÿ
—
ÿÿÿÿ
L
:
ÿÿÿÿ
N
;
ÿÿÿÿ
O
<
ÿÿÿÿ
P
=
ÿÿÿÿ
Q
>
ÿÿÿÿ
R
?
ÿÿÿÿ
S
@
ÿÿÿÿ
T
A
ÿÿÿÿ
U
B
ÿÿÿÿ
V
C
ÿÿÿÿ
W
D
ÿÿÿÿ
X
E
ÿÿÿÿ
Y
F
ÿÿÿÿ
Z
G
ÿÿÿÿ
[
H
ÿÿÿÿ
\
I
ÿÿÿÿ
]
J
ÿÿÿÿ
^
K
ÿÿÿÿ
_
L
ÿÿÿÿ
`
M
ÿÿÿÿ
a
N
ÿÿÿÿ
b
O
ÿÿÿÿ
c
P
ÿÿÿÿ
d
Q
ÿÿÿÿ
e
R
ÿÿÿÿ
f
S
ÿÿÿ
ÿ
g
T
ÿÿÿÿ
h
U
ÿÿÿÿ
i
V
ÿÿÿÿ
j
W
ÿÿÿÿ
k
X
ÿÿÿÿ
l
Y
ÿÿÿÿ
m
Z
ÿÿÿÿ
n
[
ÿÿÿÿ
o
\
ÿÿÿÿ
p
]
ÿÿ
ÿÿ
q
^
ÿÿÿÿ
r
_
ÿÿÿÿ
s
`
ÿÿÿÿ
t
a
ÿÿÿÿ
u
b
ÿÿÿÿ
v
c
ÿÿÿÿ
w
d
ÿÿÿÿ
x
e
ÿÿÿÿ
y
f
ÿÿÿÿ
z
g
ÿ
ÿÿÿ
{
h
ÿÿÿÿ
|
i
ÿÿÿÿ
}
j
ÿÿÿÿ
~
k
ÿÿÿÿ
•
l
ÿÿÿÿ
€
m
ÿÿÿÿ
•
n
ÿÿÿÿ
‚
o
ÿÿÿÿ
ƒ
p
ÿÿÿÿ
„
q
ÿÿÿÿ
…
r
ÿÿÿÿ
†
s
ÿÿÿÿ
‡
t
ÿÿÿÿ
ˆ
u
ÿÿÿÿ
‰
v
ÿÿÿÿ
Š
w
ÿÿÿÿ
‹
x
ÿÿÿÿ
Œ
y
ÿÿÿÿ
•
z
ÿÿÿÿ
Ž
{
ÿÿÿÿ
•
|
ÿÿÿÿ
•
}
ÿÿÿÿ
‘
~
ÿÿÿÿ
’
•
ÿÿÿÿ
“
€
ÿÿÿÿ
”
•
ÿÿÿÿ
•
‚
ÿÿÿÿ
–
ƒ
ÿÿÿÿ
—
„
ÿÿÿÿ
˜
…
ÿÿÿÿ
™
†
ÿÿÿÿ
š
‡
ÿÿÿÿ
›
ˆ
ÿÿÿÿ
œ
‰
ÿÿÿÿ
•
Š
ÿÿÿÿ
ž
‹
ÿÿÿÿ
Ÿ
Œ
ÿÿÿÿ
•
ÿÿÿÿ
¡
Ž
ÿÿÿÿ
¢
•
ÿÿÿÿ
£
•
ÿÿÿÿ
¤
‘
ÿÿÿÿ
¥
’
ÿÿÿÿ
¦
“
ÿÿÿÿ
§
”
ÿÿÿÿ
¨
•
ÿÿÿÿ
©
–
ÿÿÿÿ
ª
—
ÿÿÿÿ
«
˜
ÿÿÿÿ
¬
™
ÿÿÿÿ
š
ÿÿ
ÿÿ
®
›
ÿÿÿÿ
¯
œ
ÿÿÿÿ
°
•
ÿÿÿÿ
±
ž
ÿÿÿÿ
²
Ÿ
ÿÿÿÿ
³
ÿÿÿÿ
´
¡
ÿÿÿÿ
µ
¢
ÿÿÿÿ
¶
£
ÿÿÿÿ
·
¤
ÿ
ÿÿÿ
¸
¥
ÿÿÿÿ
¹
¦
ÿÿÿÿ
º
§
ÿÿÿÿ
»
¨
ÿÿÿÿ
¼
©
ÿÿÿÿ
½
ª
ÿÿÿÿ
¾
«
ÿÿÿÿ
¿
¬
ÿÿÿÿ
À
ÿÿÿÿ
Á
®
ÿÿÿÿ
ÿÿÿÿ
Â
Å
²
ÿÿÿÿ
µ
ÿÿÿÿ
Ï
¿
ÿÿÿÿ
ÿ
ð
ê
í
Ý
ÿÿÿÿ
ÿÿ
Ú
ÿÿÿÿ
ê
ÿÿÿ
ô
÷
ø
ç
ÿÿÿÿ
×
ÿÿÿÿ
á
ÿÿÿÿ
ä
ÿÿÿÿ
ñ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
û
þ
î
ÿÿÿÿ
ë
ÿÿÿÿ
õ
ø
è
ÿÿÿÿ
ò
ÿÿÿÿ
Û
ÿÿÿÿ
ò
õ
â
ÿÿÿÿ
å
ÿÿÿÿ
ÿ
ï
ÿÿÿÿ
Ò
ÿÿÿÿ
ì
ÿÿÿÿ
ó
ö
Ì
ÿÿÿÿ
é
Ù
ÿÿÿÿ
Ü
ÿÿÿÿ
ö
ù
é
ÿÿÿÿ
Ò
Â
ÿÿÿÿ
ß
Ï
ÿÿÿÿ
ì
ï
ß
ÿÿÿÿ
ü
Å
ÿÿÿÿ
â
Õ
ÿÿÿÿ
Ø
ÿÿÿÿ
Õ
Ø
å
è
È
¸
ÿÿÿÿ
»
ÿÿÿÿ
È
ÿÿÿÿ
Ë
ÿÿÿÿ
ÿÿÿÿ
Ë
Î
¾
ÿÿÿÿ
Û
Þ
ë
î
Á
ÿÿÿÿ
Î
ÿÿÿÿ
Ñ
ÿÿÿÿ
Þ
ÿÿÿÿ
Ñ
Ä
ÿÿÿÿ
±
ÿÿÿÿ
´
ÿÿÿÿ
·
ÿÿÿÿ
Ô
á
Ä
Ç
º
ÿÿÿÿ
×
Ç
ÿÿÿÿ
ä
Ô
ÿÿÿÿ
ñ
ô
÷
ú
Ê
ÿÿÿÿ
ÿÿÿÿ
Ê
Í
Ú
ç
°
ÿÿÿÿ
½
ÿÿÿÿ
À
ÿÿÿÿ
Ý
Í
ÿÿÿÿ
Ð
ÿÿÿÿ
Ã
³
ÿÿÿÿ
Ð
Ã
ÿÿÿÿ
à
Ó
ÿÿÿÿ
¶
ÿÿÿÿ
Ó
Ö
ã
æ
Æ
¹
ÿÿÿÿ
Æ
ÿÿÿÿ
É
ÿÿÿÿ
ÿÿÿÿ
É
Ì
¼
ÿÿÿÿ
Ù
Ü
¯
ÿÿÿÿ
æ
ÿÿÿÿ
ð
ÿÿÿÿ
ÿÿÿÿ
Ö
ÿÿÿ
ó
ã
ÿÿÿÿ
à
ÿÿ
ý
í
ÿÿÿÿ
ÿ
ù
ú
ÿÿÿÿ
ÿÿÿÿ
û
ÿÿÿÿ
ÿÿÿÿ
ÿ
ÿÿÿÿ
ü
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
-
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ý
ÿÿÿÿ
þ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
!
ÿÿÿÿ
ÿÿ
"
%
(
ÿÿÿÿ
ÿÿÿÿ
#
&
ÿÿÿÿ
ÿÿÿÿ
$
'
ÿÿ
ÿÿÿÿ
ÿÿÿÿ
)
ÿÿÿÿ
*
ÿÿÿÿ
+
ÿÿÿÿ
,
ÿÿÿÿ
ÿÿÿÿ
.
ÿÿÿÿ
/
ÿÿÿÿ
0
ÿÿÿÿ
1
ÿÿÿÿ
2
ÿÿÿÿ
3
ÿÿÿÿ
4
!
ÿÿÿÿ
5
"
ÿÿÿÿ
6
#
ÿÿ
ÿÿ
7
$
ÿÿÿÿ
8
%
ÿÿÿÿ
9
&
ÿÿÿÿ
:
'
ÿÿÿÿ
;
(
ÿÿÿÿ
<
)
ÿÿÿÿ
=
*
ÿÿÿÿ
>
+
ÿÿÿÿ
?
,
ÿÿÿÿ
@
ÿÿÿÿ
A
.
ÿÿÿÿ
B
/
ÿÿÿÿ
C
0
ÿÿ
ÿÿ
D
1
ÿÿÿÿ
E
2
ÿÿÿÿ
F
3
ÿÿÿÿ
G
4
ÿÿÿÿ
H
5
ÿÿÿÿ
I
6
ÿÿÿÿ
J
7
ÿÿÿÿ
K
8
ÿÿÿÿ
L
9
ÿÿÿÿ
M
:
ÿ
ÿÿÿ
N
;
ÿÿÿÿ
O
<
ÿÿÿÿ
P
=
ÿÿÿÿ
Q
>
ÿÿÿÿ
R
?
ÿÿÿÿ
S
@
ÿÿÿÿ
T
A
ÿÿÿÿ
U
B
ÿÿÿÿ
V
C
ÿÿÿÿ
W
D
ÿÿÿÿ
X
E
ÿÿÿÿ
Y
F
ÿÿÿÿ
Z
G
ÿÿÿÿ
[
H
ÿÿÿÿ
\
I
ÿÿÿÿ
]
J
ÿÿÿÿ
^
K
ÿÿÿÿ
_
L
ÿÿÿÿ
`
M
ÿÿÿÿ
a
N
ÿÿÿÿ
b
O
ÿÿÿÿ
c
P
ÿÿÿÿ
d
Q
ÿÿÿÿ
e
R
ÿÿÿÿ
f
S
ÿÿÿÿ
g
T
ÿÿÿÿ
h
U
ÿÿÿÿ
i
V
ÿÿÿÿ
j
W
ÿÿÿÿ
k
X
ÿÿÿÿ
l
Y
ÿÿÿÿ
m
Z
ÿÿÿÿ
n
[
ÿÿÿÿ
o
\
ÿÿÿÿ
p
]
ÿÿÿÿ
q
^
ÿÿÿÿ
r
_
ÿÿÿÿ
s
`
ÿÿÿÿ
t
a
ÿÿÿÿ
u
b
ÿÿÿÿ
v
c
ÿÿÿÿ
w
d
ÿÿÿÿ
x
e
ÿÿÿÿ
y
f
ÿÿÿÿ
z
g
ÿÿÿÿ
{
h
ÿÿÿÿ
|
i
ÿÿÿÿ
}
j
ÿÿÿÿ
~
k
ÿÿÿÿ
•
l
ÿÿÿÿ
€
m
ÿÿÿÿ
2
‡
ÿÿÿÿ
‚
ˆ
ÿÿÿ
ÿ
…
q
ÿÿÿÿ
“
p
ÿÿÿÿ
ƒ
‰
ÿÿÿÿ
†
Š
ÿÿÿÿ
‡
‹
ÿÿÿÿ
ˆ
Œ
ÿÿÿÿ
‰
•
ÿÿÿÿ
Š
Ž
ÿÿÿÿ
‹
•
ÿÿÿÿ
Œ
•
ÿÿ
ÿÿ
•
‘
ÿÿÿÿ
Ž
’
ÿÿÿÿ
•
“
ÿÿÿÿ
•
”
ÿÿÿÿ
‘
•
ÿÿÿÿ
”
o
ÿÿÿÿ
•
n
ÿÿÿÿ
’
–
ÿÿÿÿ
•
—
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
–
˜
!
.
@
R
"
/
A
S
e
d
w
‰
˜
ª
¼
T
f
x
Š
™
«
½
Ï
Î
á
ó
#
0
B
U
g
y
‹
š
¬
¾
Ð
â
ô
$
1
C
V
h
z
Œ
›
¿
Ñ
ã
õ
%
2
D
E
W
i
{
•
œ
®
À
Ò
ä
ö
&
3
F
X
j
|
Ž
*
7
I
[
m
•
‘
±
Ã
\
n
’
²
Ä
³
Å
×
é
û
ü
]
o
Æ
Ø
ê
,
9
K
•
“
¢
´
¡
Ö
è
ú
+
8
J
€
Ÿ
Õ
ç
ù
H
Z
•
°
Â
)
6
l
~
ž
Ô
æ
ø
G
Y
•
¯
Á
(
5
k
}
•
Ó
å
÷
'
4
^
p
‚
”
£
µ
Ç
Ù
ë
ý
:
L
_
q
ƒ
•
¤
¶
È
Ú
ì
þ
;
M
`
r
„
–
¥
·
É
Û
í
ÿ
<
N
s
…
>
P
b
t
†
?
Q
c
u
‡
v
ˆ
—
¦
¸
Ê
Ü
î
=
O
a
§
¹
Ë
Ý
ï
¨
º
Ì
Þ
ð
©
»
Í
ß
ñ
à
ò
!
.
@
R
"
/
A
S
e
d
w
‰
˜
#
0
B
T
f
x
Š
›
$
1
C
U
g
y
‹
%
2
D
V
h
z
Œ
&
3
E
W
i
{
•
'
4
F
X
j
|
Ž
(
5
G
Y
k
}
•
)
6
H
Z
l
~
•
*
7
I
[
m
•
‘
\
n
€
’
+
8
J
,
9
K
]
o
•
“
:
L
^
p
‚
”
;
M
_
q
ƒ
•
<
N
`
r
„
–
s
…
—
=
O
a
>
P
b
t
†
?
Q
c
u
‡
v
ˆ
!
.
:
F
R
"
#
/
;
0
<
G
S
^
w
ƒ
˜
¤
™
¥
°
¼
±
½
È
Ô
Ê
Ö
á
í
ã
ï
û
3
4
@
5
A
6
B
L
•
–
ž
ª
©
µ
Ù
å
ò
þ
ç
ó
ÿ
t
€
Œ
¬
-
9
E
Q
]
i
u
•
v
‚
•
¡
·
Ã
¸
Ä
Ï
Û
Ú
æ
8
D
P
\
h
•
‹
,
Ž
—
Ÿ
«
¶
Â
Î
7
g
s
~
Š
+
C
O
[
f
r
}
‰
*
N
Z
e
q
•
Á
Í
ñ
ý
M
Y
X
d
œ
¨
´
Ø
ä
ð
ü
)
ˆ
”
À
Ì
Ë
×
â
î
ú
›
¿
(
p
|
‡
“
§
³
²
¾
É
Õ
ù
š
¦
'
?
K
o
{
†
’
‘
&
W
c
n
z
y
…
•
2
>
J
V
b
a
m
x
„
•
1
U
`
l
%
=
I
H
T
_
k
j
$
¹
Å
Ð
Ü
è
ô
Ç
Ó
Þ
ê
ö
£
¯
»
Æ
Ò
Ñ
Ý
é
õ
¢
®
º
ß
ë
÷
à
ì
ø
!
.
:
F
R
"
#
$
%
&
'
(
)
*
+
,
/
0
1
2
3
4
5
6
7
8
9
;
<
=
>
?
@
A
B
C
D
E
G
H
I
J
K
L
M
N
O
P
Q
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
•
€
•
‚
ƒ
„
…
†
‡
ˆ
‰
Š
‹
Œ
•
Ž
•
•
‘
’
“
”
•
–
—
ÿÿ
ü»
´
ÿÿÿÿ
0
À
Á
Õ
C
ß
Y
Z
î
ï
c
”
¨
Ì
Í
J
K
Û
\
Ë' ÌI žo
« ðº ;À <À QÀ ‚à @Å AÅ wÅ 2Ê $ç %ç yç Óì “ð
”ð ãð –ö ¬ø “û
.
µ
¶
Á
N
ñ"
%
% L% ]K Ía
k
k -k
p ¡p ûp ?} @} L}
j•
‰
‰
œ
"‰ x‰ y‰ Љ ìŠ Q‹ Ÿ‹
Œ _Œ
Œ êŒ A• Õ ‹Ž ðŽ M• §• ï•
H• N‘ Ì‘ 6’ â’ ƒ“ à“
” U• ו K– Å– g—
3˜ ט h™ 7š °š -› _› `› b› j› › É› Л Ö› Ü› à› á› â›
ï› ô› ù› þ›
œ
œ
œ
œ
œ
œ
œ "œ #œ $œ %œ &œ +œ /œ 9œ :œ ;œ ?œ Dœ Hœ Mœ Vœ
Wœ Xœ
• f« g« ¾¯ ¿¯ e´ f´ 0¹ 1¹ 0º 2º 3º 5º 6º 8º 9º
;º <º `º aº bº cº dº eº fº gº hº iº jº kº lº mº nº oº
pº qº rº sº tº uº vº wº xº yº zº {º |º }º ~º •º €º •º ‚
º ƒº „º …º †º ‡º ˆº ‰º Šº ‹º Œº •º Žº •º •º ‘º ’º “º ”º
•º –º —
º ˜º ™º šº ›º œº •º žº Ÿº
º ¡º ¢º £º ¤º ¥º ¦º §º ¨º ©º
ªº «º ¬º -º ®º ¯º °º ±º ²º ³º ´º µº ¶º ·º ¸º ¹º ºº »º
¼º ½º ¾º ¿º Àº Áº º ú ĺ ź ƺ Ǻ Ⱥ ɺ ʺ ˺ ̺ ͺ
κ Ϻ к Ѻ Òº Óº Ôº Õº Öº ׺ غ Ùº Úº Ûº ܺ ݺ Þº ߺ à
º áº âº ãº äº åº æº çº èº éº êº ëº ìº íº îº ïº ðº ñº òº
óº ôº õº öº ÷º øº ùº úº ûº üº ýº þº ÿº
»
»
»
»
»
»
»
»
» »
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
» -» »
!» "» #» $» %» &» '» (» )» *» +» ,» .» /» 0» 1» 2» 3» 4» 5» 6» 7» 8» 9» :» ;» <» =» >» ?»
@» A» B» C» D» E» F» G» H» I» J» K» L» M» N» O» P» Q»
R» S» T» U» V» W» X» Y» Z» [» \» ]» ^» _» `» a» b» c»
d» e» f» g» h» i» j» k» l» m» n» o» p» q» r» s» t» u» v
» w» x» y» z» {» |» }» ~» •» €» •» ‚» ƒ» „» …» †» ‡» ˆ»
‰» Š» ‹» Œ» •» Ž» •» •» ‘» ’» “» ”» •» –» —
» ˜» ™» š» ›» œ» •» ž» Ÿ»
» ¡» ¢» £» ¤» ¥» ¦» §» ¨» ©»
ª» «» ¬» -» ®» ¯» °» ±» ²» ³» ´» µ» ¶» ·» ¸» ¹» º» »»
¼» ½» ¾» ¿» À» Á» » û Ä» Å» Æ» Ç» È» É» Ê» Ë» Ì» Í»
λ Ï» л Ñ» Ò» Ó» Ô» Õ» Ö» ×» Ø» Ù» Ú» Û» Ü» Ý» Þ» ß» à
» á» â» ã» ä» å» æ» ç» è» é» ê» ë» ì» í» î» ï» ð» ñ» ò»
ó» ô» õ» ö» ÷» ø» ù» ú» ý» ˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜@
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜@
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜@
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
0
˜
€
0
€
˜
€
0
0
0
0
0
0
0
0
0
€
©
©
©
©
©
™
©
©
©
0
0
0
0
0
0
0
0
˜
€
€
˜
€
€
©
€
€
€
€
€
€
€
€
€
Ð
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
©
™
©
©
©
©
©
©
™
©
©
©
©
©
©
™
˜
€
€
˜
€
0
0
0
0
0
0
0
0
˜
€
€
€ ˆ• 0 0
˜
€
€
0
©
€
€
€
€
€
€
€
€
€
Ð
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
˜
€
€
Ð
0
0
0
0
0
0
0
0
0
0
0
0
Ð
Ô
Ð
Ð
Ð
Ð
Ð
Ð
Ô
€
0
˜
€
€
©
€
€
0
Ð
©
Ð
Ð
Ð
Ð
Ð
Ô
0
˜
€
€
€ ˆ• 0 0
€
˜
€
0
0
€
€
˜
˜
€
0
¾
¾ ˜@
0
€
¾ ˜@
0
€
€
€ ˆ• 0 0
¾ ˜@
0
€
€
˜@
0
€
€
€ ˆ• 0 0
Ô ¾ ˜
0
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
€ ˜
0
€
€
˜
0
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
˜@
€
0
0
˜
€
0
Ð
Ð
Ô
Ð
Ð
Ð
˜
€
0
€
€
Ð
Ð
Ð
Ð
Ð
Ô
Ð
Ð
Ð
0
€
˜@
€
€
€ ˆ• 0 0
€
0
˜
€
0
€
Ð
0
©
©
™
©
©
©
˜
€
0
€
€
€
€ ˜
0
€
€
€ ˜
0
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€ ˜
€
0
0
€
€
€
€ ˜
0
€
€
€
€ ˜
0
€
€
€ ˜
0
€
€ ˜
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
˜
€
€
0
€
€ ˜
€
0
0
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€
˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
€ ˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
˜
0
€
€
ˆ• 0
˜1
`
Õ
C
ß
Y
Z
î
c
”
¨
Û
\
ö
œ
ÌI žo
« ðº ;À <À AÅ wÅ 2Ê %ç yç Óì “ð ”ð ãð –
¬ø “û
µ
¶
Á
N
ñ"
%
% L% ]K Ía
k
k -k ûp ?} @} L} j•
› à› á›
œ
y‰
Љ
œ
œ "œ #œ /œ 9œ :œ
f´ 1¹ bº gº ý» š@
€ Š• 0 0
6
jÎ 0 0
P±5 jŽ 0 0
€
€
€ š@
0
S
?œ
0
Dœ
Hœ Mœ Vœ Wœ Xœ
•
€
€
€ š@
0
€ Š• 0 0
5
jŽ 0 0
,
jŽ 0 0
,
0
€
€
€ ŠÍ 0
ŠÐ 0
f«
g« ¾¯
€
€
€ jŽ 0 0
š@
e´
0
0
H
ŠÐ 0
0
€ š@
%
F
0
€
hÎ 0
ŠÍ 0 0
€
%
€ ŠÐ 0 0
ŠÍ 0 0
%
ŠÍ
1
€ ŠÐ 0
0
,
€ ŠÍ 0 0
%
€ ŠÐ 0 0
@
jÎ 0
0
,
˜@
0
€
€
0
5
ŠÍ 0 0
3
€ ŠÍ 0 0
€ ŠÍ 0$0
=
ŠÍ 0&0
1
ŠÐ 0%0
!
&
ÄÒê ŠÐ 0%0
€ ˆÐ 0%0
€ ŠÐ
ŠÐ 0-0
(
€ jË 0 0
€ jË
€ ŠÍ 0+0
€ ŠÍ 0+0
ŠÍ 0'0
ŠÍ 0'0
€ ŠÍ
³ ŠÍ 0 0
³ ŠÍ 0 0
s ‚Í 0 0
³ ŠÍ 0 0
Í 0 0
³ ŠÍ 0 0
‚Í 020
.
3
³ ‚Í
‚Í 020
,
‚Í
0
ŠÍ 0 0
@
0
ŠÍ 0 0
Š• 0H0
€
Š• 0I0
€ š
0
€
€
Š• 0R0
š
0
€
€Ýw. « „
j‹ 0 0
€
€Ýw. « „
€ š@
D
0
€
€
|H ŠÍ 0 0
0
0&0
1
€ ŠÍ 0&0
ˆÐ 0 0
+
€ Š• 0€ š@
0
`
€ jË 0 0
0'0
€
€
ŠÐ 0 0
€
.
ŠÐ 0*0
jÎ 0!0
€ ŠÍ 0+0
0 0
€ ŠÍ 0'0
0]0
s ‚Í 0 0
€ ‚Í 0 0
‚Í 0 0
s ‚Í 020
020
0
I
0
.
s ‚Í 020
-
˜Öê š@
€
€
š
0
‚
-
0
€
€
§ï š
š
€
0
€
1
1
1
4
ë
¿
K
‚
q
Ç
’
Ê
°
´Ì
}
ô
Ç"
¯0
þP
wR
iS
Yt
"›
y´
2µ
¹¾
•Â
&Ä
íÄ
Ï
¬Ò
è
t
!×
TØ
-Ú
«ô
Žþ
º
T
ä
z
*
‰
|
,
£& '0
J6
8 å8 “@ WO ú^ s~
€
• È‚ |„ t‡ k‹ ¹’ ,” V–
øœ Pž ØŸ B¨ ã¯
² bµ Ó¿ ùt žv 0y ¸z ž} ,Œ RŽ ¸‘ â
å
æ
ç
è
é
ê
ì
í
î
ï
ð
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
ÿ
4
ë
þ
!
"
#
$
%
'
(
)
*
,
7
8
9
A
B
C
D
E
I
J
Þ
iú º& ¸‘ ¹£ .° M°
[° w° {° •° ¥° °° ð • <• Y• v• “• °• Í• ê•
‘ $‘ A‘ ^‘ {‘ ˜‘ µ‘ ¸‘ ã
ñ
&
+
.
/
0
1
2
3
4
5
6
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
·‘ ä
@
V
™
m
q
L
D
H
=
'
'
³( WG ^G MJ $j ,j öj !o &o bp ‘‘ •‘
’ °ª ¼ª
¬ ¸´ À´
Úµ ä¸ é¸ –
Æ :É >É gÎ
ç !ç Ïé sì wì Úò ~õ ‚õ «ý O
S
•
¯
]
a
r
°
µ
ú
ž ¢ë% Ç, Ë, ,. ê; ò;
< :B ?B @B çI ìI jL ?S DS •S ^X cX
0Y
`
` nb Ci Hi ÿv f| k| ™‚ ç‡ ì‡ ìŠ ÿŠ `›
£ ^« c« ü»
X ÿ „ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ
•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ :”ÿ•„ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•
Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ Q ÿ•Œ
+
.
4
! ÿ•€
ÿ•€
ð
ð(
°
O ð°
2 ð$
ÿË%ŠK³<wIpÚ óB¢fÿ x
Œ
ÿÿÿÿ
2 ð$
X2åku˜…½ÂîÌ’
è›÷ÿ fX
ÿÿÿÿ
2 ð$
Æà„x»…v‡* Á ¡0Õ@ÿ ‰•
ÿÿÿÿ
2 ð$
é Üü³›è` ŽŠü² ¯äÿ õŠ
ÿÿÿÿ
@ -ñ
ÿÿ
€ €€€ ÷
ð¢
ð
¯
ñ
ð0
ð(
ð
ð
ðB
ð
S
ð-
¿
Ë
ÿ
?
ð
ü» ÿÿ
D a
„Æ
E a
T
F a
äx
G a
d¤Ú
H a
\,
I a
äüy
¶
Ä
Í
Í
Ö
Ù
ý»
À
Ë
Ô
Ø
Þ
Þ
ý»
9
*€urn:schemasmicrosoft-com:office:smarttags €place €8
*€urn:schemas-microsoftcom:office:smarttags €City €=
*€urn:schemas-microsoftcom:office:smarttags
€PlaceType €=
*€urn:schemas-microsoftcom:office:smarttags
€PlaceName €9
*€urn:schemas-microsoftcom:office:smarttags €State €>
*€urn:schemas-microsoftcom:office:smarttags
€PostalCode €
øâ±
Õ
Ü
ý
ª
s
A
ù
V
Ы
Ü«
*
Ý«
<
â«
Ã
Ð
D
I
^
p
ƒ¾ ’¾ ôç øç <î Mî
Á
Í
g
l
Ì! Ð!
…
{ö
‘
„ö
K
]
R
a
£
j
`
i
# ¹% Ê%
<
< üI
˜K ŸK
K ¬K -K µK ôK þK ~` †` ‡a Ža Ôa Þa Yb _b ñj ûj
‘s ™s ït øt „~ “~
• -•
‚
‚ h‚ p‚ —‰
‰ ÷‰
Š dŠ lŠ
‹
‹ ±‹ ¸‹ ò‹ þ‹ bŒ lŒ sŒ xŒ £Œ «Œ íŒ ôŒ þŒ
• [• ]• c• h•
n• q• w• ~• Ó• Ù•
Ž
Ž
Ž "Ž •Ž ™Ž ¸Ž ¾Ž ÍŽ ÑŽ ÞŽ âŽ
•
• m• w• «• ±•
»• •
•
• Y• a• „• Œ• ’• ˜• ¡• ¨• ´• ¹• ¿• Æ• Ì• Õ• €‘ …‘ Ÿ‘
¤‘ æ’ ê’ ð’ ô’
“
“
“ “ (“ .“ ‡“ •“ ¼“ È“ ä“ é“ ï“ ÷“
” ” ¬” ²” Y• _•
• ©• é• ð•
–
– 2– 5– ²– ¸– Ö– â– è– ï–
‡— •— ¢— ®— ¾— Å— D˜ P˜ ‰˜ ’˜ ë˜ ñ˜
™
™
™
™ ™ &™ l™ u™ ~™ †™ Hš Pš eš lš ´š ¹š åš îš ,› /›
£
£ 0º
0º 2º 2º 3º 3º 5º 6º 8º 9º ;º <º aº bº ý»
#
J
X
•
˜
Qo
Vo
Ä
KÄ jÅ lÅ µÉ ¶É
Ë
Ë ²ï ´ï Éð Ëð †û ’û î
õ
$
$ “$
™$ -J RJ <} =}
–
– 5Ÿ ÇŸ y¯ ½¯ ¿¯
°
²
²
´
´ ¿´ Á´ N¹ Q¹ 0º 0º 2º 2º 3º 3º 5º 6º 8º 9º ;º <º aº bº
ý»
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
¨
Ë
*!
'
|A aG Õ¤
« <À QÀ :á #ç
k -k y‰ Љ ÞŽ ðŽ Â› Xœ ÿž 5Ÿ
ƒ¥ g« &¬ b¬ .² T² 0º 0º 2º 2º 3º 3º 5º 6º 8º 9º ;º <º
Aº Lº Pº aº bº ý»
0º 0º 2º 2º 3º 3º 5º
6º 8º 9º ;º <º aº bº ý»
Ãk âŠ$
Þÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
xYC(T4 ùÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
¶?ï*è…Ž•ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
ÿ
‘
æGÄVÆPÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
bM/IäÙ\mÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
ÿ ÿ ÿ
„Ð „˜þ Æ
Ð
€
„
„˜þ Æ
^„ `„˜þ‡h
ˆH
.
‚
„p „Lÿ Æ
p ^„p `„Lÿ‡h
ˆH
.
€
„@
„˜þ Æ
@
^„@
`„˜þ‡h
ˆH
.
€
„
#f ^äí2`ÿ ÿ ÿ ÿ ÿ ÿ
^„Ð `„˜þo(
.
„˜þ Æ
^„
`„˜þ‡h
ˆH
.
‚
„à „Lÿ Æ
à ^„à `„Lÿ‡h
„° „˜þ Æ
° ^„° `„˜þ‡h
„€ „˜þ Æ
€ ^„€ `„˜þ‡h
„P „Lÿ Æ
P ^„P `„Lÿ‡h
Ð „˜þ Æ
Ð ^„Ð `„˜þo(
(
„
„˜þ Æ
^„ `„˜þ‡h
„p „Lÿ Æ
p ^„p `„Lÿ‡h
„@
„˜þ Æ
@
^„@
`„˜þ‡h
ˆH
.
€
„
ˆH
ˆH
ˆH
ˆH
)
.
.
.
.
€
€
‚
.
.
‚
€
„
€
ˆH
ˆH
„˜þ Æ
^„
`„˜þ‡h
ˆH
„à „Lÿ Æ
à
„° „˜þ Æ
°
„€ „˜þ Æ
€
„P „Lÿ Æ
P
• „Oü Æ
• ^„
„
„˜þ Æ
„Ø
„Lÿ Æ
„¨
.
‚
^„à `„Lÿ‡h
ˆH
.
^„° `„˜þ‡h
ˆH
.
^„€ `„˜þ‡h
ˆH
.
^„P `„Lÿ‡h
ˆH
.
`„Oüo(
.
€
^„ `„˜þ‡h
ˆH
.
Ø ^„Ø `„Lÿ‡h
ˆH
€
€
‚
„
‚
.
€
„˜þ Æ
¨
^„¨
`„˜þ‡h
ˆH
.
€
„x „˜þ Æ
x ^„x `„˜þ‡h
„H „Lÿ Æ
H ^„H `„Lÿ‡h
„
„˜þ Æ
^„ `„˜þ‡h
„è „˜þ Æ
è ^„è `„˜þ‡h
„¸ „Lÿ Æ
¸ ^„¸ `„Lÿ‡h
Ð „˜þ Æ
Ð ^„Ð `„˜þo(
.
„
„˜þ Æ
^„ `„˜þ‡h
„p „Lÿ Æ
p ^„p `„Lÿ‡h
„@
„˜þ Æ
@
^„@
`„˜þ‡h
ˆH
.
€
„
ˆH
ˆH
ˆH
ˆH
ˆH
.
.
.
.
.
‚
€
€
‚
.
.
‚
€
„
€
ˆH
ˆH
„˜þ Æ
^„
`„˜þ‡h
„à
„°
„€
„P
„Ð
„
„p
„@
„˜þ Æ
^„@
`„˜þ‡h
„
ˆH
„Lÿ Æ
„˜þ Æ
„˜þ Æ
„Lÿ Æ
„˜þ Æ
„˜þ Æ
„Lÿ Æ
.
^„à
^„°
^„€
^„P
^„Ð
^„
p ^„p
à
°
€
P
Ð
‚
`„Lÿ‡h
ˆH
`„˜þ‡h
ˆH
`„˜þ‡h
ˆH
`„Lÿ‡h
ˆH
`„˜þo( ‡h
ˆH
`„˜þ‡h
ˆH
`„Lÿ‡h
ˆH
@
ˆH
.
€
.
.
.
.
€
€
‚
h
.
.
.
€
‚
€
„˜þ Æ
^„
`„˜þ‡h
ˆH
.
‚
„à „Lÿ Æ
à ^„à `„Lÿ‡h
„° „˜þ Æ
° ^„° `„˜þ‡h
„€ „˜þ Æ
€ ^„€ `„˜þ‡h
„P „Lÿ Æ
P ^„P `„Lÿ‡h
Ð „˜þ Æ
Ð ^„Ð `„˜þo(
(
„
„˜þ Æ
^„ `„˜þ‡h
„p „Lÿ Æ
p ^„p `„Lÿ‡h
„@
„˜þ Æ
@
^„@
`„˜þ‡h
ˆH
.
€
„
ˆH
ˆH
ˆH
ˆH
)
.
.
.
.
€
€
‚
.
.
‚
€
„
€
ˆH
ˆH
„˜þ Æ
^„
`„˜þ‡h
„à
„°
„€
„P
ˆH
„Lÿ Æ
„˜þ Æ
„˜þ Æ
„Lÿ Æ
à
°
€
P
.
^„à
^„°
^„€
^„P
‚
`„Lÿ‡h
`„˜þ‡h
`„˜þ‡h
`„Lÿ‡h
ˆH
ˆH
ˆH
ˆH
.
.
.
.
€
€
‚
‘
æG
Ãk
xYC(
bM/I
¶?ï*
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
#f ^
ÿÿ
æBp
ª ›
* Q'9 žTØ5
ì™>µ
•g© ¥5
k
§\ª
q_
^!
Xí •sVd
;|ú b'»8
žzÚ
-|ë
›O¤,
^!
^3c
Î,¥ •sVd
2 ö ¥5
k
Uë"
o·#•9¾n
›O¤,
^!
b'»8
seÏ/›O¤,
²
› :3
:b'»8
~(k;
({
žTØ5~(k;
²q•6
È p>b'»8
juõB
^!
€ ¾Gå),~
\;KÈ p>
À
™™™
™™™
óR•^•sVd
A]¢ažTØ5
EM4O~(k;
^3c2 ö
58^R¯_³p
•sVd58^R
Ô1ÒU o·#
¥5
k¯_³p
\;K
À
g
Æ1
c
f=
•9¾n¯¯¯
¯¯¯
®|`o~(k;
t âv~(k;
({•g©
å
f
‡
•
»
u=
@ ~G †G lT W {_
·
„d
¯_³pÔ1ÒU
þK>{
F" o,
+j Øj ôj
ÅC¶t•sVd
fPŒu
å),~b'»8
bn
¿w
A
Ð
u
t
à
ä$
×*
8.
*7
ª/
[<
87
‹?
à7
lB ?C €M *R qT á^ éw œ}
µ8 €9 S: _= i> áV å_ ua
*
æ
D
4
?" 5'
Ê5 ¼8
: ×D óS [Y T\ b_ Ža "f Ëf ÷n «o
r- ‰6 v7 OE zG 2e Ye pg }g Þg Gj ã| Ê
R
çe
*o
¿u
w
{•
¨u
çy
Æz
_!
c!
‚
ß
v
«
’$
ò,
©/
:
C
¤I
vK
šM
ÆN
TP
ùc
Xg
0m
„n
Qy
Iz
ß$
6
°,
.
Å2
ß6
¿E
*N
-U
3b
9c
-z
è}
7
R
Ÿ
}2
â4
X<
Â>
AA
•G
,I
8L
¶W
Ò_
øf
Ðl
nn
Mv
÷A ÇD ÿU
¡.
L;
Íx
í|
%W
Å=
E
Âa
n ïr
"B
ÿC
º
ç
n
ý%
é
l
–
o1
±7
ð=
W?
U
Í[
h
°l
ëp
6u
I}
‹#
,.
ê
èG
ÿ
°J
Ï
<L
•e
$
•l
È
®
u]s
_&
w
=
HF
uI
;M
P
žS
Ød
Óe
Lf
•g
st
ƒw
ú|
}
ø
¨
x
¸
j
á-
16
K6
GH
OT
ŠW
h
Êw
®x
Ú{
€
•
}
—
¼
Ó
•!
^"
88
?;
?
•A
øD
å]
J`
Eg
k
%m
s
êy
˜~
•
•
•
[
½%
(
Ë3
Å6
•=
½>
ÈL
œW
ŸY
£g
Èk
¼n
Rr
v
¡v
D|
º
V
:
º%
7
|?
¥L
ªV
ÿV
AZ
Pg
Qj
øq
Wt
ÿt
•
Æ
K-
Û-
-
ó3
.A
XE
¬M
ºc
h
n
Üt
õv
Ez
[
×
6" ™* “0 ãB ìF pK AO ¢S Âg àl Øo …r ýv
', B, %. {. Ñ/ (: ¥C PG $K ëR ÷S ý[
S
a& ®* –J éR [] Ii €j mu Mw ¤z
h" -% / Ñ4 l; ÷? •C ¿N •O ®^ .a "l ºm ¹
Õ
¡> FC õU ÉV ÃX ¹b ‘c !e w ‚~ E
þ
í
P4' r) +. a. å8 aC ÃE §H ÊM ÞT
U éV
û
°
œ. ,2 ô6 /F ;G ¾G çU Bb še 4n
•- ¦- ø' Ô¿.
2 í8 .<
B 7E °K ÏM ˆU áU cV yh
• À
Ì
#
F
°
Q` 'b
| û•
²
Ð
Q
·b
ï
j
w( z*
í• l
$à
€
ô
^-
©:
ý_ -z °z î| ö| b
s †t š~ T
_
õ
Si
l
Ém
Žo
ìp
Âz
§
ø
‘
M
ª" N$ ]( É( ñ1 â5 F6 ÈR •V ÃW É^ Ia Rd ¶f ùt Tw ç{ à
æ
û
' Õ) Q8 w: kI •Q ÎT “\ l] ôm šw ±w ýy e
]
l
7
I
#
R
G
¬&
Y
@(
]
‹,
[!
»6
Ö$
t>
Å%
ù@
â(
9D
X:
WN
Z=
}V
üB
QY
VS
Ee
•Y
ûi
ûi
£j
˜m
R
Jo
þ
<x
{
T
Ž
Ð
é
R
Ë
,
Ç
¯, Y2 ãM ¢P ×U ~Z &a
d Ëd Xg
i ˆ - ý - \
- J - ß - Ö - \- !- ~<- ÷=- „FH- ^]- ‰a- †c- ço- †v- iw@ ÷ ¯" ì% ô- 3 M5 ˜6 Ë; 5> «D F F ûK “] ¨` ¥• ‹
¬
¹
›
4! ¡# Ò$
+ Ó- •6
9
< ë= >> E? ©? ”V `W [a ca +{
Ç| ± ! | ! †
! ¥
! •
! . ! • ! x$! F)! 8! 9! ==! áQ! „e! ·f! ql! w|! Y
"
" ÛC" *L" tv" vw" ÿw" Ù{" • # Ó # )5# º6# †7# ÷7# 8# “;# z># O# FW# ud
# ¬e# i# fl# Su# o $ Œ $ í $ - $ ” $ ¦ $ ö($ Ä)$ '$ …1$ A$ îI$ ÷I$ ‰J$ ¿N$ Ä[$ `$ ™h$ *o$ 7p$ sr$ A % c % 2 % M% Æ4% B6% ÿ:% â;% «J% ¬U% Öb% …e% Œh% ¼s% Ûy% É}%
& Å & )
& À &
& í&& 9,& l.& B3& 7& 0<& e=& Ÿ@& ÚF& mH& FL& AN& —R& ÉT&
`& ùg& Sm& ›m& Ós& +w& N|& Ö ' ä ' Ò ' é ' ñ8' 19' ‰<'
H' 'I' @P' KT' ¼W' ’_' d' ,i' ;l' Šr' ës' ªy' qz' ¦}' f ( ÷
( ÷ ( Û ( Y ( S"( '*( û1( A3( €=( DD(
I(
J( åJ( çW( Ã^( z`( ái( ól(
r( 3r( Bt( B}( C}( Í ) • )
) ˆ ) Ô ) % ) ‘ ) †
) œ*) š.) §4) W7) A9) IE) .K) ‡P) ³R) V) Z) •_) We)
Yt) q{) ‘}) á * X * · * !
f) Ãh) ám) qo) 5q)
* ¶ * ± * t * * d+* 6* ¡?* D* E* ‚E* —
I* MJ* 1S* ]* rd* Hh* 6p* â|* ÷|* f}* Š + ò + +
+
+ + + x + º + §"+ ’%+ Ú'+ š8+ †;+ ðE+ îN+ T+ ^+
m+ în+ ³r+ ´r+ Ãz+
~+ © , s", .9, ã:, Ë>, ÝU, ÍV,
Ä - |)- ±0-
a+ Il+ a, c, ˜q, $ - ¯ -
1- „3- ˆ3- s8- Õ8- G9- 3:- û<- ›I- ¹[- k_- ¯c- ©h- ®r- št- Vv- xw- r~.
. æ
. q . v . ò . #. ú(. ›+. ð3. €4. ²:. •E. ÛK. AQ. vX. _Y. Ã[. æ[. žm. Ov.
Œ•. ^ / • /
/ z
/
/ ü / [ / –%/ ì'/ n*/ K2/ ã>/ ðM/ _[/ –]/ ™b/ &d/ (n/ År/
y/
•/ × 0 $ 0 × 0 ÷ 0 t0 ((0 r.0 <0 çQ0 W0 £X0 Z0 éc0 Gi0 ˜t0 ÿt0 n 1 P
1
1 ; 1 x#1 31 Ý01 ×41 E:1 T;1 ü;1 F1 'G1 ¸W1 9[1 Td1 ]h1 §h1 Òh1 ‡k1 'l1 ïp1 Ns1
2
2
2 å
2 Œ
2 7 2
2 Z 2 å2 Â!2 "2 h+2 &,2 ÷;2
G2 G2
W2 TW2
3 Š 4
\2 xd2 ùf2
i2 ƒs2 "~2
3 M(3 $73 Ô<3
>3 ~C3 tZ3 ‰a3 Jj3 Žj3 •x
4 Å 4 ó 4 •
4 ¯ 4 G 4 ® 4 ¾4 ‡,4 é14 ï:4 d@4 ½E4 hF4 ñH4 OR4 ßY4 Îc4 Óg4
5 â 5 "$5 ‘95 ¬C5
p4 \w4 €x4 !y4 V~4 j
E5 II5 'Y5 ÷d5 8q5 ä}5 C 6 • 6 Œ 6 Ê 6 F
6 806 (J6 !P6 ÈR6
S6 ýa6 Œm6 u 7
6 n
6 ˜ 6 ‚#6 þ+6
-
7
7
8
8
‡ 7 >'7 r)7 X47 o;7 Õ;7 I=7 „D7 ^E7 óE7 ÚF7 éK7 íS7 E`7 Ån7 Õt7 ´u7 ,}7 Ø
} 8 ƒ 8 N 8 ¬$8 «'8 Q,8 ü.8 58 •98 «:8 ¹=8 [>8 jB8 |U8 Y8 ‰\8 ¦`8 ui8 m8 Æm8 p8 >~8 ‡ 9 I 9
X 9 G 9 æ 9 K 9
9 > 9 D 9 8,9 R9 -49 Ð59 99 »?9 hA9 KC9 ¼M9 ËM9 WP9 ïX9 |Z9 _9 Îd9 Ãf9 %i9 ýp9 “~9 a :
 :
: Z : •": ×#: ê:: ¢C: •]: ·e:
g: ©o: íz: {: *}: Ú
; v
;
; Ö ; . ; ö; E ; Æ
; Ÿ'; d0; ¯0; Ç6; ØE; ÉH; aJ; _M; ^T; wd; Nt; -w; Üx; • < £ < ¾ <
< E'< Î,< t.< ô.< <=< õ>< D< ©F< 3I< kK< ÍY< Z< 6]< t]< ¼b< ”c< ª
f< 3h< Ï~< ñ•< ¶ = ž= -&= Ï*= U,= ?0= 2= —
3= ø5= Ý9= H?= \D= 4E= ´H= GJ= þe= ·v= m•=
> ‹ > é"> 6)> G)> ¬)> –
3> º5> Ù;> Ï>> @> WE> cG> aH> 1N> †V> aZ> ú[> ¹d>
l> øn> 9z> þ|>
•>
? ” ? Ž ? ³ ? · ? ã ? È ? — ? › ? þ-? s? "? +? s? ã.? •0? #3? µ4? 8? žE? ÕF? yP? []? ¢c? ¡e? Ég? µj? ûr? Û•? [
@ • @ ý @ ?!@ (@ O1@ Ç3@ Q6@ 97@ £8@ Á;@ F@ ^I@ °U@ ŸY@ x\@ Â_@ Be@ x@
ûx@ d A C A l A >A ó"A †7A @8A žBA hJA £MA çNA WWA 3YA ºYA ø]A ¶^A @gA àhA moA ×wA zA Ã{A
í B O B • B Y%B ð(B ê)B U3B c?B
AB |JB ÏKB ÀSB ŸUB ‘XB ˆ[B úoB © C _ C Û C ¡ C Ý$C B2C qHC ºHC UC
%qC TyC YyC Á~C ÿ~C | D Q D â D Õ)D {8D åED /HD ÔMD /kD isD ¿sD ‘uD ÝuD •
vD p E ‹ E è
E ª
E ¯
E Ñ E “ E w E
$E ‰(E ¢(E .E £.E q5E !6E {GE #LE bRE ;WE {E µ
F œ F •/F 2F O3F z=F •=F EF óEF FF á]F ÜdF ÆsF XtF ›uF þ G ‰
G
G • G s!G
@G ~EG [HG ¿HG vLG ?MG ÙNG `QG
SG UG Ë`G »cG 'pG ·rG }sG {G }G ü
H Í H Î H
H X-H ˜-H •7H Á?H ÏNH ä^H Ï_H ²gH %iH ¼sH ¬|H
~H ~H ý I × I ;
I U I c)I ¹*I M,I T4I t7I q;I ¾CI RI ØSI {cI EnI enI ¹{I ¢|I þ~I ¶ J Ö J
ž
J .
J !
J Ü
J i$J À%J j>J
JJ 9PJ •RJ Ü^J vaJ ¾aJ ëaJ 3dJ ‹dJ 9hJ ´hJ ÍhJ iJ mJ rpJ v|J ç K • K ¸
K P K ± K ® K !-K h)K œ*K ë*K k1K ø3K 8K /AK !DK ´KK ±QK GRK jTK ZK ¿fK
‡qK zK Å L ¹!L Š*L Â,L >L ‚BL XUL þVL /WL ‘[L e_L cL !kL -wL n M o M H
M ö
M c
M î M W M ¯ M » M
M )
M •"M Á(M ´+M Ã4M Ü7M ¹;M Œ<M a=M ¥=M >M ÀBM ÚJM nKM \PM ;QM WM \M „_M
TfM “fM ÚkM 5oM NuM
N h-N •1N æ3N •=N Î`N ÂjN {N ª•N
O q O ;
O f
O ö O 9 O ¤ O «'O ¶0O ¥2O ÎCO PHO IO OKO ½KO ×UO e`O WcO hjO "kO ªmO ªoO
sO %sO äxO å•O 5 P &
P D P
P i P •&P G(P <*P Œ:P 2DP *FP ûFP ÃNP jkP éyP (zP A
Q #Q v$Q –
$Q ¨)Q .Q 51Q 8Q cCQ ?DQ °IQ äVQ q\Q É_Q ÊfQ ¢tQ u R + R C R Ê R à R 4
R § R
R k2R 7R I@R nNR QR uRR TR pUR ?[R ``R ¥eR éiR PqR %rR .xR +zR
g~R }6S ë8S p9S ,;S ·>S —TS ‘VS ³[S U\S ”]S QmS 5pS uqS H|S u T L T ÌT ¾%T (T €*T .T ‡0T æ2T ¦3T Õ4T Ý5T •:T ó:T -=T !AT
IT žIT T[T è[T )aT ÏbT
pT ¹qT •vT ixT 1 U ² U û U •-U
+U °,U QZU ‚ZU šdU ‘wU ¹xU ûxU » V
"V u&V ü)V ¶1V Í2V Ü8V -;V GGV 5JV ÒOV öVV ÖWV ªeV jlV ¾pV `|V ñ|V g
W Æ
W ¢ W é W e W û"W ©+W 7/W /0W ©5W £9W ï;W ¢>W È?W Ô?W {CW œFW ùNW âOW üTW
O[W gcW %fW •fW ÝfW éhW ærW HzW ´zW ~W î X ÷
X h#X b$X É/X
Y {
2X ¼;X gBX •GX ÀTX hgX &hX ÞiX ´pX ûtX ?zX Û}X » Y •
Y &
Y X Y ç Y „9Y úBY ØCY
GY sOY €PY !WY öXY oYY ÁmY XpY J Z
Z Á Z C
Z E
Z
Z G Z à Z
Z Z ×%Z 'Z #'Z 2/Z ŠKZ ¾PZ ¾QZ åXZ ú`Z qoZ ·uZ <•Z v [ ¶ [ ¶ [ -[ A
[ 9'[ Ù'[ ÿ,[ "3[ Ÿ?[ $K[ •M[ ?N[ ÏX[ ýa[ Dc[ @f[ £ \ ¶ \ ÷
\ D \ O \ Ä \ Ð
\ í!\ %\ 0\ ¼0\ Ã1\ J5\ ‹@\ 6E\ ÄE\ ÒM\ 3Q\ DS\ µV\ òW\ Ù`\ ×m\ wu\ ¸ ]
+ ] C ] 4
] ¤ ] - ] !] “*] ï0] Ä8] ß=] 'E] KK] CP] "V] X] úY] Td] 2e] p] u
y] |] ž ^ \ ^ Á ^ —
^ g-^ "^ á&^ ½7^ Ü8^ Ú?^ ‡D^ T^ ÿ\^ è]^ ig^ ýo^ ês^ åu^ •~^ Ž
_ ¯ _ ±_ .6_ O8_ ¯9_ yE_ ŽL_ CM_ EN_ t[_ Z`_ fd_ Ie_ 4{_
` À ` ` z `
` `-` ˆ6` Ÿ;` @B` ÑE` ÑU` å]` Ši` âr` ç a ñ a š a £&a .a l8a
&`
-
<a [Da %Ea !Ma ŽQa Òca Lfa êia ¬ra lua wya
b
•a Ò b 1 b † b ê b |&b ñ*b Ã7
;b âEb ¹Sb H[b %cb
eb Afb
c -
c · c 9 c 8 c >(c Ý(c §c €1c À1c “Cc …Fc ©Kc •Nc ¾Sc "Uc vUc ÀXc ¼Yc Úcc +ec }jc ûkc tmc »sc ï d
X d
d šd 5*d …<d €Ad ¯Hd ŒLd USd gTd ïUd Åjd ïsd {d ï e
e + e à
e / e - e •-e #e }'e ',e ….e [8e ï=e r?e õ?e “Ae Me #Pe ?Pe
Se ^Se ±Ve “We B^e be ce %he •je ¶ze Ë}e þ~e <•e Œ f ù f 5
f
f
g
h
h
_ f t f Æø)f ã0f åBf ÔDf \Lf fOf ÆOf Pf
ô#g •&g $.g à1g ž=g ô=g >g ½Ug
5
Sf Yf ß]f ¸`f ‚bf 3tf »|f :\g f]g %ag djg Ø{g Æ•g ¢ h S h . h
h U h V h ¨.h Ô8h øBh öHh AQh Sh `h bh Bhh çoh ·rh Guh Ýyh Ë i ° i i ¥#i Š/i ¤=i ›_i 7fi ©fi Uhi üxi ?}i Í j ó j µ
j Ù j
j » j +#j ,j >/j 2j F9j oAj SCj ÖDj pHj Ð\j Scj fj •gj nj Ënj !oj
zj ñ k X k ¤ k --k Û7k …=k ÔSk bk §hk ýmk ¹sk zk ë•k ö l — l ± l Ë
l [ l š l • l
l 2l ™;l ú>l ©Wl à[l â`l ^jl
ol ðrl +tl ` m J m ® m ¿$m ë/m 0\m Vtm ž}m á n ³ n µ
n 7 n M n e n Ð n É$n "'n ‘)n ý*n U1n ™4n
Wn
5n [=n {Dn
Ln ÊMn
\n
bn
cn Vjn 1zn Œ{n S o ø
o # o Ï o õ o V"o ,.o y1o ëEo iIo
p —$p J-p ¨-p r5p 9:p ˜Gp -Jp Rp
Wo ùXo *`o •`o íbo [to
p \ p Z p -
Tp
q ¡
q
‘r
s s
Vp Ÿ]p |rp »rp ðzp ‰|p ó}p ü q Q
q ¿ q à%q ð0q )2q 3q 5q \6q üCq ºNq ÎUq $Zq dq qjq Ö r ¹ r \ r á r
X,r 3/r ž0r p4r ¤:r h;r •@r uGr ¤Wr xar Qdr Ìgr oir kjr ˜~r ‚
s
s û#s Þ%s Þ6s ¶=s E@s ËJs ÑMs “Os mTs Tps Eqs Frs ò|s þ}s Ð
t 8 t Ü t _ t ³ t 3t .%t .t ½9t ú<t ¶Bt òXt ´_t $bt &jt nt 'qt Ãrt ¼st %ut ^
u
u e u Ç u ˆu ¹5u û@u ¯Lu ÖYu ³]u Óeu ¬gu žju ¥ju " v v / v ÷ v A v ² v ° v {&v ‰&v Ý'v 91v 32v "Jv Æav «cv ±jv ¹ w ]w ú&w ›3w +Bw -Cw DDw IOw µlw *xw Еw è x &
x þ x ° x & x ´ x ð x &x
+x œ9x ÙKx bLx ²Vx Ÿbx Kfx fmx ·mx ünx cox # y ‹
y Ø y -y Ï%y u&y $(y u<y 4Iy òdy µky ëzy K~y
z x z '
z í z h z ä z Œ z *z :,z 7z 2Ez äEz HNz ßOz ¯Yz |]z ]z Ê^z ü^z 2`z Ùaz
!mz ;
{
{ s { x){ Ý*{ ?+{ ž0{ “8{ ={ D?{ ¶?{ ì@{ µL{ R{ -[{ e{ ‡i{ •q{ àq{ òr
{ 1v{ oy{ öz{ 4|{ }{ d | Ç | Ð
| ù4| Ô6| pE| lG| ûH| ]K| +P| ©U| n| 1n| _t| *w| Z } Õ } /
}
} *#} ©'} Œ*} •*} œ+} •:} -K} sL} ÇS} oV} ©V} :Y}
\} )]} Ïb} >i} Mm} Mx} Ö ~ ì
~
~ Ý ~ œ ~ -~ <-~ x$~ L&~ N&~ õ,~ ã0~ O8~ ¹C~ RF~ K~ çX~ Ø[~ ¸i~ –
p~ mq~ ‚ • '
• ?
• / • $ • »•
%• t.• >9• Y=• i@• $D• yD• ÛM• IO• •Z• th• 1l• Um• wm• ay• I}• é € 7 € Z
€ G
€ »
€ <
€ L € ` € o € ç € ¡$€ s.€ Ø0€ !3€ ÄA€ ‹L€ ïS€ ËW€ ]_€
8
• " • ]!• —,• Q/• C• KI• QI• –
M• Y• YZ• ]• ,^• Hf• äf• ök• l• Ol• wm• ú|• © ‚ d ‚
‚ G'‚ u)‚ /1‚ 6‚ A‚ ¶E‚ oU‚ êV‚ X‚ Ã_‚ ÷a‚ Mf‚ ¤j‚
ƒ $-ƒ !ƒ ¦"ƒ "&ƒ ,ƒ ³2ƒ Ã3ƒ 6ƒ âAƒ 2Eƒ àJƒ Zƒ w_ƒ 7cƒ þlƒ oƒ Õpƒ qƒ ˆtƒ øvƒ [|ƒ nƒ Ë „ y „ Ö
„ § „ Õ „ ž„ è#„ ‚'„ %*„ 7,„ ¸2„ Ù4„ M9„ ÑK„ ¥S„ øU„ ïX„ Çd„ ·i„
… ï…
³e€ k€ )n€ ‚o€ 2 •
Ï ‚ l-‚ º
ìq‚ ‡{‚ œ
Òi„
j„ Ëm„ Ə„ ´ …
… ü … â … <!… &… d(… (*… Ä+… Ë;… HA… ›B… •G… e… Žt… w… ®z… Ð|… ( † ˜ †
k(† œ(† D,† r5† è5† E;† ½>† ØG† ‘J† éR† ØS† #T† Z† ±_† ²a† g† ‡k† {r† V
w† ㏆ » ‡ A ‡
‡ é
‡ A ‡ à ‡ 4 ‡ • ‡ ­ ‡ = ‡ S ‡ Ÿ"‡ •%‡ >(‡ (‡ €1‡ G3‡ û=‡ n>‡ ÅB‡ ÀC‡ äE‡
0I‡ 7L‡ »X‡ ßX‡ Fo‡ ho‡ s‡ s‡ |‡ l|‡ )~‡ Ò ˆ ø%ˆ Zˆ A1ˆ J4ˆ Ï4ˆ Ñ<ˆ ŒRˆ ÐRˆ IUˆ ðWˆ ŸXˆ cqˆ åqˆ -vˆ
‰ A ‰ ¯ ‰ Š ‰ l
‰ Ú ‰ æ ‰ Â$‰
Š S
&‰ J&‰ i.‰ «5‰ É?‰ ÖF‰ ÄO‰ ¨c‰ ¡f‰ Îo‰ ˜p‰ 3 Š î
Š ³
Š •
Š Ò Š Ž Š Ü Š ú1Š IJŠ DMŠ ÇSŠ ›bŠ •dŠ nŠ )rŠ <uŠ vŠ QxŠ M~Š á ‹ Ž ‹ æ
‹ É
‹ U ‹  ‹ ` ‹ \ ‹ C'‹ UZ‹ /`‹ >k‹ ·s‹ Çt‹ 6z‹ }‹ Ê Œ ^
Œ
•
Ž
Ž
_ Œ ’*Œ Í4Œ ŠQŒ ³`Œ óvŒ ¨|Œ & •
• å • Ú • Þ-• ^
ø%• ƒ/• Ø/• ²8• å8• Ûn• p• 8u• Pv• y• ø~• µ Ž 6 Ž ß Ž m Ž ¿ Ž Ï Ž J¤¿.Ž 1Ž T=Ž ?Ž ŽBŽ ºVŽ LZŽ p`Ž ÂcŽ žeŽ útŽ guŽ z • ñ •
•
•
• ñ-•
›&• Ô,• ñ2• 3•
5• ‰>• pE• óW• ³h• v• z• Œz• s~• ‡~• ] • v
• M • ‡ • 9"• Þ#• ®%• ð0• {4• °9• w=• ¦S• ýX• ×\• Ub• kd• bl•
x• F ‘ ÿ-‘ 56‘ ×9‘ ‡<‘ 2=‘ ƒ?‘ âF‘ pK‘ [Q‘ ¸V‘
Y‘ ©h‘
j‘ C ’ ²
’
’  ’ 0 ’ *’ _*’ .,’ •0’ æ4’ –;’ b=’ ¡A’ •b’ ²h’ çm’ ÿ|’ Ú “ • “ X
“ T
“ ' “ å$“ 21“ A2“ D3“ 8A“ ŽD“ ƒG“ H“ ™M“ ÑP“ ½R“ Ó_“ $b“ j“ q“ “r“ y“
ý ” 4 ” º ” ! ” Ù” !” ä%” Q?” c?” E” vP” ¶R” W” [” Ë`” Ña” Mh” óh” |k” ‚l” u” Îy” Ì}”
W~” <
• Š • I • [ • K • š• !• ¢7• 8• >K•
N• BQ• åU• )Y• ]• :c• g• °j• é – 4 – –
– = – P – c%– 10– @– ¸[– Ýg– Øj– Vq– Åq– Ls– û
— &
— ˜
— ¾ — À%— Š*— ¬;— §=— ?— P— DR— €Z— £Z— Ì\— 7j— pn— Õn— -{— ••—
î ˜ = ˜ 1
˜ •
˜ ä
˜ £ ˜ N ˜ Ý ˜ = ˜ P#˜ Ó*˜ a/˜ X0˜ d0˜ ü8˜ …@˜ þ@˜ •A˜ H˜ •c˜ Áq˜ Ìt˜ ƒu˜
™ l
™ C
™ I ™
™ F ™ 7 ™ e ™ ‚ ™ •"™ Z(™ $*™ Ÿ,™ ç;™
?™ óF™ rG™ ªQ™ =o™ Üp™ d š • š û š ´ š ôš û!š A$š ·&š o(š J2š 4š ¯4š h6š R:š ÿ<š ï@š ÄAš ¬Oš {_š
iš ªkš $pš Hpš $qš rqš š É › g › ‹ › Ÿ › p › µ0›
1› ó1› ’2› =5› 6C› ŒM› ÕP› GS› tY› Q\› Wk› ˜l› !q› ?r› Ut›
v› Ù œ ‰ œ w
œ c œ » œ Ã'œ
(œ à)œ _6œ £7œ ŸDœ ÿEœ
Hœ ÉMœ §Nœ %\œ p_œ ”gœ ‡hœ }kœ :nœ tœ óuœ qxœ ?{œ E}œ ° • 1• [4• x8• ™>• "H• AL• •S• U• ôX• íj• "l• Vx• Ø|• e ž V
ž ñ ž , ž N ž ® ž ¨!ž °'ž ,<ž {Bž .Ož õSž „Xž xqž Ttž Qvž †}ž
Ÿ _ Ÿ û Ÿ ¸"Ÿ ¡*Ÿ â.Ÿ ×3Ÿ Ù7Ÿ
Ÿ ½
DŸ JŸ ÔLŸ 0VŸ DgŸ ØkŸ (pŸ •pŸ QtŸ StŸ ÛyŸ P}Ÿ D~Ÿ
%F •G ~J )L €V ½^ âk hl ‘• H ¡ e ¡ › ¡
¡ D ¡ æ-¡
C
´
ü
ê"
b)
Œ@
¡ k*¡ •7¡ sR¡ çT¡ Ña¡ Óc¡ ƒf¡ h¡ âk¡ 'l¡ jo¡ |r¡ Qu¡ k{¡ C ¢ © ¢ U ¢ - ¢
–
¢ Ï ¢ d ¢ $¢ Á&¢ …1¢ d3¢ Å@¢ ¤S¢ #W¢ ¡^¢ ¡_¢ ñ_¢ þs¢ ]y¢ {¢ o|¢ " £ Â
£ }*£ ;+£ ×4£ â5£ ;£ fE£ nF£ ÅG£ tN£ ÄO£ òP£ ¨W£ ¿\£ s`£ Æe£ Ág£ ìm£
s£ £v£ jw£ • ¤ 5 ¤ ˆ ¤ ©6¤ •@¤ ÓF¤ áF¤ öP¤ “X¤ ŸX¤ Úd¤ Xf¤ èf¤ r¤ Út¤ ³•
¤ ä
¥ 5
¥ • ¥ | ¥ Ù ¥
¥ 9-¥ ˆ!¥ s1¥ Q9¥ ŒD¥ yH¥ `J¥ MR¥ ¯T¥ ×Y¥ –
c¥ ýd¥ ðj¥ ~r¥ ìy¥ ‡ ¦
¦ æ ¦
¦ ˆ
¦ ‰ ¦ ˜ ¦ ó ¦ â"¦ À$¦ (¦ ¥6¦ LM¦ N¦ ÔQ¦ šR¦ ÓW¦ •Y¦ Ó]¦ ´a¦ bm¦ Hr¦ óz¦ Ç{¦ ° § É § !§ m'§ § @§ ½.§ 3§ A6§ 7§ ‹7§ e?§ @§ í@§ DA§ ÛC§ !F§ ˜I§ XM§ |P§ ÞZ§ ´\§ Mt§ Ìz§
•
¨ ò ¨ ¶ ¨ ¨ +¨ Œ/¨ $C¨
F¨ DK¨ ¯O¨ vU¨ «X¨ ãX¨ öY¨ Ä\¨ `¨ l¨ )m¨ Dm¨ $s¨ 5x¨ -|¨ È~¨
© Û © ¹ © -© 9
© â(© ¦+© }8© Q:© ð@© eD© L© £Q© ia© ”d© œf© vh© Õ•© d ª Z ª
w%ª /ª ]/ª ·6ª \7ª ³<ª ÁIª bLª ÌLª «Mª ²Mª –
Pª 3Rª ŒRª ÅYª #Zª Wbª ómª §wª þ
ª D ª s!ª
«
«
« g « î"« B#« Q'« ’,«
.« 1« S6« ]9« š<« …U« £Z« uh« up« ¤}« n ¬
¬ e
¬ å ¬ *$¬ &¬ R&¬ ‡¬ Ÿ8¬ •A¬ Q¬ ‘V¬ X¬ U^¬ \m¬ ,o¬ U|¬
- ƒ ­
- < - À - Æ!- +- :- H?- ™B­ •J- ¸U- `g- Zz- }® n ® Ó ®
® ÷<® #=® KB® e_® •f® Žk® h~® î~® ß ¯ ø
¯ I ¯ G,¯ 24¯ ñ6¯ ù7¯ å;¯ F¯ òH¯ kK¯ N¯ S¯ \¯ Na¯ Tq¯ ••¯ á ° ø ° q
°
° 8 °
° < ° .° ~!° ˆ3° \6° •C° -K° >N° šV° q^° ÷e° ¶q°
v° ¥w° Ùy° î~°
± V ± ä ± W ± g ± ¸ ± ¼&± &'± ›(± Ú)± 7;± 1@± 3E± @K± ¨O
± rZ± ^b± ef± Sw± Lz± J{± Õ± 4 ² © ² Ì
²
² Û ² ] ² Ã ²
² ' ²
!² ©"² ×$² Q)² X0² é2² üF² Q[² Sa² Ôb² ãd² öm² 6n² ûp² Ku² •² Q ³ ƒ ³ ·
³ ò
³ C ³ ´
³ }9³ !?³ T³ æW³ @`³ @a³ ¶b³ f³ ¡m³ ‡p³ r³ ¢w³ ’x³ Ù~³ > ´ E ´
´ “´ NC´ D´ nF´ ßL´ 7M´ %N´ ŠN´ "U´ §_´ /a´ ni´ …m´ ¢r´
z´ å|´ ¥ µ h µ ˜-µ •"µ $µ o+µ ·+µ Þ0µ û6µ áKµ •Nµ -Xµ $oµ ~sµ –
zµ c ¶ É ¶
¶
¶ ì ¶ ² ¶ ’+¶ ¹+¶ ¹5¶ š9¶ Ø;¶
· A
@¶ 8I¶
Y¶ z · “
· y
· 0 · • · .· !"· Ñ%· ™'· Õ2· u:· Ó;· ÆH· #T· «Z· ³[· 9_· |a· n· 7v· }x· 2z· A}· ù}·
„ ¸ ‡ ¸ a ¸ †-¸ ? ¸ Â(¸ —
/¸ ³8¸ ¾>¸ 6F¸ ¾K¸ ¸T¸ hW¸ Z¸ Ÿ^¸ ¬^¸ 5a¸ ba¸ Åe¸ ©k¸ y¸ ¹ ¹ Ã ¹ ÷ ¹ Í
¹ ©¹ ݹ “$¹ Ý2¹ ±:¹ ?;¹ Ä;¹ ?>¹ ä@¹ qD¹ …M¹ U¹ Y¹ db¹ ak¹ âq¹ ·x¹ •|¹ { º ± º
U º
º Œ
º : º Á&º -+º )/º •2º Õ3º d@º ¶Jº †Zº É\º ¯cº gº –gº iº fqº ’ » V » ¢
» ¹ » 4 » .» ˜1» 1;» øN» ìS» ÓT» ¯V» i_» Ä`» jj» 9o» Äo» 7r» ©t» ²~» ½•»
ו» ¨ ¼ 5 ¼ Ÿ ¼ -#¼ ø'¼ µ)¼ ^+¼ µ+¼ ú+¼ ,¼ 4¼ B.¼ K6¼ ÂC¼ ‡E¼ 1V¼ CX¼ •[¼ ¶a¼ pb¼ de¼ j¼
½ Ì
½ • ½ ô ½ Å ½ æ)½ •+½ s2½ #4½ ô:½ ¾F½ =R½ ?S½ KU½ q`½ Ó`½ $f½ +j½ Gk½
r½ Âr½ 3s½ 9t½ nx½ N ¾ Z ¾ q ¾ Ñ ¾ z
¾ ·
¾ Î ¾ 6¾ ‚"¾ €0¾ !9¾ P;¾ Î;¾ µA¾ hK¾ PM¾ GQ¾ |Q¾ •T¾ b¾ 4k¾ p¾ ëp¾ þt¾ <w¾ px¾
÷ ¿ ¬&¿ ¼9¿ 3:¿ T;¿ »;¿ F<¿ B¿ ù\¿ k_¿ .a¿ ûj¿ ¿l¿ ðo¿ a{¿ † À |
À „
À â#À Î,À
hÀ
<À G=À _?À áAÀ üCÀ HMÀ ŠXÀ {bÀ mgÀ
hÀ ¤rÀ TyÀ "|À X Á
Á Ñ
Á ù
Á N Á Ô Á n
Á !+Á œ/Á ä2Á D3Á É4Á 5Á å6Á
EjÁ ðoÁ ]vÁ G}Á [
:Á CGÁ BIÁ [LÁ 7NÁ ×VÁ CXÁ
^Á ÔaÁ XbÁ
cÁ
Â Ø Â
 W  p-  c% Â% Ø/ 6 ¾8 Ó8 ä9 ¸> Û> ¥c ·c `i @n %s Gz 2{ ½| >
à h!à *à û+à ø<à &Aà ³Cà Ià ¹Là ŒMà 4Nà •Pà Ibà Õgà ozà ™zà W~à ` Ä ^ Ä
Ä ¥$Ä 16Ä „7Ä Ê@Ä ;FÄ 3HÄ ƒNÄ žSÄ Z[Ä ,]Ä ¹aÄ “hÄ ¬sÄ ‰|Ä Ö|Ä 7 Å
Å
Å
Æ
Æ
Ž Å ñ Å ) Å ~ Å
Å =%Å Ú,Å FY@Å 3CÅ (DÅ žLÅ nMÅ @bÅ RdÅ õgÅ ÜrÅ MwÅ ¹}Å i~Å Á~Å < Æ Î Æ Ï Æ I
Ç
1
Æ ú
Æ t Æ ç Æ ((Æ 4+Æ Õ0Æ 52Æ =Æ º>Æ Å?Æ @GÆ &QÆ @XÆ ò[Æ •gÆ ðpÆ -}Æ 8 Ç h Ç
Œ Ç @ Ç e-Ç ¸"Ç 3%Ç Ñ.Ç ¹;Ç µ<Ç AFÇ ÝHÇ öMÇ VÇ WZÇ ¹[Ç ‘`Ç žjÇ ”kÇ coÇ
ÌpÇ öqÇ èrÇ tÇ czÇ ˆ È C
È Ø È Þ È B È Z+È -È 74È ü?È mOÈ $PÈ ó_È `È ¥aÈ ‰qÈ Õ}È •
É X É “ É O%É È)É ¯+É ¥,É ”3É F9É Y;É ÆLÉ ;XÉ •_É ÒaÉ øjÉ èlÉ (~É
•É é•É [ Ê ° Ê L Ê ô Ê E Ê ï"Ê •#Ê 7%Ê ˜&Ê (Ê •(Ê )Ê *Ê 28Ê }=Ê ^BÊ ÊG
Ê NÊ ZÊ ÏZÊ Q[Ê îaÊ ¿gÊ 7kÊ 6vÊ …wÊ ^xÊ T•Ê d•Ê À Ë o Ë W Ë p Ë c Ë ª Ë G"
Ë •"Ë B%Ë U'Ë T*Ë ƒ*Ë ^CË ;JË gKË ÍMË òMË
NË ¦[Ë æ[Ë b^Ë
fË ·lË Ô Ì
Ì Q Ì ~ Ì
"Ì Ü(Ì )Ì ðÌ £9Ì HGÌ }GÌ 9HÌ ªJÌ YÌ WiÌ c Í Ÿ"Í î#Í ý&Í Ê'Í I)Í &@Í þAÍ
WÍ 1XÍ }dÍ 3tÍ à{Í í Î _ Î ñ Î ¿!Î .$Î 0Î ¿8Î ½@Î QPÎ ±VÎ ›\Î kÎ
ÐlÎ wÎ
Ï « Ï 3 Ï P Ï „ Ï Ï # Ï ‘ Ï ³,Ï ‹8Ï ËLÏ •MÏ pWÏ öYÏ Õ^Ï çgÏ ºiÏ 8 Ð U Ð Œ
Ð
Ð ¨ Ð a"Ð 3#Ð f,Ð Q/Ð %EÐ ŒEÐ ÄQÐ ’TÐ ÈUÐ óVÐ yXÐ n_Ð ?aÐ þiÐ _
nÐ ârÐ }Ð ï}Ð — Ñ e
Ñ h
Ñ &
Ñ ë Ñ • Ñ 9%Ñ >'Ñ ;*Ñ ª,Ñ SIÑ ˆQÑ öSÑ NVÑ jÑ VnÑ ðsÑ gtÑ ‹yÑ z Ò O
Ò · Ò & Ò <Ò b(Ò ?)Ò G,Ò m3Ò 5Ò -7Ò ¿8Ò 3;Ò -OÒ nTÒ !\Ò ’cÒ þlÒ XoÒ btÒ õ~Ò •Ò L Ó
þ Ó » Ó c Ó ³ Ó %%Ó G)Ó f,Ó V.Ó x3Ó
7Ó ¹7Ó 8Ó IEÓ uEÓ –FÓ -LÓ RÓ ïVÓ È\Ó HhÓ “uÓ Ó Ô Ý Ô
Ô § Ô <Ô ?Ô ÝhÔ JvÔ }xÔ ózÔ r•Ô + Õ € Õ þ Õ K Õ ìÕ &$Õ –
6Õ •FÕ $QÕ zQÕ ¿SÕ MTÕ VfÕ xiÕ
kÕ RpÕ åtÕ kvÕ «wÕ @ Ö
Ö • Ö a Ö œÖ *!Ö S'Ö h+Ö
1Ö 3Ö ¯8Ö QÖ yWÖ ¤^Ö Ž_Ö qbÖ ßcÖ chÖ äkÖ ªqÖ R × J
× -
× ¤ × 4 × "+× PA× ñC× ·`× .x× ||× 5
Ø Ë Ø
Ø a Ø 5 Ø ¾(Ø Î1Ø d=Ø [JØ •KØ ?`Ø
aØ vvØ @
Ù X Ù ‘ Ù ¡ Ù y Ù
#Ù Ú)Ù Ñ1Ù ˆ:Ù Î<Ù
EÙ ÅIÙ •NÙ ¢RÙ ‡SÙ
XÙ :dÙ nfÙ ÊlÙ âlÙ
à…ŸòùOh «‘ +'³Ù0
@
L
`
œ
¨
!Ù
„@Ù
3UÙ lVÙ ²WÙ
JtÙ “yÙ {zÙ ¾|Ù ì|Ù › Ú ï Úþÿ
ì
˜
p
|
(
4
´
À
Ì
Ô
Ü
ä
ä
t
Single-Molecule FRET
Measurement with [Mg2+] Jump on Mutated Thermophilic RNAase P RNA Reveals
Heterogenous Pathway xh -
Normal.dot Word
@
† n
È @
Ž -Ë È @
} È
þÿ
+,ù®
\
@
D
glenna
¾_Ì
-
ÿA
1x
8
-
ÕÍÕœ.
“—
Microsoft Office
+,ù®D
ÕÍÕœ.
“—
h
œ
¼
p
¤
|
¬
„
´
Œ
”
<
ä
-
uc
"
á
O¹
Ä
t
Single-Molecule FRET Measurement with [Mg2+] Jump on
Mutated Thermophilic RNAase P RNA Reveals Heterogenous Pathway
-
Title
¼
8
@
_PID_HLINKS
ä
A
t
1
m a i l t o : n f s c h e r e @ u c h i c a g o . e d u
0
-
ÿÿÿÿ
MSWordDoc
þÿ
À
F
Microsoft Office Word Document
Word.Document.8 ô9²q
= Ú
Ú i!Ú w#Ú —
&Ú î.Ú <Ú 8BÚ JÚ ãMÚ %RÚ =YÚ 'eÚ YeÚ lÚ ¾qÚ ¸rÚ çrÚ • Û ^ Û ÜÛ Ì&Û Ú4Û –
=Û ’FÛ :QÛ `QÛ «QÛ "[Û O`Û bÛ mqÛ _{Û }•Û ° Ü • Ü ¸ Ü Ž(Ü Å,Ü í5Ü •8Ü UO
Ü SÜ ÔTÜ ’WÜ MXÜ ]Ü c]Ü ÍgÜ uiÜ kÜ ^pÜ ÏvÜ ƒxÜ íyÜ ‘•Ü ¨•Ü ª Ý ó Ý i
Ý ¨
Ý
Ý
Ý
@Ý Ì@Ý KÝ qPÝ •ZÝ ©jÝ "rÝ ésÝ ?}Ý Ž Þ ! Þ ×
Þ M Þ Ù Þ • Þ Í$Þ ž3Þ 9Þ •BÞ ªKÞ [UÞ ubÞ ¥hÞ kÞ MpÞ
ß U ß • ß ‘#ß Š:ß
™;ß K<ß —
Fß ”Nß gUß {Zß _`ß Éfß þkß Étß îuß Ð à n à ¯ à i à % à Ö-à ˆ!à J2à °8à CA
à Cà ëGà ®Jà ôRà ácà Sqà ¹zà œ"á
*á H0á c0á Í>á “Aá ™Aá ÄBá ¿Cá ÎDá ëFá $Qá †Tá •Uá ™Wá ¬[á |cá ª â 6 â 4
â E â ` â
â + â ^ â Ð*â §.â T3â µKâ ¿Zâ 0fâ j•â ^ ã X
ã È ã ] ã ¥#ã :ã ¯<ã NKã
Vã ¯Yã Ó\ã Ñ]ã |`ã
`ã vbã 2oã
•ã • ä ä ä ¶ ä è ä Ð ä H ä z#ä x$ä %'ä
Hä SMä ¹Nä OVä gXä -bä •jä rä h~ä %
(ä ‰/ä è5ä ©9ä Ä@ä lEä
å ¿ å Oå G!å ô$å /'å ¿1å i9å ÷?å ½Cå EUå
Zå E]å
bå rå Íyå ò æ
æ • æ { æ ,"æ m0æ ³0æ •1æ 19æ ÿGæ Sæ ¥Tæ •Xæ ô`æ ×aæ Odæ jæ &kæ qæ ¼r
æ ï ç î ç = ç × ç µ ç 5 ç p&ç h+ç
1ç Ö2ç †=ç ‘Cç Š[ç †eç hfç chç âtç Œ}ç ½ è â è I è i è
è H è v
è Ó)è +è ó0è nAè |Vè Þ^è Ùdè ¿tè Ø é
é } é ^ é
é $#é Ž,é 3é •>é éQé p]é ãcé Bdé eé ôgé Rhé œhé pé Žté 9
ê j
ê å
ê Ù$ê R(ê r+ê ½3ê -4ê 9ê ø9ê 8:ê ;ê 0>ê ýAê jHê [Jê LNê ]Vê ¡Yê [Zê "^ê
N`ê Ùqê rvê yê ¾yê §|ê ` ë §&ë ^ë á1ë ¡3ë ;ë c@ë ŸAë dBë <Hë ˆIë óRë Übë kjë Åsë auë ë ì - ì
ì #
ì Ä
ì ·
ì
ì
í
í
„ ì Óì 5+ì `Ù0ì 3<ì h=ì èAì PHì ¬Jì ´Kì uTì
:
3
\ì &`ì M`ì saì ßhì •vì Ëzì †~ì ; í t
í s
í À í † í ®!í ¸!í X"í #í 3/í yGí <Ií ÒZí †aí ºbí ‹jí
î _ î ú î mî Ù0î $3î Ÿ;î úWî ÍYî w\î û`î ‘jî äjî —mî •pî §pî S ï G ï –
ï ®&ï à(ï ú/ï ¬0ï •1ï C5ï
?ï åOï
Sï /_ï –
cï /kï \pï hrï í}ï ñ ð õ ð ð ð µ"ð à)ð G.ð œ/ð à0ð N4ð J5ð HCð ŠOð ÆOð bt
ð Æxð : ñ b ñ V ñ ) ñ
ñ #$ñ zñ Ž/ñ D0ñ 7ñ ›7ñ Ñ:ñ Ê@ñ "Añ ŠCñ ÙLñ 4Qñ £Uñ îVñ ½Zñ P[ñ ñ[ñ C`ñ $dñ „}ñ
‰
ò â ò 7 ò ò(ò 2/ò -1ò 73ò œ3ò Ô:ò •?ò -Wò 4^ò |_ò øhò èlò Inò mqò Œ
~ò
ó
ó K ó Ñ ó ^ ó ´%ó 8-ó r3ó ê;ó ÕMó EWó ^ó zbó …mó Êmó Þ ô ãô ý)ô *ô õ2ô $3ô n7ô J:ô ŸIô ðOô <Sô iXô õZô þpô ;zô ‡zô m|ô ¦~ô (•ô ð õ
õ ¯ õ
õ D(õ
ö n ö
oö
÷ ¶ ÷
ø i ø
³ õ É õ • õ Ð õ Ç õ Ò
?*õ Ë7õ 3>õ c@õ (Cõ ‡Põ l\õ ±jõ Ðkõ $oõ {õ o{õ ñ~õ {
•-ö dö %ö Å%ö D+ö å3ö A4ö DBö œJö ‹Oö LSö ÞTö -^ö ebö
Í ÷ † ÷ ] ÷ ä ÷ ¨(÷ c3÷ •=÷ `C÷ èF÷ AU÷ °X÷ Z÷ Ãv÷ ø ø · ø S
h ø ¢!ø -+ø Ž,ø ñ2ø ç;ø +@ø `Cø ØHø TZø ûaø ïcø œdø !hø
|ø ä~ø
ù y ù ª ù à ù ª
ù Ï
ù ð ù ³)ù @0ù Ó=ù FKù ]Où ÔTù ª[ù ?]ù Õaù hù * ú - ú • ú h ú D ú Ñ(ú Ûú 3ú 54ú K7ú ":ú hBú Nú åSú ÔTú BWú $_ú œdú ûhú çjú
oú …oú íoú Krú 7xú exú ¶zú û û O û
û
û Î û < û y û 2'û Êû ¸/û -?û Ë?û »Bû ôGû lJû [Rû 8Sû (Wû Áiû 8pû pzû <~û D ü ü 1ü "ü Aü !.ü 3ü qAü ½Vü àVü çWü o^ü Ubü cü 1dü •dü «kü -uü Ÿ•ü s ý Ë
ý f ý ¾ ý •%ý 8'ý î/ý Q4ý ©?ý ´Tý ?Yý ¸_ý èqý Š{ý ø þ X þ Ì þ [ þ â þ U þ
" þ š&þ Ï*þ w-þ 4þ æ5þ :þ ¥<þ ùHþ "Rþ :Vþ Xþ /`þ faþ +nþ zqþ yþ O ÿ Ô ÿ Î#ÿ 0ÿ -1ÿ ‡1ÿ ~6ÿ „Eÿ ÊIÿ èKÿ )bÿ Ödÿ Wgÿ ,rÿ ¿tÿ a~ÿ
› ɛ Л ֛ ܛ
à› á› â› ï› ô› ù› þ›
œ
œ
œ
œ
œ
œ
œ
Wœ ý»
œ
"œ
#œ
$œ
%œ
&œ
+œ
/œ
9œ
ž
:œ
;œ
?œ
ž
ž
–
ÿÿ
E N . I n s t a n t F o r m a t øbÕ
E N . L a y o u t ܵÕ
Dœ
Hœ
Mœ
Vœ
ž
E N . L i b r a r i e s „¸Õ
w < E N I n s t a n t F o r m a t > < E n a b l e d > 1 < / E n a b l e d
> < S c a n U n f o r m a t t e d > 1 < / S c a n U n f o r m a t t e d
> < S c a n C h a n g e s > 1 < / S c a n C h a n g e s > < / E N I n s t
a n t F o r m a t > P < E N L a y o u t > < S t y l e > P N A S < / S t
y l e > < L e f t D e l i m > { < / L e f t D e l i m > < R i g h t D e l
i m > } < / R i g h t D e l i m > < F o n t N a m e > T i m e s
N e w
R o m a n < / F o n t N a m e > < F o n t S i z e > 1 1 < / F o n t S i
z e > < R e f l i s t T i t l e > < / R e f l i s t T i t l e > < S t a r
t i n g R e f n u m > 1 < / S t a r t i n g R e f n u m > < F i r s t L
i n e I n d e n t > 0 < / F i r s t L i n e I n d e n t > < H a n g i n g
I n d e n t > 7 2 0 < / H a n g i n g I n d e n t > < L i n e S p a c i
n g > 0 < / L i n e S p a c i n g > < S p a c e A f t e r > 0 < / S p a c
e A f t e r > < / E N L a y o u t > N < E N L i b r a r i e s > < L i b
r a r i e s > < i t e m > N o n E q u P a p e r . e n l < / i t e m > < /
L i b r a r i e s > < / E N L i b r a r i e s > ÿ@ €
o
o H ±
o
o
`
~
~
~¼ ~½ ŒÀ ŒÁ jÅ jÆ ²ï ²ð ²ñ ²ò ²ó ”û ”ü ”n ”o p« p¬ p®
ä¯ ä° ä³ ä´ D¶ D· D¹ Dº ü» p
@ p
p ( @ p Æ
p •
@ p Ì
p œ @ p Ò
p ¨ @ p þ
p
p
p
p
@
p
p
p
@
@
p
@
‚
€
ÿÿ
G •
R o m a n
p
p
@ p À
p
@ p Ž
p
U n k n o w n ÿÿ
‡z
€
5 •
‡z
€
ÿ
i n g d i n g s
A r i a l
;  †
„ @
p
è @
p
ÿÿ
ÿ
; •
v
p
ð @
p
|
ÿÿ
ÿÿ
ÿÿ
T i m e s
N e w
€
S y m b o l
p
ü
ÿÿ
3&•
€
W
€
N e w
1x
á
ÿ
1 ˆ
"
"
S i m S u n
‹[SO ?5•
C o u r i e r
ðÐ
h
eŠºfnŒºf±Dº&
Á ð
‡z
á
ÿA
1x
´ ´ •• 4
O¹
2ƒq ð
ðÿ
ÿÿ
M e a s
M u t a
R e v e
P a t h
á
"
d
KX
? ä
ÿÿÿ•ÿÿÿ•ÿÿÿ•ÿÿÿ•ÿÿÿ•ÿÿÿ•ÿÿÿ•°U@
2
s S i n g l e - M o l e c u l e
F R E T
u r e m e n t
w i t h
[ M g 2 + ]
J u m p
o n
t e d
T h e r m o p h i l i c
R N A a s e
P
R N A
a l s
H e t e r o g e n o u s
w a y
x h
g l e n n a
$
ÿA
O¹
C o m p O b j
ÿÿÿÿÿ
ÿÿÿÿÿÿÿ
q
ÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿ