Some New Fixed Point Theorems in Partial Metric Spaces with

Hindawi
Journal of Function Spaces
Volume 2017, Article ID 1072750, 13 pages
https://doi.org/10.1155/2017/1072750
Research Article
Some New Fixed Point Theorems in Partial Metric
Spaces with Applications
Rajendra Pant,1 Rahul Shukla,1 H. K. Nashine,2 and R. Panicker3
1
Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur 440010, India
Department of Mathematics, Amity University, Chhattisgarh Manth/Kharora (Opp. ITBP) SH 9, Raipur, Chhattisgarh 493225, India
3
Department of Mathematical Sciences and Computing, Walter Sisulu University, Mthatha 5117, South Africa
2
Correspondence should be addressed to R. Panicker; [email protected]
Received 2 February 2017; Accepted 7 March 2017; Published 29 March 2017
Academic Editor: Tomonari Suzuki
Copyright © 2017 Rajendra Pant et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Recently, a number of fixed point theorems for contraction type mappings in partial metric spaces have been obtained by various
authors. Most of these theorems can be obtained from the corresponding results in metric spaces. The purpose of this paper is to
present certain fixed point results for single and multivalued mappings in partial metric spaces which cannot be obtained from the
corresponding results in metric spaces. Besides discussing some useful examples, an application to Volterra type system of integral
equations is also discussed.
Dedicated to Professor Shyam Lal Singh on his 75th birthday
1. Introduction and Preliminaries
Throughout this paper N, R, and R+ denote the set of all
natural numbers, the set of all real numbers, and the set of
all nonnegative real numbers, respectively.
The well-known Banach contraction theorem (BCT) has
been generalized and extended by many authors in various
ways. In 1974, Cฬiricฬ [1] introduced the notion of quasicontraction and obtained a forceful generalization of Banach
contraction theorem.
Definition 1. A self-mapping ๐‘‡ of a metric space ๐‘‹ is a quasicontraction if there exists a number ๐‘Ÿ โˆˆ [0, 1) such that, for
all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹,
๐‘‘ (๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐‘Ÿ๐‘š (๐‘ฅ, ๐‘ฆ) ,
(C)
where ๐‘š(๐‘ฅ, ๐‘ฆ) = max{๐‘‘(๐‘ฅ, ๐‘ฆ), ๐‘‘(๐‘ฅ, ๐‘‡๐‘ฅ), ๐‘‘(๐‘ฆ, ๐‘‡๐‘ฆ), ๐‘‘(๐‘ฅ, ๐‘‡๐‘ฆ),
๐‘‘(๐‘ฆ, ๐‘‡๐‘ฅ)}.
Theorem 2 (see [1]). A quasi-contraction on a complete metric
space has a unique fixed point.
We remark that a quasi-contraction for a self-mapping
on a metric space is considered as the most general among
contractions listed by Rhoades [2].
In 2006, Proinov [3] established an equivalence between
two types of generalizations of the BCT. The first type
involves Meir-Keeler [4] type contraction conditions and
the second type involves Boyd and Wong [5] type contraction conditions. Further, generalizing certain results of
Jachymski [6] and Matkowski [7] he obtained the following
general fixed point theorem, which extends Cฬiricฬโ€™s quasicontraction.
Theorem 3 (see [3], Th. 4.1). Let ๐‘‡ be a continuous and
asymptotically regular self-mapping on a complete metric space
(๐‘‹, ๐‘‘) satisfying the following conditions:
(P1) ๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐œ‘(๐ท(๐‘ฅ, ๐‘ฆ)) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹,
(P2) ๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) < ๐ท(๐‘ฅ, ๐‘ฆ), whenever ๐ท(๐‘ฅ, ๐‘ฆ) =ฬธ 0,
2
Journal of Function Spaces
where ๐œ‘ : R+ โ†’ R+ , a function satisfying the following: for any
๐œ€ > 0 there exists ๐›ฟ > ๐œ€ such that ๐œ€ < ๐‘ก < ๐›ฟ implies ๐œ‘(๐‘ก) โ‰ค ๐œ€,
๐›พ โ‰ฅ 0, and
๐ท (๐‘ฅ, ๐‘ฆ) = ๐‘‘ (๐‘ฅ, ๐‘ฆ) + ๐›พ [๐‘‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘‘ (๐‘ฆ, ๐‘‡๐‘ฆ)] .
(1)
Then ๐‘‡ has a unique fixed point.
Moreover if ๐›พ = 1 and ๐œ‘ is continuous with ๐œ‘(๐‘ก) < ๐‘ก for all
๐‘ก > 0, then the continuity of ๐‘‡ can be dropped.
A mapping ๐‘‡ satisfying the conditions (P1) and (P2) is
called a Proinov contraction. The following example shows
the generality of Proinov contraction over quasi-contraction.
Example 4 (see [8]). Let ๐‘‹ = {1, 2, 3} with the usual metric ๐‘‘
and ๐‘‡ : ๐‘‹ โ†’ ๐‘‹ such that
๐‘‡1 = 1,
(p3 ) ๐‘(๐‘ฅ, ๐‘ฆ) = ๐‘(๐‘ฆ, ๐‘ฅ);
(p4 ) ๐‘(๐‘ฅ, ๐‘ง) โ‰ค ๐‘(๐‘ฅ, ๐‘ฆ) + ๐‘(๐‘ฆ, ๐‘ง) โˆ’ ๐‘(๐‘ฆ, ๐‘ฆ).
The pair (๐‘‹, ๐‘) is called a partial metric space.
A partial metric ๐‘ on ๐‘‹ generates a ๐‘‡0 -topology ๐œ๐‘ on ๐‘‹
with a base of the family of open ๐‘-balls {๐ต๐‘ (๐‘ฅ, ๐‘Ÿ) : ๐‘ฅ โˆˆ ๐‘‹, ๐‘Ÿ >
0}, where
๐ต๐‘ (๐‘ฅ, ๐‘Ÿ) = {๐‘ฆ โˆˆ ๐‘‹ : ๐‘ (๐‘ฅ, ๐‘ฆ) < ๐‘ (๐‘ฅ, ๐‘ฅ) + ๐‘Ÿ} .
(3)
If ๐‘ is a partial metric on ๐‘‹, then the function ๐‘๐‘  : ๐‘‹ × ๐‘‹ โ†’
R+ given by
๐‘๐‘  (๐‘ฅ, ๐‘ฆ) = 2๐‘ (๐‘ฅ, ๐‘ฆ) โˆ’ ๐‘ (๐‘ฅ, ๐‘ฅ) โˆ’ ๐‘ (๐‘ฆ, ๐‘ฆ)
(4)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ is a metric on ๐‘‹.
(2)
๐‘‡3 = 1.
Example 6 (see [10, 14]). Let ๐‘‹ = R+ and ๐‘ : ๐‘‹ × ๐‘‹ โ†’ R+
given by ๐‘(๐‘ฅ, ๐‘ฆ) = max{๐‘ฅ, ๐‘ฆ} for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then (๐‘‹, ๐‘) is
a partial metric space.
The mapping ๐‘‡ does not satisfy the condition (C). However,
๐‘‡ satisfies the conditions (P1) and (P2) with ๐œ‘(๐‘ก) = 2๐‘ก/(1 + ๐›พ),
where ๐›พ > 1.
Example 7 (see [9, 14]). Let ๐‘‹ = {[๐‘Ž, ๐‘] : ๐‘Ž, ๐‘ โˆˆ R, ๐‘Ž โ‰ค ๐‘}.
Then ๐‘([๐‘Ž, ๐‘], [๐‘, ๐‘‘]) = max{๐‘, ๐‘‘} โˆ’ min{๐‘Ž, ๐‘} defines a partial
metric ๐‘ on ๐‘‹.
On the other hand, in 1994, Matthews [9] introduced
the notion of partial metric spaces to study the denotational
semantics of dataflow networks. It is widely recognized that
partial metric spaces play an important role in constructing
models in the theory of computation (see [10] and references
thereof). Matthews also obtained the partial metric version
of Banach contraction theorem. Subsequently, many authors
studied partial metric spaces and their topological properties
and obtained a number of fixed point theorems for single and
multivalued mappings (cf. [9โ€“27] and many others).
In [28], Haghi et al. pointed out that some fixed point
generalizations to partial metric spaces can be obtained from
the corresponding results in metric spaces. To demonstrate
facts they considered certain cases. Motivated by Proinovโ€™s
results, in this paper, we present some fixed point theorems
in partial metric spaces which cannot be obtained from the
corresponding results in metric spaces. Indeed, we obtain
some fixed and common fixed point theorems for single
and multivalued mappings in the setting of partial metric
spaces. Our results complement, extend, and generalize a
number of fixed point theorems including some recent results
in [10, 11, 14, 16, 23] and others. Besides discussing some
useful examples, an application to Volterra type system of
integral equations is also given. Finally, we show that fixed
point problems discussed herein are well-posed and have
limit shadowing property.
For the sake of completeness, we recall the following
definitions and results from [9, 10, 14].
Definition 8. Let (๐‘‹, ๐‘) be a partial metric space. Then one
has the following:
๐‘‡2 = 3,
Definition 5. A partial metric on a nonempty set ๐‘‹ is a
function ๐‘ : ๐‘‹ × ๐‘‹ โ†’ R+ such that for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹
(p1 ) ๐‘(๐‘ฅ, ๐‘ฅ) = ๐‘(๐‘ฆ, ๐‘ฆ) = ๐‘(๐‘ฅ, ๐‘ฆ) if and only if ๐‘ฅ = ๐‘ฆ;
(p2 ) ๐‘(๐‘ฅ, ๐‘ฅ) โ‰ค ๐‘(๐‘ฅ, ๐‘ฆ);
(1) A sequence {๐‘ฅ๐‘› } in ๐‘‹ converges to a point ๐‘ฅ โˆˆ ๐‘‹ if
and only if lim๐‘›โ†’โˆž ๐‘(๐‘ฅ, ๐‘ฅ๐‘› ) = ๐‘(๐‘ฅ, ๐‘ฅ).
(2) A sequence {๐‘ฅ๐‘› } in ๐‘‹ is Cauchy if lim๐‘›,๐‘šโ†’โˆž ๐‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘š )
exists and is finite.
(3) ๐‘‹ is complete if every Cauchy sequence {๐‘ฅ๐‘› } in ๐‘‹
converges to a point ๐‘ฅ โˆˆ ๐‘‹, that is, ๐‘(๐‘ฅ, ๐‘ฅ) =
lim๐‘›,๐‘šโ†’โˆž ๐‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ).
Lemma 9 (see [9]). Let (๐‘‹, ๐‘) be a partial metric space. Then
๐‘‹ is complete if and only if the metric space (๐‘‹, ๐‘๐‘  ) is complete.
Furthermore, lim๐‘›โ†’โˆž ๐‘๐‘  (๐‘ฅ๐‘› , ๐‘ง) = 0 if and only if
๐‘ (๐‘ง, ๐‘ง) = lim ๐‘ (๐‘ฅ๐‘› , ๐‘ง) = lim ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) .
๐‘›โ†’โˆž
๐‘›,๐‘šโ†’โˆž
(5)
In [25], Romaguera introduced the following notions of
0-Cauchy sequence and 0-complete partial metric spaces. He
obtained a characterization of completeness for partial metric
space using the notion of 0-completeness.
Definition 10. A sequence {๐‘ฅ๐‘› } in a partial metric space (๐‘‹, ๐‘)
is 0-Cauchy if lim๐‘›,๐‘šโ†’โˆž ๐‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) = 0. The partial metric
space (๐‘‹, ๐‘) is 0-complete if each 0-Cauchy sequence in ๐‘‹
converges to a point ๐‘ฅ โˆˆ ๐‘‹ such that ๐‘(๐‘ฅ, ๐‘ฅ) = 0.
Notice that every 0-Cauchy sequence in (๐‘‹, ๐‘) is Cauchy
in (๐‘‹, ๐‘๐‘  ) and every complete partial metric space is 0complete. However, a 0-complete partial metric space need
not be complete (cf. [29] and [25]).
A subset ๐ด of ๐‘‹ is closed (resp., compact) in (๐‘‹, ๐‘) if
it is closed (resp., compact) with respect to the topology ๐œ๐‘
induced by ๐‘ on ๐‘‹. The subset ๐ด is bounded in (๐‘‹, ๐‘) if there
Journal of Function Spaces
3
exist ๐‘ฅ0 โˆˆ ๐‘‹ and ๐‘€ > 0 such that ๐‘Ž โˆˆ ๐ต๐‘ (๐‘ฅ0 , ๐‘€) for all ๐‘Ž โˆˆ ๐ด;
that is,
๐‘ (๐‘ฅ0 , ๐‘Ž) < ๐‘ (๐‘Ž, ๐‘Ž) + ๐‘€ โˆ€๐‘Ž โˆˆ ๐ด.
Lemma 14 (see [28]). Let (๐‘‹, ๐‘) be a partial metric space,
๐‘‡ : ๐‘‹ โ†’ ๐‘‹ a self-mapping, ๐‘‘ the metric constructed in
Proposition 13, and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Define
(6)
๐‘€๐‘‘ (๐‘ฅ, ๐‘ฆ) = max {๐‘‘ (๐‘ฅ, ๐‘ฆ) , ๐‘‘ (๐‘ฅ, ๐‘‡๐‘ฅ) , ๐‘‘ (๐‘ฆ, ๐‘‡๐‘ฆ) ,
๐‘
Let ๐ถ๐ต (๐‘‹) be the collection of all nonempty, closed, and
bounded subsets of ๐‘‹ with respect to the partial metric ๐‘.
For ๐ด โˆˆ ๐ถ๐ต๐‘ (๐‘‹), one defines
๐‘ (๐‘ฅ, ๐ด) = inf ๐‘ (๐‘ฅ, ๐‘ฆ) .
๐‘ฆโˆˆ๐ด
1
[๐‘‘ (๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘‘ (๐‘ฆ, ๐‘‡๐‘ฅ)]} ,
2
(9)
๐‘€๐‘ (๐‘ฅ, ๐‘ฆ) = max {๐‘ (๐‘ฅ, ๐‘ฆ) , ๐‘ (๐‘ฅ, ๐‘‡๐‘ฅ) , ๐‘ (๐‘ฆ, ๐‘‡๐‘ฆ) ,
(7)
1
[๐‘ (๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘ (๐‘ฆ, ๐‘‡๐‘ฅ)]} .
2
For ๐ด, ๐ต โˆˆ ๐ถ๐ต๐‘ (๐‘‹),
๐›ฟ๐‘ (๐ด, ๐ต) = sup๐‘ (๐‘Ž, ๐ต) ,
Then ๐‘€๐‘‘ (๐‘ฅ, ๐‘ฆ) = ๐‘€๐‘ (๐‘ฅ, ๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ with ๐‘ฅ =ฬธ ๐‘ฆ.
๐›ฟ๐‘ (๐ต, ๐ด) = sup๐‘ (๐‘, ๐ด) ,
Using Proposition 13 and Lemma 14 above, we obtain the
following result.
๐‘Žโˆˆ๐ด
๐‘โˆˆ๐ต
(8)
๐ป๐‘ (๐ด, ๐ต) = max {๐›ฟ๐‘ (๐ด, ๐ต) , ๐›ฟ๐‘ (๐ต, ๐ด)} .
Lemma 15. Let (๐‘‹, ๐‘) be a partial metric space and ๐‘‡ : ๐‘‹ โ†’
๐‘‹ a self-mapping. Suppose ๐‘‘ : ๐‘‹ × ๐‘‹ โ†’ R+ is the constructed
metric in Proposition 13 and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Define
Proposition 11 (see [14]). Let (๐‘‹, ๐‘) be a partial metric space.
For any ๐ด, ๐ต, ๐ถ โˆˆ ๐ถ๐ต๐‘ (๐‘‹), one has
๐œ‡๐‘‘ (๐‘ฅ, ๐‘ฆ) = ๐‘‘ (๐‘ฅ, ๐‘ฆ) + ๐‘‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘‘ (๐‘ฆ, ๐‘‡๐‘ฆ) ,
๐œ‡๐‘ (๐‘ฅ, ๐‘ฆ) = ๐‘ (๐‘ฅ, ๐‘ฆ) + ๐‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘‡๐‘ฆ) .
(๐›ฟ1 ) ๐›ฟ๐‘ (๐ด, ๐ด) = sup{๐‘(๐‘Ž, ๐‘Ž) : ๐‘Ž โˆˆ ๐ด};
(๐›ฟ2 ) ๐›ฟ๐‘ (๐ด, ๐ด) โ‰ค ๐›ฟ๐‘ (๐ด, ๐ต);
(๐›ฟ3 ) ๐›ฟ๐‘ (๐ด, ๐ต) = 0 implies that ๐ด โІ ๐ต;
(๐›ฟ4 ) ๐›ฟ๐‘ (๐ด, ๐ต) โ‰ค ๐›ฟ๐‘ (๐ด, ๐ถ) + ๐›ฟ๐‘ (๐ถ, ๐ต) โˆ’ inf ๐‘โˆˆ๐ถ๐‘(๐‘, ๐‘).
Proposition 12 (see [14]). Let (๐‘‹, ๐‘) be a partial metric space.
For any ๐ด, ๐ต, ๐ถ โˆˆ ๐ถ๐ต๐‘ (๐‘‹), one has
(H1) ๐ป๐‘ (๐ด, ๐ด) โ‰ค ๐ป๐‘ (๐ด, ๐ต);
(H2) ๐ป๐‘ (๐ด, ๐ต) = ๐ป๐‘ (๐ต, ๐ด);
Then
(a) ๐œ‡๐‘‘ (๐‘ฅ, ๐‘ฆ) โ‰ค ๐œ‡๐‘ (๐‘ฅ, ๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹;
(b) ๐‘€๐‘ (๐‘ฅ, ๐‘ฆ) โ‰ค ๐œ‡๐‘ (๐‘ฅ, ๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹.
Proof. To prove (a), we shall consider three cases and the rest
of the cases will follow in the same manner.
Case 1 (๐‘ฅ = ๐‘ฆ). One has
๐œ‡๐‘‘ (๐‘ฅ, ๐‘ฆ) = 0 + ๐‘‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘‘ (๐‘ฆ, ๐‘‡๐‘ฆ)
(H3) ๐ป๐‘ (๐ด, ๐ต) โ‰ค ๐ป๐‘ (๐ด, ๐ถ) + ๐ป๐‘ (๐ถ, ๐ต) โˆ’ inf ๐‘โˆˆ๐ถ๐‘(๐‘, ๐‘);
โ‰ค ๐‘ (๐‘ฅ, ๐‘ฅ) + ๐‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘‡๐‘ฆ)
(H4) ๐ป๐‘ (๐ด, ๐ต) = 0 โ‡’ ๐ด = ๐ต. But the converse is not true.
= ๐œ‡๐‘ (๐‘ฅ, ๐‘ฆ) .
In view of Propositions 11 and 12, ๐ป๐‘ is a partial Hausdorff
metric induced by the partial metric ๐‘.
๐œ‡๐‘‘ (๐‘ฅ, ๐‘ฆ) = ๐‘‘ (๐‘ฅ, ๐‘ฆ) + 0 + ๐‘‘ (๐‘ฆ, ๐‘‡๐‘ฆ)
โ‰ค ๐‘ (๐‘ฅ, ๐‘ฆ) + ๐‘ (๐‘ฅ, ๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘‡๐‘ฆ)
Hitzler and Seda [19] obtained the following result to establish
a relation between a partial metric and the corresponding
metric on a nonempty set ๐‘‹.
= ๐œ‡๐‘ (๐‘ฅ, ๐‘ฆ) .
The following lemma is the key result in [28].
(11)
Case 2 (๐‘ฅ = ๐‘‡๐‘ฅ). One has
2. Auxiliary Results
Proposition 13 (see [19, 28]). Let (๐‘‹, ๐‘) be a partial metric
space. Then the function ๐‘‘ : ๐‘‹ × ๐‘‹ โ†’ R+ defined by ๐‘‘(๐‘ฅ, ๐‘ฆ) =
0 whenever ๐‘ฅ = ๐‘ฆ and ๐‘‘(๐‘ฅ, ๐‘ฆ) = ๐‘(๐‘ฅ, ๐‘ฆ) whenever ๐‘ฅ =ฬธ ๐‘ฆ is a
metric on ๐‘‹ such that ๐œ๐‘๐‘  โІ ๐œ๐‘‘ . Moreover, (๐‘‹, ๐‘‘) is complete if
and only if (๐‘‹, ๐‘) is 0-complete.
(10)
(12)
Case 3 (๐‘ฆ = ๐‘‡๐‘ฆ). One has
๐œ‡๐‘‘ (๐‘ฅ, ๐‘ฆ) = ๐‘‘ (๐‘ฅ, ๐‘ฆ) + ๐‘‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + 0
โ‰ค ๐‘ (๐‘ฅ, ๐‘ฆ) + ๐‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘ฆ)
= ๐œ‡๐‘ (๐‘ฅ, ๐‘ฆ) .
The proof of (b) follows easily form [8, page 3300].
(13)
4
Journal of Function Spaces
3. Single Valued Mappings
For the sake of brevity, in this section, we shall use the
following denotations:
+
(2) ฮจ the class of functions ๐œ“ : R+ โ†’ R+ such that
๐œ“ is upper semicontinuous from the right satisfying
๐œ“(๐‘ก) < ๐‘ก for all ๐‘ก > 0.
(4) ๐›ผ(๐‘ฅ, ๐‘ฆ) = ๐‘(๐‘†๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘(๐ด๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘(๐ต๐‘ฆ, ๐‘‡๐‘ฆ).
(ii) ฮฆ โŠ‚ ฮจ.
Browder and Petryshyn [30] introduced the notion of
asymptotic regularity for a single valued mapping in a metric
space (see also [3], page 547).
Definition 17. A self-mapping ๐‘‡ of a metric space (๐‘‹, ๐‘‘) is
asymptotically regular at a point ๐‘ฅ โˆˆ ๐‘‹ if
(14)
If ๐‘‡ is asymptotically regular at each point of ๐‘‹ then one says
that ๐‘‡ is asymptotically regular on ๐‘‹.
Sastry et al. [31] and Singh et al. [32] extended the above
definition to three mappings as follows.
Definition 18. Let ๐‘†, ๐‘‡, and ๐‘“ be self-mappings of a metric
space (๐‘‹, ๐‘‘). The pair (๐‘†, ๐‘‡) is asymptotically regular with
respect to ๐‘“ at a point ๐‘ฅ0 โˆˆ ๐‘‹ if there exists a sequence {๐‘ฅ๐‘› }
in ๐‘‹ such that
(15)
(18)
(19)
(i) ๐ด and ๐‘† have a coincidence point;
(ii) ๐ต and ๐‘‡ have a coincidence point.
Moreover, if the pairs (๐ด, ๐‘†) and (๐ต, ๐‘‡) are weakly compatible,
then ๐ด, ๐ต, ๐‘†, and ๐‘‡ have a unique common fixed point.
Now we present a more general result than Theorem 20.
Theorem 21. Let ๐ด, ๐ต, ๐‘†, and ๐‘‡ be self-mappings of a partial
metric space (๐‘‹, ๐‘) such that
(A) ๐ด๐‘‹ โІ ๐‘‡๐‘‹ and ๐ต๐‘‹ โІ ๐‘†๐‘‹;
(B) ๐ด, ๐ต, ๐‘†, and ๐‘‡ are asymptotically regular at ๐‘ฅ0 โˆˆ ๐‘‹;
๐‘ (๐ด๐‘ฅ, ๐ต๐‘ฆ) โ‰ค ๐œ“ (๐›ผ (๐‘ฅ, ๐‘ฆ)) ,
(20)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, where ๐œ“ โˆˆ ฮจ.
If one of ๐ด๐‘‹, ๐ต๐‘‹, ๐‘‡๐‘‹, and ๐‘†๐‘‹ is a 0-complete subspace of
๐‘‹, then
(a) ๐ด and ๐‘† have a coincidence point;
(b) ๐ต and ๐‘‡ have a coincidence point;
for all ๐‘› โˆˆ N โˆช {0} and
๐‘›โ†’โˆž
lim ๐‘ (๐‘ฆ๐‘› , ๐‘ฆ๐‘›+1 ) = 0.
๐‘›โ†’โˆž
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, where ๐œ™ โˆˆ ฮฆ.
If one of ๐ด๐‘‹, ๐ต๐‘‹, ๐‘‡๐‘‹, and ๐‘†๐‘‹ is a closed subset of (๐‘‹, ๐‘),
then
(i) ๐‘€(๐‘ฅ, ๐‘ฆ) โ‰ค ๐›ผ(๐‘ฅ, ๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ (see [8]);
lim ๐‘‘ (๐‘“๐‘ฅ๐‘› , ๐‘“๐‘ฅ๐‘›+1 ) = 0.
๐‘› โˆˆ N โˆช {0} and
๐‘ (๐ด๐‘ฅ, ๐ต๐‘ฆ) โ‰ค ๐œ™ (๐‘€ (๐‘ฅ, ๐‘ฆ)) ,
Remark 16. It can be easily seen that
๐‘“๐‘ฅ2๐‘›+2 = ๐‘‡๐‘ฅ2๐‘›+1
(17)
Theorem 20. Suppose ๐ด, ๐ต, ๐‘†, and ๐‘‡ are self-mappings of a
complete partial metric space (๐‘‹, ๐‘) such that ๐ด๐‘‹ โІ ๐‘‡๐‘‹,
๐ต๐‘‹ โІ ๐‘†๐‘‹, and
(3) ๐‘€(๐‘ฅ, ๐‘ฆ) = max{๐‘(๐‘†๐‘ฅ, ๐‘‡๐‘ฆ), ๐‘(๐ด๐‘ฅ, ๐‘†๐‘ฅ), ๐‘(๐ต๐‘ฆ, ๐‘‡๐‘ฆ),
(1/2)[๐‘(๐‘†๐‘ฅ, ๐ต๐‘ฆ) + ๐‘(๐ด๐‘ฅ, ๐‘‡๐‘ฆ)]};
๐‘“๐‘ฅ2๐‘›+1 = ๐‘†๐‘ฅ2๐‘› ,
๐‘ฆ2๐‘›+1 = ๐‘†๐‘ฅ2๐‘›+2 = ๐ต๐‘ฅ2๐‘›+1 .
The following theorem is the main result in [10].
Let ๐ด, ๐ต, ๐‘†, ๐‘‡ : ๐‘‹ โ†’ ๐‘‹ be mappings.
lim ๐‘‘ (๐‘‡๐‘› ๐‘ฅ, ๐‘‡๐‘›+1 ๐‘ฅ) = 0.
๐‘ฆ2๐‘› = ๐‘‡๐‘ฅ2๐‘›+1 = ๐ด๐‘ฅ2๐‘› ;
+
(1) ฮฆ the class of functions ๐œ™ : R โ†’ R such that ๐œ™ is
continuous nondeceasing function satisfying ๐œ™(๐‘ก) < ๐‘ก
๐‘›
and the series โˆ‘โˆž
๐‘›โ‰ฅ1 ๐œ™ (๐‘ก) converges for all ๐‘ก > 0;
๐‘›โ†’โˆž
asymptotically regular at ๐‘ฅ0 โˆˆ ๐‘‹ if there exist sequences {๐‘ฅ๐‘› }
and {๐‘ฆ๐‘› } in ๐‘‹ such that
(16)
If ๐‘† = ๐‘‡ then one gets the definition of asymptotic
regularity of ๐‘‡ with respect to ๐‘“ (see, for instance, Rhoades
et al. [33]). Further, if ๐‘“ is the identity mapping on ๐‘‹, then
one gets the usual definition of asymptotic regularity for a
mapping ๐‘‡.
We extend the above notion to four self-mappings on a
partial metric space as follows.
Definition 19. Let ๐ด, ๐ต, ๐‘†, and ๐‘‡ be self-mappings of a partial
metric space (๐‘‹, ๐‘). The mappings ๐ด, ๐ต, ๐‘†, and ๐‘‡ will be called
(c) ๐ด and ๐‘† have a common fixed point provided that the
pair (๐ด, ๐‘†) is commuting at one of their coincidence
points;
(d) ๐ต and ๐‘‡ have a common fixed point provided that the
pair (๐ต, ๐‘‡) is commuting at one of their coincidence
points.
Moreover, the mappings ๐ด, ๐ต, ๐‘†, and ๐‘‡ have a common fixed
point provided that (๐‘) and (๐‘‘) are true.
Proof. Let ๐‘ฅ0 โˆˆ ๐‘‹ be such that ๐ด, ๐ต, ๐‘†, and ๐‘‡ are asymptotically regular at ๐‘ฅ0 . Since ๐ด๐‘‹ โІ ๐‘‡๐‘‹, there exists ๐‘ฅ1 โˆˆ ๐‘‹ such
that ๐‘‡๐‘ฅ1 = ๐ด๐‘ฅ0 . Also since ๐ต๐‘‹ โІ ๐‘†๐‘‹, there exists ๐‘ฅ2 โˆˆ ๐‘‹
Journal of Function Spaces
5
such that ๐‘†๐‘ฅ2 = ๐ต๐‘ฅ1 . Continuing this process, we construct
sequences {๐‘ฅ๐‘› } and {๐‘ฆ๐‘› } in ๐‘‹ defined by
๐‘ฆ2๐‘› = ๐‘‡๐‘ฅ2๐‘›+1 = ๐ด๐‘ฅ2๐‘› ;
๐‘ฆ2๐‘›+1 = ๐‘†๐‘ฅ2๐‘›+2 = ๐ต๐‘ฅ2๐‘›+1 ,
(21)
where ๐‘› โˆˆ N โˆช {0}. Since ๐ด, ๐ต, ๐‘†, and ๐‘‡ are asymptotically
regular at ๐‘ฅ0 , we have
lim ๐‘ (๐‘ฆ๐‘› , ๐‘ฆ๐‘›+1 ) = 0.
๐‘›โ†’โˆž
(22)
We claim that {๐‘ฆ๐‘› } is a 0-Cauchy sequence. Suppose {๐‘ฆ๐‘› }
is not 0-Cauchy. Then there exist ๐›ฝ > 0 and increasing
sequences {๐‘š๐‘˜ } and {๐‘›๐‘˜ } of positive integers such that
๐‘ (๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ +1 ) โ‰ฅ ๐›ฝ,
๐‘ (๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ ) < ๐›ฝ,
(23)
for all ๐‘› โ‰ค 2๐‘š๐‘˜ < 2๐‘›๐‘˜ + 1. By the triangle inequality, we have
๐‘ (๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ +1 ) โ‰ค ๐‘ (๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ ) + ๐‘ (๐‘ฆ2๐‘›๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ +1 )
โˆ’ ๐‘ (๐‘ฆ2๐‘›๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ )
(24)
Thus ๐‘(๐ด๐‘ข, ๐ตV) โ‰ค ๐œ“(๐‘(๐ด๐‘ข, ๐ตV)) < ๐‘(๐ด๐‘ข, ๐ตV), a contradiction, unless ๐‘(๐ด๐‘ข, ๐ตV) = 0. Therefore ๐‘‡V = ๐ด๐‘ข = ๐ตV and V is
a coincidence point of ๐ต and ๐‘‡.
If the pairs (๐ด, ๐‘†) and (๐ต, ๐‘‡) are commuting at ๐‘ข and V,
respectively, then
๐ด๐‘†๐‘ข = ๐‘†๐ด๐‘ข,
๐ด๐ด๐‘ข = ๐ด๐‘†๐‘ข = ๐‘†๐ด๐‘ข = ๐‘†๐‘†๐‘ข;
(29)
๐‘‡๐‘‡V = ๐‘‡๐ตV = ๐ต๐‘‡V = ๐ต๐ตV.
(30)
= ๐œ“ (๐‘ (๐ด๐ด๐‘ข, ๐ด๐‘ข)) ,
(25)
= ๐œ“ (๐‘ (๐‘ฆ2๐‘š๐‘˜ โˆ’1 , ๐‘ฆ2๐‘›๐‘˜ ) + ๐‘ (๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘š๐‘˜ โˆ’1 )
+ ๐‘ (๐‘ฆ2๐‘›๐‘˜ +1 , ๐‘ฆ2๐‘›๐‘˜ )) .
Since ๐œ“ is upper semicontinuous from the right, we deduce
that
a contradiction. Therefore ๐ด๐ด๐‘ข = ๐ด๐‘ข = ๐‘†๐ด๐‘ข and ๐ด๐‘ข is a
common fixed point of ๐ด and ๐‘†. Similarly, ๐ตV is a common
fixed point of ๐ต and ๐‘‡. Since ๐ด๐‘ข = ๐ตV, we conclude that ๐ด๐‘ข
is a common fixed point of ๐ด, ๐ต, ๐‘†, and ๐‘‡. The proof is similar
when ๐‘‡๐‘‹ is a complete subspace of ๐‘‹. The cases in which
๐ด๐‘‹ or ๐ต๐‘‹ is a complete subspace of ๐‘‹ are also similar since
๐ด๐‘‹ โІ ๐‘‡๐‘‹ and ๐ต๐‘‹ โІ ๐‘†๐‘‹.
(26)
a contradiction. Therefore lim๐‘š,๐‘›โ†’โˆž ๐‘(๐‘ฆ๐‘› , ๐‘ฆ๐‘š ) = 0.
Suppose that ๐‘†๐‘‹ is a 0-complete subspace of ๐‘‹. Then the
subsequence {๐‘ฆ2๐‘› } being contained in ๐‘†๐‘‹ has a limit in ๐‘†๐‘‹.
Call it ๐‘ง. Let ๐‘ข โˆˆ ๐‘†โˆ’1 ๐‘ง. Then ๐‘†๐‘ข = ๐‘ง. Note that the subsequence
{๐‘ฆ2๐‘›+1 } also converges to ๐‘ง. By (20), we have
๐‘ (๐ด๐‘ข, ๐ต๐‘ฅ2๐‘›+1 ) โ‰ค ๐œ“ (๐›ผ (๐‘ข, ๐‘ฅ2๐‘›+1 ))
+ ๐‘ (๐ต๐‘ฅ2๐‘›+1 , ๐‘‡๐‘ฅ2๐‘›+1 )) = ๐œ“ (๐‘ (๐‘†๐‘ข, ๐‘ฆ2๐‘› )
= ๐œ“ (๐‘ (๐ตV, ๐ด๐‘ข)) .
= ๐œ“ (๐‘ (๐‘†๐ด๐‘ข, ๐‘‡V) + ๐‘ (๐ด๐ด๐‘ข, ๐‘†๐ด๐‘ข) + ๐‘ (๐ตV, ๐‘‡V))
โ‰ค ๐œ“ (๐›ผ (๐‘ฅ2๐‘š๐‘˜ , ๐‘ฅ2๐‘›๐‘˜ +1 )) = ๐œ“ (๐‘ (๐‘†๐‘ฅ2๐‘š๐‘˜ , ๐‘‡๐‘ฅ2๐‘›๐‘˜ +1 )
= ๐œ“ (๐‘ (๐‘†๐‘ข, ๐‘‡๐‘ฅ2๐‘›+1 ) + ๐‘ (๐ด๐‘ข, ๐‘†๐‘ข)
(28)
๐‘ (๐ด๐ด๐‘ข, ๐ด๐‘ข) = ๐‘ (๐ด๐ด๐‘ข, ๐ตV) โ‰ค ๐œ“ (๐›ผ (๐ด๐‘ข, V))
๐‘ (๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ +1 ) = ๐‘ (๐ด๐‘ฅ2๐‘š๐‘˜ , ๐ต๐‘ฅ2๐‘›๐‘˜ +1 )
๐‘˜โ†’โˆž
= ๐œ“ (๐‘ (๐‘†๐‘ข, ๐‘‡V) + ๐‘ (๐ด๐‘ข, ๐‘†๐‘ข) + ๐‘ (๐ตV, ๐‘‡V))
Now, in view of (20), it follows that
Thus lim๐‘˜โ†’โˆž ๐‘(๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ +1 ) = ๐›ฝ. Now, by (20), we have
๐›ฝ โ‰ค lim sup ๐œ“ (๐›ผ (๐‘ฅ2๐‘š๐‘˜ , ๐‘ฅ2๐‘›๐‘˜ +1 )) โ‰ค ๐œ“ (๐›ฝ) ,
๐‘ (๐ด๐‘ข, ๐ตV) โ‰ค ๐œ“ (๐›ผ (๐‘ข, V))
๐ต๐‘‡V = ๐‘‡๐ตV,
โ‰ค ๐‘ (๐‘ฆ2๐‘š๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ ) + ๐‘ (๐‘ฆ2๐‘›๐‘˜ , ๐‘ฆ2๐‘›๐‘˜ +1 ) .
+ ๐‘ (๐ด๐‘ฅ2๐‘š๐‘˜ , ๐‘†๐‘ฅ2๐‘š๐‘˜ ) + ๐‘ (๐ต๐‘ฅ2๐‘›๐‘˜ +1 , ๐‘‡๐‘ฅ2๐‘›๐‘˜ +1 ))
contradiction, unless ๐‘(๐ด๐‘ข, ๐‘†๐‘ข) = 0. Therefore ๐ด๐‘ข = ๐‘†๐‘ข = ๐‘ง
and ๐‘ข is a coincidence point of ๐ด and ๐‘†.
Since ๐ด๐‘‹ โІ ๐‘‡๐‘‹, ๐‘ง = ๐ด๐‘ข โˆˆ ๐‘‡๐‘‹. Hence there exists V โˆˆ ๐‘‹
such that ๐ด๐‘ข = ๐‘‡V. Again, by (20), we have
When ๐ด = ๐ต and ๐‘† = ๐‘‡ = id (the identity mapping) in
Theorem 21, we get the following result which extends a result
of Romaguera [23].
Corollary 22. Let ๐ด be an asymptotically regular self-mapping
of a partial metric space (๐‘‹, ๐‘) such that
๐‘ (๐ด๐‘ฅ, ๐ด๐‘ฆ) โ‰ค ๐œ“ (๐œ‡๐‘ (๐‘ฅ, ๐‘ฆ)) ,
(27)
+ ๐‘ (๐ด๐‘ข, ๐‘†๐‘ข) + ๐‘ (๐‘ฆ2๐‘›+1 , ๐‘ฆ2๐‘› )) .
Since ๐œ“ is upper semicontinuous from the right, making
๐‘˜ โ†’ โˆž implies ๐‘(๐ด๐‘ข, ๐‘†๐‘ข) โ‰ค ๐œ“(๐‘(๐ด๐‘ข, ๐‘†๐‘ข)) < ๐‘(๐ด๐‘ข, ๐‘†๐‘ข), a
(31)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, where ๐œ“ โˆˆ ฮจ. Then ๐ด has a fixed point.
The following example shows the generality of our results.
Example 23. Let ๐‘‹ = {0, 1, 2} endowed with the partial
metric ๐‘(๐‘ฅ, ๐‘ฆ) = max{๐‘ฅ, ๐‘ฆ} for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then (๐‘‹, ๐‘)
6
Journal of Function Spaces
is a 0-complete partial metric space. Define the mappings
๐ด, ๐ต, ๐‘†, ๐‘‡ : ๐‘‹ โ†’ ๐‘‹ by
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, where ๐›ผ(๐‘ฅ, ๐‘ฆ) = ๐‘(๐‘†๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘(๐ด๐‘ฅ, ๐‘†๐‘ฅ) +
๐‘(๐ต๐‘ฆ, ๐‘†๐‘ฆ). For this, let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ with ๐‘ฆ โ‰ค ๐‘ฅ. Then
1
1
1
๐‘ (๐ด๐‘ฅ, ๐ต๐‘ฆ) = ๐‘ ( ๐‘ฅ2 , ๐‘ฆ2 ) = ๐‘ฅ2 ,
2
8
2
๐ด = ๐ต,
๐‘† = ๐‘‡,
๐›ผ (๐‘ฅ, ๐‘ฆ) = ๐‘ (๐‘†๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘ (๐ด๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘ (๐ต๐‘ฆ, ๐‘†๐‘ฆ)
๐ด0 = ๐ด1 = 0,
๐ด2 = 2;
1
1
1
= ๐‘ ( ๐‘ฅ2 , ๐‘ฆ2 ) + ๐‘ ( ๐‘ฅ2 , ๐‘ฅ2 )
6
2
6
(32)
1
1
1
2
1
+ ๐‘ ( ๐‘ฆ2 , ๐‘ฆ2 ) โ‰ฅ ๐‘ฅ2 + ๐‘ฅ2 = ๐‘ฅ2 .
8
6
6
2
3
๐‘‡0 = 0,
๐‘‡1 = 1,
Then
๐‘‡2 = 2.
2
1
๐œ“ (๐›ผ (๐‘ฅ, ๐‘ฆ)) โ‰ฅ ๐œ“ ( ๐‘ฅ2 ) = ๐‘ฅ2 = ๐‘ (๐ด๐‘ฅ, ๐ต๐‘ฆ) .
3
2
Define sequences {๐‘ฅ๐‘› } and {๐‘ฆ๐‘› } by
(33)
2
๐‘ฆ2๐‘› = ๐‘‡๐‘ฅ2๐‘›+1 = ๐ด๐‘ฅ2๐‘› = (๐‘ฅ2๐‘›+1 ) =
๐‘ฆ2๐‘›+1 = ๐‘†๐‘ฅ2๐‘›+2 = ๐ต๐‘ฅ2๐‘›+1 ,
where ๐‘› โˆˆ N โˆช {0}. Then the mappings ๐ด, ๐ต, ๐‘†, and ๐‘‡ are
asymptotically regular at 0.
Further,
๐‘ (๐ด๐‘ฅ, ๐ต๐‘ฆ) โ‰ค ๐œ“ (๐›ผ (๐‘ฅ, ๐‘ฆ)) ,
(38)
Now we show that the mappings ๐ด, ๐ต, ๐‘†, and ๐‘‡ are asymptotically regular. For this, by Definition 19, we have for all
๐‘› โˆˆ N โˆช {0}
๐‘ฅ0 = ๐‘ฅ๐‘› = 0;
๐‘ฆ2๐‘› = ๐‘‡๐‘ฅ2๐‘›+1 = ๐ด๐‘ฅ2๐‘› ;
(37)
(34)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, where ๐›ผ(๐‘ฅ, ๐‘ฆ) = ๐‘(๐‘†๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘(๐ด๐‘ฅ, ๐‘†๐‘ฅ) +
๐‘(๐ต๐‘ฆ, ๐‘†๐‘ฆ) and ๐œ“(๐‘ก) = 3๐‘ก/4. So the assumptions of Theorem 21
are fulfilled and ๐ด, ๐ต, ๐‘†, and ๐‘‡ have fixed points 0 and 2.
On the other hand, ๐‘(๐ด1, ๐ต2) > ๐œ™(๐‘€(1, 2)) for any ๐œ™.
Therefore the mappings ๐ด, ๐ต, ๐‘†, and ๐‘‡ do not satisfy the
requirements of Theorem 20.
Example 24. Let ๐‘‹ = [0, 1] be endowed with the partial
metric ๐‘(๐‘ฅ, ๐‘ฆ) = max{๐‘ฅ, ๐‘ฆ} for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then (๐‘‹, ๐‘)
is a 0-complete partial metric space. Define the mappings
๐ด, ๐ต, ๐‘†, ๐‘‡ : ๐‘‹ โ†’ ๐‘‹ by
๐‘ฆ2๐‘›+1 = ๐‘†๐‘ฅ2๐‘›+2 = ๐ต๐‘ฅ2๐‘›+1
1
2
(๐‘ฅ ) ,
2 2๐‘›
1
1
2
2
= (๐‘ฅ2๐‘›+2 ) = (๐‘ฅ2๐‘›+1 ) .
6
8
(39)
Solving the above two equations we get
๐‘ฅ2๐‘›+1 =
๐‘ฅ2๐‘›+2
1
๐‘ฅ ,
โˆš2 2๐‘›
3
= โˆš ๐‘ฅ2๐‘› .
8
(40)
So for given ๐‘ฅ0 โˆˆ ๐‘‹ we can define a sequence {๐‘ฅ๐‘› } by using
(40) and then we can easily define sequence {๐‘ฆ๐‘› } by (39). It
can be easily seen that lim๐‘›โ†’โˆž ๐‘(๐‘ฆ๐‘› , ๐‘ฆ๐‘›+1 ) = 0.
On the other hand, for ๐‘ฆ = 0 and ๐‘ฅ > 0, we have
1
1
๐‘ (๐ด๐‘ฅ, ๐ต0) = ๐‘ ( ๐‘ฅ2 , 0) = ๐‘ฅ2 ,
2
2
๐‘€ (๐‘ฅ, ๐‘ฆ) = max {๐‘ (๐‘†๐‘ฅ, ๐‘‡0) , ๐‘ (๐ด๐‘ฅ, ๐‘†๐‘ฅ) , ๐‘ (๐ต0, ๐‘‡0) ,
1
๐ด๐‘ฅ = ๐‘ฅ2 ,
2
1
1
[๐‘ (๐‘†๐‘ฅ, ๐ต0) + ๐‘ (๐ด๐‘ฅ, ๐‘‡0)]} = max {๐‘ ( ๐‘ฅ2 , 0) , (41)
2
6
1
๐ต๐‘ฅ = ๐‘ฅ2 ,
8
1
1
๐‘ ( ๐‘ฅ2 , ๐‘ฅ2 ) , ๐‘ (0, 0) ,
2
6
1
๐‘†๐‘ฅ = ๐‘ฅ2 ,
6
(35)
1
1
1
1
[๐‘ ( ๐‘ฅ2 , 0) + ๐‘ ( ๐‘ฅ2 , 0)]} = ๐‘ฅ2 .
2
6
2
2
๐‘‡๐‘ฅ = ๐‘ฅ2 .
Then ๐ด๐‘‹ โІ ๐‘‡๐‘‹ and ๐ต๐‘‹ โІ ๐‘†๐‘‹. Now define the function ๐œ“ :
R+ โ†’ R+ by ๐œ“(๐‘ก) = (3/4)๐‘ก. We now show that
๐‘ (๐ด๐‘ฅ, ๐ต๐‘ฆ) โ‰ค ๐œ“ (๐›ผ (๐‘ฅ, ๐‘ฆ)) ,
(36)
Therefore ๐‘(๐ด๐‘ฅ, ๐ต0) = (1/2)๐‘ฅ2 = ๐‘€(๐‘ฅ, ๐‘ฆ) > ๐œ™(๐‘€(๐‘ฅ, ๐‘ฆ)) for
any ๐œ™. Therefore the mappings ๐ด, ๐ต, ๐‘†, and ๐‘‡ do not satisfy
the requirement of Theorem 20.
Now we give an example in which the mapping is not
asymptotically regular at each point of interval but satisfies
condition (4) for one mapping.
Journal of Function Spaces
7
Example 25. Let ๐‘‹ = [0, 1] be endowed with the partial
metric ๐‘(๐‘ฅ, ๐‘ฆ) = max{๐‘ฅ, ๐‘ฆ} for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then (๐‘‹, ๐‘) is
a 0-complete partial metric space. Define the mapping by
1
{
{0, if ๐‘ฅ โˆˆ [0, 2 ] ,
๐‘‡๐‘ฅ = {
{1, otherwise ๐‘ฅ โˆˆ ( 1 , 1] .
{
2
(42)
Now define the function ๐œ‘ : R+ โ†’ R+ by ๐œ‘(๐‘ก) = (3/4)๐‘ก. It can
be easily seen that ๐‘‡ is asymptotically regular at each point of
interval [0, 1/2] and not asymptotically regular at any point
of interval (1/2, 1]. Now we show that
๐‘ (๐ด๐‘ฅ, ๐ต๐‘ฆ) โ‰ค ๐œ‘ (๐›ผ (๐‘ฅ, ๐‘ฆ)) ,
(43)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, where ๐›ผ(๐‘ฅ, ๐‘ฆ) = ๐‘(๐‘ฅ, ๐‘ฆ)+๐‘(๐‘ฅ, ๐‘‡๐‘ฅ)+๐‘(๐‘ฆ, ๐‘‡๐‘ฆ).
For this we distinguish the following cases.
Case 1. If ๐‘ฅ, ๐‘ฆ โˆˆ [0, 1/2] with ๐‘ฅ โ‰ค ๐‘ฆ, we have
๐‘ (๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) = 0 โ‰ค ๐œ‘ (๐›ผ (๐‘ฅ, ๐‘ฆ)) .
(44)
Case 2. If ๐‘ฅ โˆˆ [0, 1/2] and ๐‘ฆ โˆˆ (1/2, 1], we have
3 1
9
3
(๐‘ฆ + ๐‘ฅ + 1) โ‰ฅ ( + 1) = > 1
4
4 2
8
(45)
๐œ‘ (๐›ผ (๐‘ฅ, ๐‘ฆ)) = ๐œ‘ (๐‘ (๐‘ฅ, ๐‘ฆ) + ๐‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘‡๐‘ฆ))
(46)
๐œ‡ (๐‘ฅ, ๐‘ฆ) = ๐‘ (๐‘ฅ, ๐‘ฆ) + ๐›พ [๐‘ (๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘†๐‘ฆ)] .
(49)
If ๐‘† is asymptotically regular at ๐‘ฅ0 โˆˆ ๐‘‹, then ๐‘† has a fixed point.
Moreover, if ๐›พ = 1 and ๐œ‘ is continuous and satisfies ๐œ‘(๐‘ก) < ๐‘ก
for all ๐‘ก > 0, then the continuity of ๐‘† can be dropped.
4. Multivalued Mappings
Rhoades et al. [33] and Singh et al. [32] extended the concept
of asymptotic regularity from single valued to multivalued
mappings in metric spaces. We extend it to partial metric
spaces.
Definition 26. Let (๐‘‹, ๐‘) be a partial metric space and ๐‘† :
๐‘‹ โ†’ ๐ถ๐ต๐‘ (๐‘‹). The mapping ๐‘† is asymptotically regular at
๐‘ฅ0 โˆˆ ๐‘‹ if, for any sequence {๐‘ฅ๐‘› } in ๐‘‹ and each sequence {๐‘ฆ๐‘› }
in ๐‘‹ such that ๐‘ฆ๐‘› โˆˆ ๐‘†๐‘ฅ๐‘›โˆ’1 ,
๐‘›โ†’โˆž
(S1) ๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) โ‰ค ๐œ‘(๐œ‡(๐‘ฅ, ๐‘ฆ)) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹;
where ๐œ‘ is as in Theorem 3, ๐ถ๐‘ (๐‘‹) is a collection of all
nonempty compact subsets of ๐‘‹, ๐›พ โ‰ฅ 0, and
Case 3. If ๐‘ฅ, ๐‘ฆ โˆˆ (1/2, 1] with ๐‘ฅ โ‰ค ๐‘ฆ, we have
lim ๐‘ (๐‘ฆ๐‘› , ๐‘ฆ๐‘›+1 ) = 0
A self-mapping ๐‘‡ : ๐‘‹ โ†’ ๐‘‹ and a multivalued mapping
๐‘‡ : ๐‘‹ โ†’ ๐ถ๐ต๐‘ (๐‘‹) both are mixed multivalued mappings (see
also [35]).
Motivated by Proinovโ€™s theorem and the above facts, we
obtain the following result, which extends Theorem 27 above
and Corollary 2.5 in [16].
(S2) ๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) < ๐œ‡(๐‘ฅ, ๐‘ฆ) whenever ๐œ‡(๐‘ฅ, ๐‘ฆ) =ฬธ 0,
= ๐‘ (๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) .
3
3
= (๐‘ฆ + 1 + 1) โ‰ฅ > 1 = ๐‘ (๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) .
4
2
Definition 28. Let (๐‘‹, ๐‘) be a partial metric space. A mapping
๐‘‡ : ๐‘‹ โ†’ ๐‘‹ โˆช ๐ถ๐ต๐‘ (๐‘‹) is called a mixed multivalued mapping
on ๐‘‹ if ๐‘‡ is a multivalued mapping on ๐‘‹ such that for each
๐‘ฅ โˆˆ ๐‘‹ either ๐‘‡๐‘ฅ โˆˆ ๐‘‹ or ๐‘‡๐‘ฅ โˆˆ ๐ถ๐ต๐‘ (๐‘‹).
Theorem 29. Let (๐‘‹, ๐‘) be a 0-complete partial metric space
and ๐‘† : ๐‘‹ โ†’ ๐‘‹ โˆช ๐ถ๐‘ (๐‘‹) a continuous mixed multivalued
mapping such that
๐œ‘ (๐›ผ (๐‘ฅ, ๐‘ฆ)) = ๐œ‘ (๐‘ (๐‘ฅ, ๐‘ฆ) + ๐‘ (๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘‡๐‘ฆ))
=
In [24], Romaguera pointed out that if ๐‘‹ = R+ and ๐‘ :
๐‘‹ × ๐‘‹ โ†’ R+ defined by ๐‘(๐‘ฅ, ๐‘ฆ) = max{๐‘ฅ, ๐‘ฆ} for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹,
then ๐ถ๐ต๐‘ (๐‘‹) = 0 and the approach used in Theorem 27 and
elsewhere has a disadvantage that the fixed point theorems for
self-mappings may not be derived from it, when ๐ถ๐ต๐‘ (๐‘‹) =
0. To overcome this problem he introduced the concept of
mixed multivalued mappings and obtained a different version
of Nadler Jr.โ€™s theorem in a partial metric space.
(47)
for ๐‘› โˆˆ N โˆช {0}.
Proof. We construct a sequence {๐‘ฅ๐‘› } in ๐‘‹ in the following
way. Let ๐‘ฅ0 โˆˆ ๐‘‹ such that ๐‘† is asymptotically regular at ๐‘ฅ0 .
Let ๐‘ฅ1 be any element of ๐‘†๐‘ฅ0 . If ๐‘ฅ0 = ๐‘ฅ1 or ๐‘ฅ1 โˆˆ ๐‘†๐‘ฅ1 , then ๐‘ฅ1
is a fixed point of ๐‘† and there is nothing to prove. Assume that
๐‘ฅ1 โˆ‰ ๐‘†๐‘ฅ1 and ๐‘†๐‘ฅ1 is not singleton. Then ๐‘†๐‘ฅ1 โˆˆ ๐ถ๐‘ (๐‘‹) and by
compactness of ๐‘†๐‘ฅ1 we can choose ๐‘ฅ2 โˆˆ ๐‘†๐‘ฅ1 such that
๐‘ (๐‘ฅ1 , ๐‘ฅ2 ) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ0 , ๐‘†๐‘ฅ1 ) .
(50)
If ๐‘†๐‘ฅ1 = {๐‘ฅ2 } is a singleton, then obviously
๐‘ (๐‘ฅ1 , ๐‘ฅ2 ) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ0 , ๐‘†๐‘ฅ1 ) .
(51)
Therefore, in either case, we have
Aydi et al. [14] obtained the following equivalent to the
well-known multivalued contraction theorem due to Nadler
Jr. [34].
Theorem 27. Let (๐‘‹, ๐‘) be a complete partial metric space. If
๐‘‡ : ๐‘‹ โ†’ ๐ถ๐ต๐‘ (๐‘‹) is a multivalued mapping such that, for all
๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘˜ โˆˆ (0, 1), one has
๐ป๐‘ (๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐‘˜๐‘ (๐‘ฅ, ๐‘ฆ) ,
then ๐‘‡ has a fixed point.
(48)
๐‘ (๐‘ฅ1 , ๐‘ฅ2 ) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ0 , ๐‘†๐‘ฅ1 ) .
(52)
Again, since ๐‘†๐‘ฅ2 is compact, we choose a point ๐‘ฅ3 โˆˆ ๐‘†๐‘ฅ2 such
that
๐‘ (๐‘ฅ2 , ๐‘ฅ3 ) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ1 , ๐‘†๐‘ฅ2 ) .
(53)
Continuing in the same manner we get
๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ๐‘›โˆ’1 , ๐‘†๐‘ฅ๐‘› ) .
(54)
8
Journal of Function Spaces
Following largely [3, 8], we show that the sequence {๐‘ฅ๐‘› } is a
0-Cauchy. Fix ๐œ€ > 0. Since ๐œ‘ is as in Theorem 3, there exists
๐›ฟ > ๐œ€ such that, for any ๐‘ก โˆˆ (0, โˆž),
๐œ€ < ๐‘ก < ๐›ฟ ๓ณจโ‡’
(55)
๐œ‘ (๐‘ก) โ‰ค ๐œ€.
Without loss of generality we may assume that ๐›ฟ โ‰ค 2๐œ€. Since
๐‘† is asymptotically regular at ๐‘ฅ0 ,
lim ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) = 0.
(56)
๐‘›โ†’โˆž
So, there exists an integer ๐‘1 โ‰ฅ 1 such that
๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ๐‘›โˆ’1 , ๐‘†๐‘ฅ๐‘› ) <
๐›ฟโˆ’๐œ€
,
1 + 2๐›พ
๐›ฟ + 2๐›พ๐œ€
,
1 + 2๐›พ
๐›ฟ + 2๐›พ๐œ€
๐›ฟโˆ’๐œ€
+๐œ€=
.
1 + 2๐›พ
1 + 2๐›พ
(64)
This proves (58). Since ๐›ฟ โ‰ค 2๐œ€, (58) implies that ๐‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) <
2๐œ€ for all integers ๐‘š and ๐‘› with ๐‘š โ‰ฅ ๐‘› โ‰ฅ ๐‘1 and hence {๐‘ฅ๐‘› } is
a 0-Cauchy sequence. Since ๐‘‹ is 0-complete, {๐‘ฅ๐‘› } has a limit.
Call it ๐‘ง. We note that
(58)
If ๐‘† is continuous, then obviously ๐‘ง โˆˆ ๐‘†๐‘ง is a fixed point of ๐‘†.
Moreover, if ๐›พ = 1 and ๐œ‘ is continuous and satisfies ๐œ‘(๐‘ก) <
๐‘ก for all ๐‘ก > 0, then it follows from (S2) that
๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š+1 ) โ‰ค ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘ (๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘š+1 )
โ‰ค ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘ (๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘š+1 )
<
๐‘ (๐‘ง, ๐‘ง) = lim ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) = 0.
for all ๐‘š, ๐‘› โˆˆ N with ๐‘š โ‰ฅ ๐‘› โ‰ฅ ๐‘1 .
Let ๐‘› โ‰ฅ ๐‘1 be fixed. Obviously, (58) holds for ๐‘š = ๐‘› + 1.
Assuming (58) to hold for an integer ๐‘š โ‰ฅ ๐‘›, we shall prove it
for ๐‘š + 1. By the triangle inequality, we get
โˆ’ ๐‘ (๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+1 )
๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š+1 ) โ‰ค ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐ป๐‘ (๐‘†๐‘ฅ๐‘› , ๐‘†๐‘ฅ๐‘š )
(57)
for all ๐‘› โ‰ฅ ๐‘1 . By induction we shall show that
๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ๐‘›โˆ’1 , ๐‘†๐‘ฅ๐‘šโˆ’1 ) <
Thus ๐œ€ < ๐œ‡(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) < ๐›ฟ. Hence (55) implies that
๐œ‘(๐œ‡(๐‘ฅ๐‘› , ๐‘ฅ๐‘š )) โ‰ค ๐œ€. Now (61) implies (60). By (60), (59), and
(57), it follows that
๐‘š,๐‘›โ†’โˆž
(65)
๐‘ (๐‘ฅ๐‘›+1 , ๐‘†๐‘ง) โ‰ค ๐ป๐‘ (๐‘†๐‘ฅ๐‘› , ๐‘†๐‘ง)
โ‰ค ๐œ‘ (๐‘ (๐‘ฅ๐‘› , ๐‘ง) + ๐‘ (๐‘ฅ๐‘› , ๐‘†๐‘ฅ๐‘› ) + ๐‘‘ (๐‘ง, ๐‘†๐‘ง))
(66)
โ‰ค ๐œ‘ (๐‘ (๐‘ฅ๐‘› , ๐‘ง) + ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘‘ (๐‘ง, ๐‘†๐‘ง)) .
Making ๐‘› โ†’ โˆž,
(59)
๐‘‘ (๐‘ง, ๐‘†๐‘ง) โ‰ค ๐œ‘ (๐‘‘ (๐‘ง, ๐‘†๐‘ง)) ,
(67)
a contradiction, unless ๐‘ง โˆˆ ๐‘†๐‘ง.
โ‰ค ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐ป๐‘ (๐‘†๐‘ฅ๐‘› , ๐‘†๐‘ฅ๐‘š ) .
We claim that
๐ป๐‘ (๐‘†๐‘ฅ๐‘› , ๐‘†๐‘ฅ๐‘š ) โ‰ค ๐œ€.
(60)
To prove the above claim, we consider two cases.
Case 1 (๐œ‡(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) โ‰ค ๐œ€). By (S2) it follows that ๐ป๐‘ (๐‘†๐‘ฅ๐‘› , ๐‘†๐‘ฅ๐‘š ) โ‰ค
๐œ‡(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) โ‰ค ๐œ€, and (60) holds.
Case 2 (๐œ‡(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) > ๐œ€). By (S1), we have
๐ป๐‘ (๐‘†๐‘ฅ๐‘› , ๐‘†๐‘ฅ๐‘š ) โ‰ค ๐œ‘ (๐œ‡ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š )) .
(61)
๐œ‡ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) = ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š )
= ๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š )
(62)
+ ๐›พ [๐‘ (๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘ (๐‘ฅ๐‘š , ๐‘ฅ๐‘š+1 )] .
๐›ฟ + 2๐›พ๐œ€
๐›ฟโˆ’๐œ€
๐›ฟโˆ’๐œ€
+๐›พ
+๐›พ
= ๐›ฟ.
1 + 2๐›พ
1 + 2๐›พ
1 + 2๐›พ
(i) ๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) โ‰ค ๐œ‘(โ„Ž(๐‘ฅ, ๐‘ฆ)) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹,
where โ„Ž(๐‘ฅ, ๐‘ฆ) = ๐‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘(๐‘‡๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘(๐‘‡๐‘ฆ, ๐‘†๐‘ฆ),
and ๐œ‘ is as in Theorem 3 and is continuous;
If ๐‘† is asymptotically regular and either ๐‘†๐‘‹ or ๐‘‡๐‘‹ is a
complete subspace of ๐‘‹, then ๐‘† and ๐‘‡ have a coincidence
point ๐‘ง.
Further, ๐‘† and ๐‘‡ have a common fixed point provided that
๐‘†๐‘†๐‘ง = ๐‘†๐‘ง and ๐‘† and ๐‘‡ are commuting at their coincidence point
๐‘ง.
Proof. It can be completed using the proofs of Theorem 29
above and Theorem 2.2 in [8].
Using (57) and (58) in this inequality, we get
๐œ‡ (๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) <
Theorem 30. Let (๐‘‹, ๐‘) be a partial metric space and ๐‘‡ : ๐‘‹ โ†’
๐‘‹ and ๐‘† : ๐‘‹ โ†’ ๐ถ๐‘ (๐‘‹) such that ๐‘†๐‘‹ โІ ๐‘‡๐‘‹ and
(ii) ๐ป๐‘ (S๐‘ฅ, ๐‘†๐‘ฆ) < โ„Ž(๐‘ฅ, ๐‘ฆ) whenever โ„Ž(๐‘ฅ, ๐‘ฆ) =ฬธ 0.
By the definition of ๐œ‡(x, ๐‘ฆ), we obtain
+ ๐›พ [๐‘ (๐‘ฅ๐‘› , ๐‘†๐‘ฅ๐‘› ) + ๐‘ (๐‘ฅ๐‘š , ๐‘†๐‘ฅ๐‘š )]
Now we present a slightly modified version of Theorem 29
to obtain a new result.
(63)
The following example illustrates our results.
Journal of Function Spaces
9
Example 31 (see [36]). Let ๐‘‹ = {0, 1, 2} and ๐‘ : ๐‘‹ × ๐‘‹ โ†’ R+
defined by
๐‘ (0, 0) = 0,
๐‘ (๐‘ฅ, ๐‘ฆ) =
1
๐‘ (1, 1) = ๐‘ (2, 2) = ,
4
1 ๓ต„จ๓ต„จ
๓ต„จ 1
๓ต„จ๐‘ฅ โˆ’ ๐‘ฆ๓ต„จ๓ต„จ๓ต„จ + max {๐‘ฅ, ๐‘ฆ}
4๓ต„จ
2
(68)
3
๐‘ (2, 0) = ,
5
2
๐‘ (2, 1) = ,
5
โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹.
if ๐‘ฅ =ฬธ 2,
{{0}
๐‘†๐‘ฅ = {
1} if ๐‘ฅ = 2.
{{0,
(69)
It can be easily seen that ๐‘† is asymptotically regular at 0 and
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) โ‰ค ๐œ‘ (๐œ‡ (๐‘ฅ, ๐‘ฆ))
7
{[0, ๐‘ฅ] , if ๐‘ฅ โˆˆ [0, 1] ,
๐‘†๐‘ฅ = { 8
if ๐‘ฅ โˆˆ (1, 2] .
{{1} ,
(70)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ with ๐›พ โ‰ฅ 5/7 and ๐œ‘(๐‘ก) = (7/8)๐‘ก. For this we
distinguish the following cases.
Case 1. If ๐‘ฅ, ๐‘ฆ โˆˆ [0, 1] with ๐‘ฅ โ‰ค ๐‘ฆ, we have
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) = max {๐›ฟ๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) , ๐›ฟ๐‘ (๐‘†๐‘ฆ, ๐‘†๐‘ฅ)}
= max {
=
The following example shows the generality of our results.
Example 32. Let ๐‘‹ = {0, 1, 4} be endowed with the partial
metric ๐‘ : ๐‘‹ × ๐‘‹ โ†’ R+ defined by
โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹.
(71)
Clearly, (๐‘‹, ๐‘) is a 0-complete partial metric space. Now,
define the mapping ๐‘† : ๐‘‹ โ†’ ๐ถ๐‘ (๐‘‹) such that
๐‘†0 = ๐‘†1 = {0} ,
๐‘†4 = {0, 4} .
(72)
It can be easily seen that ๐‘† is continuous and asymptotically
regular and for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹,
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) โ‰ค ๐œ‘ (๐œ‡ (๐‘ฅ, ๐‘ฆ))
(73)
with ๐›พ โ‰ฅ 1 and ๐œ‘(๐‘ก) = 4๐‘ก/5. Therefore the assumptions of
Theorem 29 are fulfilled.
On the other hand,
๐ป๐‘ (๐‘†0, ๐‘†4) = ๐ป๐‘ ({0} , {0, 4})
= max {๐‘ (0, {0, 4}) , max {๐‘ (0, 0) , ๐‘ (4, 0)}} = 3
(76)
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) โ‰ค ๐œ‘ (๐‘ (๐‘ฅ, ๐‘ฆ) + ๐›พ [๐‘ (๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘†๐‘ฆ)]) (77)
with ๐›พ โ‰ฅ 1 and ๐œ‘(๐‘ก) = 3๐‘ก/4. Therefore all the assumptions of
Theorem 29 are fulfilled and 0 is a fixed point of ๐‘†.
1 ๓ต„จ๓ต„จ
๓ต„จ 1
๓ต„จ๓ต„จ๐‘ฅ โˆ’ ๐‘ฆ๓ต„จ๓ต„จ๓ต„จ + max {๐‘ฅ, ๐‘ฆ}
4
2
(75)
It can be easily seen that ๐‘๐‘  (๐‘ฅ, ๐‘ฆ) = |๐‘ฅ โˆ’ ๐‘ฆ| and (๐‘‹, ๐‘๐‘  ) is a
complete metric space. Now, by Lemma 9, (๐‘‹, ๐‘) is a complete
partial metric space and hence 0-complete. Now we show that
Clearly, (๐‘‹, ๐‘) is a 0-complete partial metric space. Now,
define the mapping ๐‘† : ๐‘‹ โ†’ ๐ถ๐‘ (๐‘‹) such that
๐‘ (๐‘ฅ, ๐‘ฆ) =
โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹.
Now define the mapping ๐‘† : ๐‘‹ โ†’ ๐ถ๐‘ (๐‘‹) โˆช ๐‘‹ such that
1
๐‘ (1, 0) = ,
3
๐‘ (๐‘ฅ, ๐‘ฆ) = ๐‘ (๐‘ฆ, ๐‘ฅ)
Example 33. Let ๐‘‹ = [0, 2] be endowed with the partial
metric ๐‘ : ๐‘‹ × ๐‘‹ โ†’ R+ defined by
(74)
> 3๐‘˜
for all ๐‘˜ โˆˆ (0, 1); Theorem 27 and Corollary 2.5 in [16] are not
satisfied by the mapping ๐‘†.
7
7 21
๐‘ฅ, ๐‘ฆ โˆ’ ๐‘ฅ}
16 32
32
(78)
7
21
๐‘ฆ โˆ’ ๐‘ฅ.
32
32
Therefore, for all ๐›พ โ‰ฅ 0 and ๐œ‘(๐‘ก) = (7/8)๐‘ก, we have
๐œ‘ (๐œ‡ (๐‘ฅ, ๐‘ฆ)) = ๐œ‘ (๐‘ (๐‘ฅ, ๐‘ฆ) + ๐›พ [๐‘ (๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘†๐‘ฆ)])
โ‰ฅ ๐œ‘ (๐‘ (๐‘ฅ, ๐‘ฆ)) =
=
7 3
1
( ๐‘ฆ โˆ’ ๐‘ฅ)
8 4
4
(79)
7
21
๐‘ฆ โˆ’ ๐‘ฅ = ๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) .
32
32
Similar conclusion can be done for ๐‘ฆ < ๐‘ฅ.
Case 2. If ๐‘ฅ โˆˆ [0, 1] and ๐‘ฆ โˆˆ (1, 2], then we have
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) = max {๐›ฟ๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) , ๐›ฟ๐‘ (๐‘†๐‘ฆ, ๐‘†๐‘ฅ)}
7
3
3 3
= max { , โˆ’ ๐‘ฅ} = .
4 4 32
4
Therefore, for all ๐›พ โ‰ฅ 5/7 and ๐œ‘(๐‘ก) = (7/8)๐‘ก, we have
๐œ‘ (๐œ‡ (๐‘ฅ, ๐‘ฆ)) = ๐œ‘ (๐‘ (๐‘ฅ, ๐‘ฆ) + ๐›พ [๐‘ (๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘†๐‘ฆ)])
=
7 3
1
17
3
1
( ๐‘ฆ โˆ’ ๐‘ฅ + ๐›พ [ ๐‘ฅ + y โˆ’ ])
8 4
4
32
4
4
=
7
7
(2 + 2๐›พ) ๐‘ฆ +
(๐‘ฆ โˆ’ ๐‘ฅ)
32
32
(80)
10
Journal of Function Spaces
1
3
7 17
+ ๐›พ [ ๐‘ฅ + (๐‘ฆ โˆ’ 1)] โ‰ฅ
8 32
4
4
5. Existence of a Common Solution of Volterra
Type Integral Equations
= ๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) .
(81)
Case 3. If ๐‘ฅ, ๐‘ฆ โˆˆ (1, 2] with ๐‘ฅ โ‰ค ๐‘ฆ, then we have
1
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) = ๐ป๐‘ ({1} , {1}) = .
2
(82)
๐‘ก
Hence, for all ๐›พ โ‰ฅ 5/7 and ๐œ‘(๐‘ก) = (7/8)๐‘ก, we have
๐‘ข (๐‘ก) = ๐‘” (๐‘ก) + โˆซ ๐พ1 (๐‘ก, ๐‘ , ๐‘ข (๐‘ )) ๐‘‘๐‘ ,
0
๐œ‘ (๐œ‡ (๐‘ฅ, ๐‘ฆ)) = ๐œ‘ (๐‘ (๐‘ฅ, ๐‘ฆ) + ๐›พ [๐‘ (๐‘ฅ, ๐‘†๐‘ฅ) + ๐‘ (๐‘ฆ, ๐‘†๐‘ฆ)])
=
7 3
1
3
1 3
1
( ๐‘ฆ โˆ’ ๐‘ฅ + ๐›พ [ ๐‘ฅ โˆ’ + ๐‘ฆ โˆ’ ])
8 4
4
4
4 4
4
7
7
7 (3๐‘ฅ โˆ’ 2) 1
=
(2 + 3๐›พ) ๐‘ฆ +
(๐‘ฆ โˆ’ ๐‘ฅ) + ๐›พ
โ‰ฅ
32
32
8
4
2
๐‘ก
๐‘ข (๐‘ก) = ๐‘” (๐‘ก) + โˆซ ๐พ2 (๐‘ก, ๐‘ , ๐‘ข (๐‘ )) ๐‘‘๐‘ ,
0
๐‘ก
(83)
(88)
๐‘ข (๐‘ก) = ๐‘” (๐‘ก) + โˆซ ๐พ3 (๐‘ก, ๐‘ , ๐‘ข (๐‘ )) ๐‘‘๐‘ ,
0
๐‘ก
๐‘ข (๐‘ก) = ๐‘” (๐‘ก) + โˆซ ๐พ4 (๐‘ก, ๐‘ , ๐‘ข (๐‘ )) ๐‘‘๐‘ ,
= ๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) .
0
where ๐‘ก โˆˆ [0, ๐พ] and ๐พ๐‘– : [0; ๐พ] × [0; ๐พ] × R โ†’ R (๐‘– โˆˆ
{1, 2, 3, 4}) and ๐‘” : R โ†’ R are continuous functions.
Let ๐ถ(๐ผ, R) be the set of real continuous functions defined
on ๐ผ and ๐‘‡๐‘– : ๐ถ(๐ผ, R) โ†’ ๐ถ(๐ผ, R) self-mappings defined by
Similar conclusion can be done for ๐‘ฆ < ๐‘ฅ.
On the other hand, at ๐‘ฅ = 1 and ๐‘ฆ = 11/10, we have
7
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) = ๐ป๐‘ ([0, ] , {1})
8
7
7
= max {๐›ฟ๐‘ ([0, ] , {1}) , ๐›ฟ๐‘ ({1} , [0, ])}
8
8
๐‘ก
(84)
Now
7
3
23
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) = ๐ป๐‘ ([0, ] , {1}) = > ๐‘˜ โ‹…
8
4
40
๐‘‡๐‘– ๐‘ข (๐‘ก) = ๐‘” (๐‘ก) + โˆซ ๐พ๐‘– (๐‘ก, ๐‘ , ๐‘ข (๐‘ )) ๐‘‘๐‘ 
0
(89)
โˆ€๐‘ข โˆˆ ๐ถ (๐ผ, R) , ๐‘ก โˆˆ ๐ผ, ๐‘– โˆˆ {1, 2, 3, 4} .
3
3 17
= max { , } = .
4 32
4
(85)
= ๐‘˜ โ‹… ๐‘ (๐‘ฅ, ๐‘ฆ)
Clearly, ๐‘ข is a solution of (88) if and only if it is a common
fixed point of ๐‘‡๐‘– for ๐‘– โˆˆ {1, 2, 3, 4}.
We shall prove the existence of a common fixed point of
๐‘‡๐‘– for ๐‘– โˆˆ {1, 2, 3, 4} under certain conditions.
Theorem 35. Suppose that the following hypotheses hold:
(H1) For any ๐‘ข โˆˆ ๐ถ(๐ผ, R), there exist ๐‘˜1 , ๐‘˜2 โˆˆ ๐ถ(๐ผ, R) such
that ๐‘‡1 ๐‘ข = ๐‘‡3 ๐‘˜1 , ๐‘‡2 ๐‘ข = ๐‘‡4 ๐‘˜2 .
for all ๐‘˜ โˆˆ [0, 1) and
(H2) For all ๐‘ก โˆˆ ๐ผ, ๐‘ข โˆˆ ๐ถ(๐ผ, R),
๐‘€ (๐‘ฅ, ๐‘ฆ) = max {๐‘ (๐‘ฅ, ๐‘ฆ) , ๐‘ (๐‘ฅ, ๐‘†๐‘ฅ) , ๐‘ (๐‘ฆ, ๐‘†๐‘ฆ) ,
1
23 17 23 177
[๐‘ (๐‘ฅ, ๐‘†๐‘ฆ) + ๐‘ (๐‘ฆ, ๐‘†๐‘ฅ)]} = max { , , ,
} (86)
2
40 32 40 320
=
This section is inspired by the work given in paper [37] and
the purpose of this section is to give an existence theorem for
a solution of (88) given below.
Let ๐ผ = [0, ๐พ] โŠ‚ R be a closed and bounded interval
with ๐พ > 0. Consider the system of Volterra type integral
equations:
23
.
40
๐‘‡1 ๐‘‡4 ๐‘ข (๐‘ก) = ๐‘‡4 ๐‘‡1 ๐‘ข (๐‘ก) ,
whenever ๐‘‡1 ๐‘ข (๐‘ก) = ๐‘‡4 ๐‘ข (๐‘ก) , (90)
and for all ๐‘ก โˆˆ ๐ผ, ๐‘ข โˆˆ ๐ถ(๐ผ, R),
๐‘‡2 ๐‘‡3 ๐‘ข (๐‘ก) = ๐‘‡3 ๐‘‡2 ๐‘ข (๐‘ก) ,
Hence
๐ป๐‘ (๐‘†๐‘ฅ, ๐‘†๐‘ฆ) =
3
23
>๐‘˜โ‹…
= ๐‘˜ โ‹… ๐‘€ (๐‘ฅ, ๐‘ฆ)
4
40
(87)
for all ๐‘˜ โˆˆ [0, 1).
Remark 34. We remark that the mappings satisfying Theorems 2, 27, and 20 are also asymptotically regular. Therefore
the extra assumption of asymptotical regularity in our results
is not strong.
whenever ๐‘‡2 ๐‘ข (๐‘ก) = ๐‘‡3 ๐‘ข (๐‘ก) . (91)
(H3) There exists a continuous function โ„ : ๐ผ × ๐ผ โ†’ R+ such
that for all ๐‘ก, ๐‘  โˆˆ ๐ผ and ๐‘ข, V โˆˆ ๐ถ(๐ผ, R)
๓ต„จ
๓ต„จ๓ต„จ
๓ต„จ๓ต„จ๐พ1 (๐‘ก, ๐‘ , ๐‘ข (๐‘ )) โˆ’ ๐พ2 (๐‘ก, ๐‘ , V (๐‘ ))๓ต„จ๓ต„จ๓ต„จ โ‰ค โ„ (๐‘ก, ๐‘ )
๓ต„จ
๓ต„จ ๓ต„จ
๓ต„จ
โ‹… [๓ต„จ๓ต„จ๓ต„จ๐‘‡4 ๐‘ข (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ๓ต„จ + ๓ต„จ๓ต„จ๓ต„จ๐‘‡1 ๐‘ข (๐‘ ) โˆ’ ๐‘‡4 ๐‘ข (๐‘ )๓ต„จ๓ต„จ๓ต„จ
๓ต„จ
๓ต„จ
+ ๓ต„จ๓ต„จ๓ต„จ๐‘‡2 V (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ๓ต„จ] .
(92)
Journal of Function Spaces
11
(H4) For sequences {โ„Ž๐‘› } and {๐‘˜๐‘› } in ๐ถ(๐ผ, R) such that
๐‘˜2๐‘› = ๐‘‡3 โ„Ž2๐‘› = ๐‘‡1 โ„Ž2๐‘› ;
๐‘˜2๐‘›+1 = ๐‘‡4 โ„Ž๐‘› = ๐‘‡2 โ„Ž2๐‘›+1 ,
๐‘ข, V โˆˆ ๐‘‹ such that โ€–๐‘ขโ€–๐œ , โ€–Vโ€–๐œ โ‰ค 1, by assertions (H3)โ€“(H5),
we have
(93)
๐‘ก
๓ต„จ๓ต„จ
๓ต„จ
๓ต„จ
๓ต„จ๓ต„จ๐‘‡1 ๐‘ข (๐‘ก) โˆ’ ๐‘‡2 V (๐‘ก)๓ต„จ๓ต„จ๓ต„จ โ‰ค โˆซ ๓ต„จ๓ต„จ๓ต„จ๐พ1 (๐‘ก, ๐‘ , ๐‘ข (๐‘ก))
0
๓ต„จ
โˆ’ ๐พ2 (๐‘ก, ๐‘ , V (๐‘ก))๓ต„จ๓ต„จ๓ต„จ ๐‘‘๐‘ 
one has
๐‘ก
๓ต„จ
๓ต„จ
lim ๓ต„จ๓ต„จ๐‘˜ (๐‘ก) โˆ’ ๐‘˜๐‘›+1 (๐‘ก)๓ต„จ๓ต„จ๓ต„จ = 0 โˆ€๐‘ก โˆˆ ๐ผ, ๐‘› โˆˆ N โˆช {0} .
๐‘›โ†’โˆž ๓ต„จ ๐‘›
(94)
โ‰ค (โˆซ
0
3๐œ ๓ต„จ๓ต„จ
๓ต„จ ๓ต„จ
๓ต„จ
[๓ต„จ๐‘‡ ๐‘ข (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ๓ต„จ + ๓ต„จ๓ต„จ๓ต„จ๐‘‡1 ๐‘ข (๐‘ ) โˆ’ ๐‘‡4 ๐‘ข (๐‘ )๓ต„จ๓ต„จ๓ต„จ
4 ๓ต„จ 4
๓ต„จ
๓ต„จ
+ ๓ต„จ๓ต„จ๓ต„จ๐‘‡2 V (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ๓ต„จ] ๐‘‘๐‘ )
๐‘ก
(H5) sup๐‘กโˆˆ๐ผ โˆซ โ„(๐‘ก, ๐‘ )๐‘‘๐‘  โ‰ค 3/4.
0
Then system (88) of integral equations has a solution ๐‘ขโˆ— โˆˆ
๐ถ(๐ผ, R).
=
Proof. For ๐‘ฅ
โˆˆ
๐‘‹
=
๐ถ(๐ผ, R) define โ€–๐‘ฅโ€–๐œ
max๐‘กโˆˆ[0,๐พ] {|๐‘ฅ(๐‘ก)|๐‘’โˆ’๐œ๐‘ก }, where ๐œ โ‰ฅ 1 is taken arbitrary. Notice
that โ€– โ‹… โ€–๐œ is a norm equivalent to the maximum norm and
(๐‘‹, โ€– โ‹… โ€–๐œ ) is a Banach space (cf. [38, 39]). The metric induced
by this norm is given by
๓ต„จ
๓ต„จ
๐‘‘๐œ (๐‘ฅ, ๐‘ฆ) = max {๓ต„จ๓ต„จ๓ต„จ๐‘ฅ (๐‘ก) โˆ’ ๐‘ฆ (๐‘ก)๓ต„จ๓ต„จ๓ต„จ ๐‘’โˆ’๐œ๐‘ก } ,
๐‘กโˆˆ[0,๐พ]
(95)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹.
Now, consider ๐‘‹ endowed with the partial metric given
by
๓ต„ฉ ๓ต„ฉ
if โ€–๐‘ฅโ€–๐œ , ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ โ‰ค 1,
{๐‘‘๐œ (๐‘ฅ, ๐‘ฆ) ,
๐‘๐œ (๐‘ฅ, ๐‘ฆ) = {
{๐‘‘๐œ (๐‘ฅ, ๐‘ฆ) + ๐œ, otherwise.
(96)
Obviously, (๐‘‹, ๐‘๐œ ) is 0-complete but not complete. In fact, the
associated metric ๐‘๐œ๐‘  (๐‘ฅ, ๐‘ฆ) = 2๐‘๐œ (๐‘ฅ, ๐‘ฆ) โˆ’ ๐‘๐œ (๐‘ฅ, ๐‘ฅ) โˆ’ ๐‘๐œ (๐‘ฆ, ๐‘ฆ)
given by
๐‘๐œ๐‘  (๐‘ฅ, ๐‘ฆ)
๓ต„ฉ ๓ต„ฉ
๓ต„ฉ ๓ต„ฉ
if (โ€–๐‘ฅโ€–๐œ , ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ โ‰ค 1) or (โ€–๐‘ฅโ€–๐œ , ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ > 1) , (97)
{2๐‘‘๐œ (๐‘ฅ, ๐‘ฆ) ,
={
{2๐‘‘๐œ (๐‘ฅ, ๐‘ฆ) + ๐œ, otherwise,
is not complete [37]. It is evident that ๐‘ฅโˆ— โˆˆ ๐‘‹ is a solution
of (88) if and only if ๐‘ฅโˆ— is a common fixed point of ๐‘‡๐‘–๓ธ€  ๐‘ . By
condition (H1), it is clear that
๐‘‡1 (๐ถ (๐ผ, R)) โŠ‚ ๐‘‡3 (๐ถ (๐ผ, R)) ,
๐‘‡2 (๐ถ (๐ผ, R)) โŠ‚ ๐‘‡4 (๐ถ (๐ผ, R)) .
(98)
From condition (H2), the pairs (๐‘‡1 , ๐‘‡4 ) and (๐‘‡2 , ๐‘‡3 ) are
commuting. Using condition (H3) and maximum norm, the
mappings ๐‘‡๐‘– (๐‘– = 1, 2, 3, 4) are asymptotically regular on
(๐‘‹, ๐‘๐œ ).
Now, we show that condition (20) holds. Observe that this
condition needs not be checked for ๐‘ข = V โˆˆ ๐‘‹. Then for
= (โˆซ
๐‘ก
0
3๐œ ๓ต„จ๓ต„จ
๓ต„จ ๓ต„จ
๓ต„จ
[๓ต„จ๐‘‡ ๐‘ข (s) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ๓ต„จ + ๓ต„จ๓ต„จ๓ต„จ๐‘‡1 ๐‘ข (๐‘ ) โˆ’ ๐‘‡4 ๐‘ข (๐‘ )๓ต„จ๓ต„จ๓ต„จ
4 ๓ต„จ 4
๐‘ก
3๐œ
๓ต„จ
๓ต„จ
+ ๓ต„จ๓ต„จ๓ต„จ๐‘‡2 V (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ๓ต„จ] ๐‘’โˆ’๐œ๐‘  ๐‘’๐œ๐‘  ๐‘‘๐‘ ) =
(โˆซ ๐‘’๐œ๐‘  ๐‘‘๐‘ )
4
0
๓ต„จ๓ต„จ
๓ต„จ๓ต„จ ๓ต„จ๓ต„จ
๓ต„จ๓ต„จ
โ‹… [๓ต„จ๓ต„จ๐‘‡4 ๐‘ข (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ + ๓ต„จ๓ต„จ๐‘‡1 ๐‘ข (๐‘ ) โˆ’ ๐‘‡4 ๐‘ข (๐‘ )๓ต„จ๓ต„จ
(99)
3๐œ ๐‘’๐œ๐‘ก 1
๓ต„จ
๓ต„จ
+ ๓ต„จ๓ต„จ๓ต„จ๐‘‡2 V (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„จ๓ต„จ๓ต„จ] ๐‘’โˆ’๐œ๐‘  =
(
โˆ’ )
4
๐œ
๐œ
๓ต„ฉ๓ต„ฉ
๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ
๓ต„ฉ
โ‹… [๓ต„ฉ๓ต„ฉ๐‘‡4 ๐‘ข (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„ฉ๓ต„ฉ๐œ + ๓ต„ฉ๓ต„ฉ๐‘‡1 ๐‘ข (๐‘ ) โˆ’ ๐‘‡4 ๐‘ข (๐‘ )๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ
3๐œ ๐‘’๐œ๐‘ก ๓ต„ฉ๓ต„ฉ
๓ต„ฉ
๓ต„ฉ
+ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘‡2 V (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ ] =
( ) [๓ต„ฉ๓ต„ฉ๐‘‡4 ๐‘ข (๐‘ )
4
๐œ
๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ
๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ
โˆ’ ๐‘‡3 V (๐‘ )๓ต„ฉ๓ต„ฉ๐œ + ๓ต„ฉ๓ต„ฉ๐‘‡1 ๐‘ข (๐‘ ) โˆ’ ๐‘‡4 ๐‘ข (๐‘ )๓ต„ฉ๓ต„ฉ๐œ + ๓ต„ฉ๓ต„ฉ๐‘‡2 V (๐‘ )
๓ต„ฉ
โˆ’ ๐‘‡3 V (๐‘ )๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ ] .
Since โ€–๐‘ขโ€–๐œ , โ€–Vโ€–๐œ โ‰ค 1, it follows that, for all ๐‘ข, V โˆˆ ๐‘‹ at least for
some ๐‘ก โˆˆ [0, ๐พ], we have
๓ต„จ๓ต„จ
๓ต„จ โˆ’๐œ๐‘ก 3
๓ต„ฉ
๓ต„ฉ
๓ต„จ๓ต„จ๐‘‡1 ๐‘ฅ (๐‘ก) โˆ’ ๐‘‡2 ๐‘ฆ (๐‘ก)๓ต„จ๓ต„จ๓ต„จ ๐‘’ โ‰ค × [๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘‡4 ๐‘ข (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ
4
๓ต„ฉ
๓ต„ฉ ๓ต„ฉ
๓ต„ฉ
+ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘‡1 ๐‘ข (๐‘ ) โˆ’ ๐‘‡4 ๐‘ข (๐‘ )๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘‡2 V (๐‘ ) โˆ’ ๐‘‡3 V (๐‘ )๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œ ] .
(100)
Now, by considering the control functions ๐œ“ : [0, +โˆž) โ†’
[0, +โˆž) defined by ๐œ“(๐‘ก) = 3๐‘ก/4, for all ๐‘ก > 0, we get
๐‘๐œ (๐‘‡1 ๐‘ข, ๐‘‡2 V) โ‰ค ๐œ“ (๐‘๐œ (๐‘‡4 ๐‘ข (๐‘ ) , ๐‘‡3 V (๐‘ ))
+ ๐‘๐œ (๐‘‡1 ๐‘ข (๐‘ ) , ๐‘‡4 ๐‘ข (๐‘ )) + ๐‘๐œ (๐‘‡2 V (๐‘ ) , ๐‘‡3 V (๐‘ ))) .
(101)
Putting ๐ด = ๐‘‡1 , ๐ต = ๐‘‡2 , ๐‘‡ = ๐‘‡3 , and ๐‘† = ๐‘‡4 , then all the
hypotheses of Theorem 21 are satisfied. Therefore ๐ด, ๐ต, ๐‘†, and
๐‘‡ have a common fixed point ๐‘ขโˆ— โˆˆ ๐ถ(๐ผ, R); that is, ๐‘ขโˆ— is a
solution of system (88).
6. Conclusions
The authors are able to present some general fixed point
results for a wider class of mappings in partial metric
spaces with illustrative examples and an application. Results
presented herein cannot be directly obtained from the corresponding metric space versions.
12
Conflicts of Interest
The authors declare that they do not have any conflicts of
interest.
Authorsโ€™ Contributions
First and second authors wrote results. Third author prepared
application and fourth author worked out some examples. In
this way, each author equally contributed to this paper and
read and approved the final manuscript.
Acknowledgments
The authors acknowledge the support of their institute/
university for providing basic research facilities.
References
[1] L. B. Cฬiricฬ, โ€œA generalization of Banachโ€™s contraction principle,โ€
Proceedings of the American Mathematical Society, vol. 45, pp.
267โ€“273, 1974.
[2] B. E. Rhoades, โ€œA comparison of various definitions of contractive mappings,โ€ Transactions of the American Mathematical
Society, vol. 226, pp. 257โ€“290, 1977.
[3] P. D. Proinov, โ€œFixed point theorems in metric spaces,โ€ Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 3, pp.
546โ€“557, 2006.
[4] A. Meir and E. Keeler, โ€œA theorem on contraction mappings,โ€
Journal of Mathematical Analysis and Applications, vol. 28, pp.
326โ€“329, 1969.
[5] D. W. Boyd and J. S. W. Wong, โ€œOn nonlinear contractions,โ€
Proceedings of the American Mathematical Society, vol. 20, pp.
458โ€“464, 1969.
[6] J. Jachymski, โ€œEquivalent conditions and the Meir-Keeler type
theorems,โ€ Journal of Mathematical Analysis and Applications,
vol. 194, no. 1, pp. 293โ€“303, 1995.
[7] J. Matkowski, โ€œFixed point theorems for contractive mappings
in metric spaces,โ€ CฬŒasopis pro PeฬŒstovaฬnฤฑฬ Matematiky, vol. 105,
pp. 341โ€“344, 1980.
[8] S. L. Singh, S. N. Mishra, and R. Pant, โ€œNew fixed point theorems for asymptotically regular multi-valued maps,โ€ Nonlinear
Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp.
3299โ€“3304, 2009.
[9] S. G. Matthews, โ€œPartial metric topology,โ€ Annals of the New
York Academy of Sciences, vol. 728, pp. 183โ€“197, 1994, Proc. 8th
Summer Conference on General Topology and Applications.
[10] L. Cฬiricฬ, B. Samet, H. Aydi, and C. Vetro, โ€œCommon fixed points
of generalized contractions on partial metric spaces and an
application,โ€ Applied Mathematics and Computation, vol. 218,
no. 6, pp. 2398โ€“2406, 2011.
[11] I. Altun, F. Sola, and H. Simsek, โ€œGeneralized contractions on
partial metric spaces,โ€ Topology and Its Applications, vol. 157, no.
18, pp. 2778โ€“2785, 2010.
[12] I. Altun and S. Romaguera, โ€œCharacterizations of partial metric
completeness in terms of weakly contractive mappings having
fixed point,โ€ Applicable Analysis and Discrete Mathematics, vol.
6, no. 2, pp. 247โ€“256, 2012.
Journal of Function Spaces
[13] H. Aydi, C. Vetro, W. Sintunavarat, and P. Kumam, โ€œCoincidence and fixed points for contractions and cyclical contractions in partial metric spaces,โ€ Fixed Point Theory and
Applications, vol. 2012, article 124, 2012.
[14] H. Aydi, M. Abbas, and C. Vetro, โ€œPartial Hausdorff metric and
Nadlerโ€™s fixed point theorem on partial metric spaces,โ€ Topology
and Its Applications, vol. 159, no. 14, pp. 3234โ€“3242, 2012.
[15] H. Aydi, S. H. Amor, and E. Karapฤฑnar, โ€œBerinde-type generalized contractions on partial metric spaces,โ€ Abstract and Applied
Analysis, vol. 2013, Article ID 312479, 10 pages, 2013.
[16] H. Aydi, M. Abbas, and C. Vetro, โ€œCommon fixed points for
multivalued generalized contractions on partial metric spaces,โ€
Revista de la Real Academia de Ciencias Exactas, Fฤฑฬsicas y
Naturales. Serie A. Matemaฬticas, vol. 108, no. 2, pp. 483โ€“501,
2014.
[17] H. Aydi, M. Jellali, and E. Karapnar, โ€œCommon fixed points
for generalized ๐›ผ-implicit contractions in partial metric spaces:
consequences and application,โ€ Revista de la Real Academia de
Ciencias Exactas, Fฤฑฬsicas y Naturales. Serie A. Matemaฬticas, vol.
109, no. 2, pp. 367โ€“384, 2015.
[18] R. Heckmann, โ€œApproximation of metric spaces by partial
metric spaces,โ€ Applied Categorical Structures, vol. 7, no. 1-2, pp.
71โ€“83, 1999.
[19] P. Hitzler and A. Seda, Mathematical Aspects of Logic Programming Semantics, Chapman & Hall/CRC Studies in Informatic
Series, CRC Press, 2011.
[20] R. D. Kopperman, S. G. Matthews, and H. Pajoohesh, โ€œPartial
metrizability in value quantales,โ€ Applied General Topology, vol.
5, no. 1, pp. 115โ€“127, 2004.
[21] H. A. Kuฬˆnzi, H. Pajoohesh, and M. P. Schellekens, โ€œPartial quasimetrics,โ€ Theoretical Computer Science, vol. 365, no. 3, pp. 237โ€“
246, 2006.
[22] S. Romaguera and M. Schellekens, โ€œDuality and quasinormability for complexity spaces,โ€ Applied General Topology,
vol. 3, no. 1, pp. 91โ€“112, 2002.
[23] S. Romaguera, โ€œFixed point theorems for generalized contractions on partial metric spaces,โ€ Topology and Its Applications,
vol. 159, no. 1, pp. 194โ€“199, 2012.
[24] S. Romaguera, โ€œOn Nadlerโ€™s fixed point theorem for partial
metric spaces,โ€ Mathematical Sciences and Applications E-Notes,
vol. 1, no. 1, pp. 1โ€“8, 2013.
[25] S. Romaguera, โ€œA Kirk type characterization of completeness for
partial metric spaces,โ€ Fixed Point Theory and Applications, vol.
2010, Article ID 493298, 2010.
[26] B. Samet, M. Rajovicฬ, R. Lazovicฬ, and R. Stojiljkovicฬ, โ€œCommon
fixed-point results for nonlinear contractions in ordered partial
metric spaces,โ€ Fixed Point Theory and Applications, vol. 2011,
article 71, 14 pages, 2011.
[27] M. P. Schellekens, โ€œA characterization of partial metrizability: domains are quantifiable, Topology in computer science
(Schloß Dagstuhl, 2000),โ€ Theoretical Computer Science, vol.
305, no. 1โ€“3, pp. 409โ€“432, 2003.
[28] R. H. Haghi, S. Rezapour, and N. Shahzad, โ€œBe careful on partial
metric fixed point results,โ€ Topology and Its Applications, vol.
160, no. 3, pp. 450โ€“454, 2013.
[29] D. Ilicฬ, V. Pavlovicฬ, and V. Rakocevicฬ, โ€œSome new extensions of
Banachโ€™s contraction principle to partial metric space,โ€ Applied
Mathematics Letters, vol. 24, no. 8, pp. 1326โ€“1330, 2011.
[30] F. E. Browder and W. V. Petryshyn, โ€œThe solution by iteration
of nonlinear functional equations in Banach spaces,โ€ Bulletin of
the American Mathematical Society, vol. 72, pp. 571โ€“575, 1966.
Journal of Function Spaces
[31] K. P. R. Sastry, S. V. R. Naidu, I. H. N. Rao, and K. P. R.
Rao, โ€œCommon fixed point points for asymptotically regular
mappings,โ€ Indian Journal of Pure and Applied Mathematics, vol.
15, no. 8, pp. 849โ€“854, 1984.
[32] S. L. Singh, K. S. Ha, and Y. J. Cho, โ€œCoincidence and fixed
points of nonlinear hybrid contractions,โ€ International Journal
of Mathematics and Mathematical Sciences, vol. 12, no. 2, pp.
247โ€“256, 1989.
[33] B. E. Rhoades, S. L. Singh, and C. Kulshrestha, โ€œCoincidence
theorems for some multivalued mappings,โ€ International Journal of Mathematics and Mathematical Sciences, vol. 7, no. 3, pp.
429โ€“434, 1984.
[34] S. B. Nadler Jr., โ€œMulti-valued contraction mappings,โ€ Pacific
Journal of Mathematics, vol. 30, pp. 475โ€“488, 1969.
[35] V. La Rosa and P. Vetro, โ€œOn fixed points for ๐›ผ-๐œ‚-๐œ“-contractive
multi-valued mappings in partial metric spaces,โ€ Nonlinear
Analysis: Modelling and Control, vol. 20, no. 3, pp. 377โ€“394, 2015.
[36] M. Jleli, H. K. Nashine, B. Samet, and C. Vetro, โ€œOn multivalued
weakly Picard operators in partial Hausdorff metric spaces,โ€
Fixed Point Theory and Applications, vol. 2015, article 52, 2015.
[37] D. Paesano and C. Vetro, โ€œMulti-valued F-contractions in 0complete partial metric spaces with application to Volterra type
integral equation,โ€ Revista de la Real Academia de Ciencias
Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 108, no.
2, pp. 1005โ€“1020, 2014.
[38] A. Augustynowicz, โ€œExistence and uniqueness of solutions
for partial differential-functional equations of the first order
with deviating argument of the derivative of unknown function,โ€ Serdica. Mathematical Journal. Serdika. Matematichesko
Spisanie, vol. 23, no. 3-4, pp. 203โ€“210, 1997.
[39] A. Bielecki, โ€œUne remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des equations differentielles
ordinaires,โ€ Bulletin de lโ€™Acadeฬmie Polonaise des Sciences. Seฬrie
des Sciences Matheฬmatiques, Astronomiques et Physiques, vol. 4,
pp. 261โ€“264, 1956.
13
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
https://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
#HRBQDSDฤฎ,@SGDL@SHBR
Journal of
Volume 201
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014