Estimation of Random Components and Prediction in One- and Two-Way Error Component Regression Models Subhash C. Sharma Department of Economics Southern Illinois University Carbondale And Anil K. Bera Department of Economics University of Illinois at Urbana-Champaign July 2007 Outline • • • • • Problem One-Way Error Component Model Two-Way Error Component Model Empirical Illustration Summary Problem • Prediction in Panel Data Models. Consider the one-way error component model: yit X it i uit , i 1, 2, ,m t 1, 2, ,n i are randomly distributed across m cross- sectional units One problem: i • Idea borrowed from Bera and Sharma (1999), “Estimating Production Uncertainty in Stochastic Frontier Function Models,” Journal of Productivity Analysis, 12, pp. 187-210. • Model: yi f ( xi , ) i ui , ui 0 f ( xi , ) i SFi ui ui : represents technical inefficiency Estimation of ui ? • We can recover i , which is a “sufficient statistic” for ui • Use “Rao-Blackwellization” and obtain E (ui | i ). Then, E[ E (ui | i )] E (ui ) Var[ E (ui | i )] Var (ui ) It is easy to derive the conditional density f (ui | i ) Using that we can obtain conditional moments of any order. E (ui | i ) gives a point estimate of ui (inefficiency) Jondrow, Lovell, Materov and Schmidt (1982), JE. Var (ui | i ) can be viewed as the production uncertainty due to technical inefficiency. Using expression for the conditional mean and variance, we can construct confidence intervals for firm specific inefficiency. Can also use higher-order conditional moments (of ui given i ) to obtain conditional skewness and kurtosis measures. For the panel data model yit X it i uit yi X i i 1 ui , X i i 1 1 1 E ( yi | i ) X i E ( i | i )1 E (ui | i ) Can construct confidence interval using Var ( i | i ). Introduction We have the panel regression model (for m cross sectional units over n time periods) y it α i x 2itβ 2 x 3itβ 3 x kitβ k u it or β2 α i x 2it x 3it ...x kit β 3 u it β k i 1,2...m, t 1,2...n or y it α i xitβ* uit i = 1,2…m, t = 1,2…n (1) yit is an observation on the dependent variable, α i is a unit specific term, xit is the i-th observation on (k-1) non-stochastic explanatory variables at time t, β is a (k-1)x1 vector of unknown parameters * When α i is fixed it yields the fixed effect model. In other situations it might be more appropriate to consider α i α δi where α is the mean intercept and δi is randomly distributed across cross-sectional units. Thus, model (1) can be written as y it α xitβ* δi u it i 1,2...m, t 1,2...n (2) Model (2) is known as the one-way random effect or the oneway error component model. Instead of just cross sectional effect one should also capture the time effect, i.e., α it α δ i λ t where α is the overall effect, δi is an individual cross sectional effect, and λ t is the time effect, So, for this case the model becomes y α x β δ λ u it it i t it i = 1,2…m , t = 1,2…n (3) • When δi and λ t are fixed, (3) is called a two-way fixed effect model. • However, when δi and λ t are random, (3) is called a two-way error component model, or two-way random effect model. 2. One-Way Error Component Model Consider the random effect model given by equation (2) y it x it β δ i u it , i 1,2...m, t 1,2...n, (2) where E(δ ) = E(u ) = 0,E(δ ) = σ ,E(u ) = σ ,E(u δ ) = 0, for all t and j; E(uit u js ) = 0 if t s or i j, i 2 i it 2 δ 2 it 2 u it j E(δiδ j ) 0 if i j and δ i and u it are assumed to be distributed as normal. Let ε it δ i u it or ε i δi i n ui (4) The joint density of δi and ui = (ui1 ui2…uin)´ is given by δi2 u'iu i f(δi ,u i ) = exp - 2 - 2 n+1 2σ δ 2σ u n 2 σ δσ u (2π) 1 (5) From (5), the joint density of δi and εi can be easily obtained as (δi - μ *δ )2 μ *δ2 ε'i ε i f(δ i ,ε i ) = exp + *2 - 2 n+1 *2 2σ δ 2σ δ 2σ u σ δσ nu (2π) 2 1 i i where μ *δ = i nσ*2 δ εi• σ u2 *2 δ ,σ = σ δ2σ u2 σ12 , and σ12 = σ u2 + nσ δ2 , (6) n with i t1 it / n. From (6), the marginal density of εi is μ *δ2 ε'iε i f(ε i ) = exp *2 - 2 . n 2σ δ 2σ u σ δσ un (2π) 2 σ*δ i (7) Finally, the conditional density function of δi given εi is 1 f(δi | εi) = σ*δ Thus, E(δi | εi) = σδ = μ*δ i σ δσ u 2 *2 (δi - μ*δ )2 exp . *2 2π 2σδ 1 i nσ*δ2 εi σ u2 and Var (δi | εi) = σ*δ2, 2 σ1 2 , and σ1 = σ u + nσ δ . 2 2 2 (8) Thus, we propose that the random coefficient, δi, be estimated by an estimate of E(δi | εi), i.e. 2 nσ̂ *δ ε̂i nσ̂ δ2 ε̂i * δ̂ i μ̂ δi 2 σ̂ u σ̂ 12 where, n ˆεi 1 (y it x'it βˆ ), n t 1 and βˆ , σˆ δ2 and σˆ 12 are the corresponding GLS estimates of β, σδ2 and σ12 respectively. (9) Confidence Interval: We can estimate Var (δi|εi) as *2 σˆ δ σˆ δ2σˆ u2 /σˆ 12 . Using these estimate we can easily construct the (1-α) 100% confidence interval for δi, as follows. (δˆ i - Zα/2σˆ *δ , δˆ i + Zα/2σˆ *δ ) We can also test the hypothesis Ho: δi = 0, using the approximate t-statistic given by δˆ i /σˆ *δ . (10) Prediction In the one way random effect model, we propose the predicted value of yi by the expected value of yi conditional on the composed error term, εi, i.e,. E(yi|εi), where E(yi | εi) = Xi β + E(δi | εi) in + E(ui | εi), * * E(yi | εi) = Xi β + μδi in μ ui . (11) One can easily obtain that 1 exp f(ui | εi) *n n/2 σ u (2 ) where, μ*u i = E(ui | σ *u 2 and σ* 2 u2 u ε ε εi) 2 i 2 2 i σ u nσ δ δ σ 2u σ δ2 σ nσ 2 u (u i μ *u i ) (u i μ *u i ) , *2 2σ u 2 δ . (12) (13) (14) Thus, following (11) the prediction for the i-th unit is yˆ i = Xi βˆ GLS + μˆ *δ in + μˆ *u i where μˆ *δ and μˆ *u i i (15) i are the consistent estimates of μ *δ and μ *u . i i For this model, the best linear unbiased prediction of the i-th unit, is also given by Lee and Griffiths (1979), Taub (1979) and Baltagi (2001, p. 22), which is nσ δ2 ŷ i X i β̂ GLS 2 ε̂ i ,GLS , σ1 where 1 n ε̂i ,GLS ε̂ it,GLS, and ε̂ i yi X i β̂ GLS. n t 1 (16) 3. Two-Way Error Component Model yit xit β δi λ t uit , i 1,2...m, t 1,2...n (3) where δi’s are iid, as normal with mean zero and variance, σ δ2 ; 2 λt’s are iid normal with mean zero and variance σ λ ; 2 σ and uit are iid normal with mean zero and variance u . Moreover, δi, λt and uit are assumed to be independent of each other. Let (19) ε it δi λ t u it or, (20) ε i δi i n λ u i λ = (λ 1 λ 2 ...λ n ),u i = (u i1 u i2 ...u in ), and ε i = ε i1ε i2 ...ε in '. 3.1 Estimation of Cross Sectional Effect, δi We propose an estimate of δi by E(δi|εi) using the conditional density f(δi|εi). The joint density of δi, λ and ui is given by δ i2 λ ' λ u 'i u i exp 2 2 2σ δ 2σ λ 2σ u2 f(δ i , λ, u i ) . 2n 1 n σ δ σ λ σ u 2π 2 (21) From (21), one can easily obtain the joint density of f(δi, λ, εi) by substituting uiu i , i.e., λλ δi2 εiε i λε i in λδi inε iδi exp - +2 - +2 - 2 + 2 - 2 + 2 σu σ u 2σ λ 2σ δi 2σ u σ u f δi ,λ,ε i = 2n+1 σ δ σ λ σ u 2π n 2 (22) where σu2σ 2λ = 2 , σu + σ 2λ (23) σu2σδ2 σ = 2 . 2 σu + nσδ (24) σ +2 λ and +2 δi From (22), one can obtain f δi ,ε i = δi2 εiε i σ +2 inε iδi λ +2 2 + 4 ε i - i nδ i ' ε i - i nδ i + 2σ 2σ 2σ σ u2 u u δi σ +n λ exp - σδ σ λσ u 2π n n+1 2 . (25) Further, from (25) *2 εε μ δi * i i σ +n 2 + λ σ δi exp * *2 2σ 2σ εi δi , f εi = n n/2 σδ σ λσ u 2π (26) 2 σ*δi σδ2 μ = *2 nεi• = 2 nεi• , 2 2 σ + σ + nσ σ εi u λ δ * δi 2 σ*δi = σ δ2 σ u2 + σ 2λ σ + σ + nσ 2 u 2 λ 2 δ (27) , (28) and *2 εi σ = σ u2 + σ 2λ . (29) Finally, from (25) and (26), we get f(δi | εi) = δ - μ* i δi exp *2 2σ δi σ*δi 2π 2 . (30) Thus, we propose that δi be estimated by E(δi | εi) = μ*δ i 2 σ δ n ε . 2 2 2 i σ u σ λ nσ δ (31) And Var (δi | εi) = *2 σδ i σδ2 σu2 σ 2λ 2 . 2 2 σu σ λ nσδ (32) By using σ *δ i , one can also obtain the (1-α) 100% confidence interval for δi. 3.2 Estimation of the time effect, λt. We propose an estimate of λt by E(λt | εt), which is the mean of f(λt | εt). To obtain f(λt | εt) we rearrange the observations in (19), as εt = δ + λ t im + ut (33) where εt = (ε1t ε2t ….εmt)́, δ = (δ1 δ2 ….δm)́, ut = (u1t u2t….umt)́, and im = (111…11)´. The joint density of δ, λt and ut is given by f(δ, λt, ut) = δδ λ t2 ut u t exp - 2 2 2 2σ δ 2σ λ 2σ u . 2m 1 m σ λ σ δ σ u 2π 2 (34) From (34), one can obtain f(δ, λt, εt) = δδ λ t2 εt ε t δε t λ t imδ λ t imε t exp - +2 - +2 - 2 + 2 - 2 + σu σ u2 2σ δ 2σ λ t 2σ u σ u σ λ σ δσ u m 2π 2m+1 2 , (35) and f(λt,εt) = where λ t2 εtε t σ δ+2 + (ε i λ ) (ε i λ ) t m t t m t +2 2 4 2σ λ t 2σ u 2σ u σ δ+mexp - σ λ (σ uσ δ ) (2π) m m+1 2 σu2σδ2 σ = 2 , σu + σδ2 +2 δ and σu2σ λ2 σ = 2 . 2 σu + mσ λ +2 λt (36) (37) (38) Further, from (36) we get *2 εε μ σ*λt σδ+ exp - t *t2 + λ*t 2 2σ εt 2σ λ t , f εt = m m/2 m σ λ σδσ u 2π (39) where σ 2λmε•t μ = 2 , σu + σδ2 + mσ 2λ * λt 2 + σ2 σ2 σu 2 λ δ σ*λ = , 2 2 2 t σu + σ + mσ δ λ (40) and 2 2 + σ2 , σ*ε = σu δ t with t it m i 1 m (41) From (36) and (39), λ μ* 2 t λ exp * 2σ λ . σ *λ 2π t 2 f(λt | εt) = t (42) t Thus, we propose that λt be estimated by E(λt | εt), i.e. σ 2λ E(λt | εt) = μ = σ 2 + σ 2 + mσ 2 δ λ u * λt mε•t , (43) and Var (λt | εt) = 2 σ*λ t = σ 2λ σ u2 + σ δ2 σ + σ + mσ 2 u 2 δ 2 λ . (44) By using σ*λ t , we can obtain the (1 – α) 100% confidence interval for λt and test the hypothesis H0: λt = 0. 3.3 Prediction In model y i = Xi β + δi i n + λ + u i , we propose prediction of yi by an estimate of E(yi | εi). Thus * * * ˆ ˆ ˆ ˆ X β + μ i n + μ + μ ŷ i i GLS ui δi λ where, ' μˆ * = μˆ * ,μˆ * , .. μˆ * λ λ λ λn 1 2 μ̂ *δi and μ̂ *λ t are estimates of δi and λt and μ̂*u i = Ê (ui | εi) is an estimate of ui. (45) 4. Empirical Illustration We consider an example, first used by Baltagi and Griffin (1983) and later by Baltagi (2001), the demand for gasoline in a panel of 18 OECD countries covering the period 1960-1978. The gasoline demand equation considered by Baltagi and Griffin (1983) and Baltagi (2001, p. 21) is ln (Gas/Car) = α + β ln (Y/N) + β ln (PMG /PGDP ) + β ln (Car/N) + ε , 1 2 3 it Gas/Car is motor gasoline consumption per auto, Y/N is real per capita income, PMG/PGDP is real motor gasoline price and (Car/N) denotes the stock of cars per capita. (66) Table: 1 One-way error component model estimates __________________________________________________________________ Methods of Estimation Parameter WAHU AM SWAR FUBA α̂ 1.9058 (0.1661) 2.1844 (0.2151) 1.9967 (0.1843) 2.0203 (0.1882) β̂ 1 0.5434 (0.0544) 0.6009 (0.0656) 0.5550 (0.0591) 0.5599 (0.0600) β̂ 2 -0.4711 (0.0389) -0.3664 (0.0415) -0.4204 (0.0399) -0.4118 (0.0402) β̂ 3 -0.6061 (0.0243) -0.6204 (0.0272) -0.6068 (0.0255) -0.6081 (0.0257) ˆ 21 0.030071 0.11420 0.038238 0.044041 ˆ 22 0.062094 0.090217 0.072238 0.074485 ˆ 23 0.071708 0.099850 0.081794 0.084041 ˆ u21 0.013509 0.008446 0.008524 0.008525 ˆ u22 0.008360 0.008064 0.008192 0.008167 ˆ u23 0.008909 0.008594 0.008729 0.008704 21 : denotes first stage estimates. 22 : are ANOVA type estimates based on GLS residuals. 23 : are ANOVA type estimates adjusted for degrees of freedom, based on GLS residuals. Table: 2 One-Way Error Component Model Point and 95 % Confidence Interval Estimates for Cross Country Effect ( i ) Based on Fuller-Battese Method Country Austria Belgium Canada Denmark France Germany Greece Ireland Italy Japan Netherlands Norway Spain Sweden Switzerland Turkey U.K. U.S.A. LB ˆi _ 1 UB LB ˆi _ 2 UB LB ˆi _ 3 UB -0.15782 -0.24255 0.57070 -0.01556 -0.20431 -0.27841 -0.05409 0.13131 -0.20488 -0.02880 -0.17882 -0.17329 -0.56317 0.18602 -0.06980 0.06224 -0.09551 0.57321 -0.11651 -0.20124 0.61201 0.02575 -0.16300 -0.23710 -0.01279 0.17261 -0.16357 0.01250 -0.13751 -0.13198 -0.52186 0.22732 -0.02849 0.10355 -0.05421 0.61452 -0.07520 -0.15994 0.65332 0.06705 -0.12170 -0.19580 0.02852 0.21392 -0.12226 0.05381 -0.09620 -0.09068 -0.48055 0.26863 0.01282 0.14485 -0.01290 0.65583 -0.15860 -0.24370 0.57315 -0.01571 -0.20529 -0.27972 -0.05441 0.13181 -0.20587 -0.02901 -0.17969 -0.17414 -0.56574 0.18676 -0.07019 0.06244 -0.09602 0.57567 -0.11703 -0.20213 0.61472 0.02586 -0.16372 -0.23815 -0.01284 0.17338 -0.16429 0.01256 -0.13812 -0.13257 -0.52417 0.22833 -0.02862 0.10401 -0.05445 0.61724 -0.07545 -0.16056 0.65629 0.06743 -0.12215 -0.19658 0.02873 0.21495 -0.12272 0.05413 -0.09655 -0.09100 -0.48260 0.26990 0.01295 0.14558 -0.01287 0.65881 -0.15884 -0.24407 0.57388 -0.01577 -0.20561 -0.28013 -0.05452 0.13195 -0.20618 -0.02909 -0.17997 -0.17441 -0.56653 0.18697 -0.07032 0.06248 -0.09618 0.57640 -0.11718 -0.20240 0.61554 0.02590 -0.16394 -0.23847 -0.01286 0.17361 -0.16451 0.01258 -0.13830 -0.13274 -0.52487 0.22864 -0.02866 0.10415 -0.05452 0.61806 -0.07552 -0.16074 0.65720 0.06756 -0.12228 -0.19681 0.02880 0.21527 -0.12285 0.05424 -0.09664 -0.09108 -0.48321 0.27030 0.01301 0.14581 -0.01285 0.65973 Method Table: 3 One-Way Error Component Model Absolute Prediction Error in Percentage In-Sample n =18, m = 19 Out of-Sample n =18, m = 4 N = 342 N = 72 Pred. Type Std. Std. Mean Dev. Min. Max. Mean Dev. Min. Max. Wallace and Hussein T/LG_1 SB_1 T/LG_2 SB_2 T/LG_3 SB_3 1.49023 1.45088 1.48399 1.47480 1.48404 1.47722 1.38969 1.35907 1.39239 1.38147 1.39226 1.38374 0.00042 0.00824 0.00248 0.00838 0.00039 0.00839 8.02895 7.84881 8.03274 7.97819 8.03312 7.99128 4.46491 4.46747 4.14864 4.14945 4.15007 4.46570 4.33748 4.33841 4.20766 4.20806 4.20837 4.33776 0.00471 0.00010 0.07061 0.07250 0.07393 0.00330 15.64474 15.64853 15.12592 15.12743 15.12859 15.64590 Amemiya T/LG_1 SB_1 T/LG_2 SB_2 T/LG_3 SB_3 1.46628 1.46233 1.46605 1.46119 1.46638 1.46278 1.37290 1.36589 1.37317 1.36483 1.37278 1.36631 0.00138 0.00089 0.00174 0.00089 0.00063 0.00089 7.69096 7.65828 7.69154 7.65230 7.69074 7.66064 4.72054 4.72180 4.41823 4.41935 4.41930 4.72166 4.59062 4.59114 4.44542 4.44605 4.44602 4.59108 0.11957 0.11700 0.12902 0.13199 0.13186 0.11730 16.42695 16.42903 15.86412 15.86652 15.86641 16.42880 Swamy and Arora T/LG_1 SB_1 T/LG_2 SB_2 T/LG_3 SB_3 1.47356 1.45785 1.47316 1.46626 1.47344 1.46828 1.38062 1.36252 1.38030 1.37038 1.37995 1.37227 0.00457 0.00330 0.00041 0.00332 0.00640 0.00332 7.87822 7.78484 7.87722 7.82974 7.87698 7.84056 4.53436 4.53666 4.21162 4.21251 4.21290 4.53528 4.39655 4.39735 4.26563 4.26613 4.26635 4.39687 0.01311 0.01736 0.01249 0.01028 0.00930 0.01481 15.93431 15.93772 15.39819 15.39996 15.40076 15.93567 Fuller And Battese T/LG_1 1.47184 1.37904 0.00494 7.85012 4.55079 4.41156 0.00425 15.99399 SB_1 T/LG_2 SB_2 T/LG_3 SB_3 1.45860 1.47158 1.46505 1.47184 1.46701 1.36306 1.37881 1.36909 1.37848 1.37092 0.00125 0.00055 0.00126 0.00245 0.00126 7.76839 7.84900 7.80277 7.84865 7.81320 4.55290 4.22779 4.22872 4.22907 4.55169 4.41243 4.28000 4.28051 4.28071 4.41193 0.00013 0.03595 0.03367 0.03279 0.00249 15.99730 15.45442 15.45626 15.45696 15.99540 Table 4 Parameter Two-Way Error Component Model Estimates Methods of Estimation WAHU AM SWAR FUBA α̂ 1.9101 (0.1672) -0.2391 (0.3501) 2.0408 (0.1915) 1.0308 (0.2660) β̂ 1 0.5433 (0.0547) 0.1682 (0.0804) 0.5645 (0.0608) 0.3947 (0.0683) -0.4672 (0.0390) -0.2322 (0.0411) -0.4049 (0.0404) -0.3390 (0.0414) -0.6058 (0.0244) -0.6024 (0.0258) -0.6094 (0.0259) -0.6096 (0.0256) β̂ 2 β̂ 3 ˆ 21 ˆ 22 ˆ 23 ˆ 21 ˆ 22 ˆ 23 ˆ u21 ˆ u22 ˆ u23 0.031875 0.18261 0.038340 0.046706 0.066418 0.15203 0.080906 0.13047 0.086992 0.19891 0.105930 0.13047 0 0.017412 0 0.002038 0 0.011753 0 0.002989 0 0.015211 0 0.003956 0.013653 0.006526 0.006591 0.006591 0.008914 0.006608 0.008661 0.007430 0.009032 0.006695 0.008776 0.007528 Table: 5 Two- Way Error Component Model Point and 95 % Confidence Interval Estimates for Cross Country Effect ( i ) Based on Fuller-Battese Method Country LB Austria Belgium Canada Denmark France Germany Greece Ireland Italy Japan Netherlands Norway Spain Sweden Switzerland Turkey U.K. U.S.A. -0.15730 -0.20954 0.70206 0.03555 -0.17856 -0.23031 -0.16852 0.06903 -0.26615 -0.06526 -0.15398 -0.12771 -0.57212 0.07010 -0.00736 -0.14617 -0.07939 0.73743 ˆi _ 1 -0.11573 -0.16798 0.74363 0.07712 -0.13699 -0.18874 -0.12695 0.11060 -0.22459 -0.02369 -0.11241 -0.08614 -0.53056 0.11167 0.03420 -0.10460 -0.03782 0.77900 UB LB ˆi _ 2 UB LB ˆi _ 3 UB -0.07417 -0.12641 0.78520 0.11869 -0.09543 -0.14717 -0.08539 0.15217 -0.18302 0.01787 -0.07085 -0.04458 -0.48899 0.15324 0.07577 -0.06304 0.00375 0.82056 -0.16199 -0.21445 0.70098 0.03167 -0.18334 -0.23530 -0.17326 0.06529 -0.27130 -0.06957 -0.15866 -0.13228 -0.57856 0.06636 -0.01143 -0.15082 -0.08375 0.73649 -0.11622 -0.16868 0.74675 0.07745 -0.13757 -0.18953 -0.12749 0.11107 -0.22553 -0.02379 -0.11288 -0.08651 -0.53279 0.11214 0.03435 -0.10504 -0.03798 0.78227 -0.07045 -0.12291 0.79252 0.12322 -0.09180 -0.14376 -0.08171 0.15684 -0.17976 0.02198 -0.06711 -0.04073 -0.48701 0.15791 0.08012 -0.05927 0.00779 0.82804 -0.16440 -0.21690 0.69932 0.02944 -0.18576 -0.23777 -0.17567 0.06309 -0.27380 -0.07189 -0.16106 -0.13466 -0.58132 0.06416 -0.01370 -0.15321 -0.08609 0.73487 -0.11632 -0.16883 0.74740 0.07751 -0.13769 -0.18970 -0.12760 0.11116 -0.22573 -0.02381 -0.11298 -0.08658 -0.53325 0.11223 0.03438 -0.10513 -0.03801 0.78294 -0.06824 -0.12075 0.79547 0.12559 -0.08961 -0.14162 -0.07952 0.15924 -0.17765 0.02426 -0.06491 -0.03850 -0.48517 0.16031 0.08245 -0.05706 0.01006 0.83102 Table: 6 Two Way Error Component Model Point and 95 % Confidence Interval Estimates for the Time Effect ( t ) Based on Fuller-Battese Method Year LB ˆi _ 1 UB LB ˆi _ 2 UB LB ˆi _ 3 UB 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 -0.10644 -0.09808 -0.10192 -0.10134 -0.09254 -0.08960 -0.07768 -0.07010 -0.06280 -0.06683 -0.06132 -0.05421 -0.05001 -0.04376 -0.05522 -0.04018 -0.04229 -0.03981 -0.03974 -0.03834 -0.02998 -0.03382 -0.03324 -0.02444 -0.02151 -0.00958 -0.00201 0.00530 0.00127 0.00678 0.01389 0.01809 0.02434 0.01288 0.02792 0.02581 0.02829 0.02836 0.02975 0.03812 0.03428 0.03485 0.04366 0.04659 0.05852 0.06609 0.07340 0.06937 0.07488 0.08198 0.08619 0.09244 0.08098 0.09602 0.09390 0.09639 0.09645 -0.11888 -0.11202 -0.11517 -0.11469 -0.10747 -0.10507 -0.09528 -0.08907 -0.08308 -0.08639 -0.08187 -0.07604 -0.07259 -0.06746 -0.07686 -0.06453 -0.06626 -0.06423 -0.06417 -0.03145 -0.02459 -0.02774 -0.02726 -0.02004 -0.01764 -0.00786 -0.00165 0.00435 0.00104 0.00556 0.01139 0.01484 0.01996 0.01057 0.02290 0.02116 0.02320 0.02326 0.05598 0.06284 0.05969 0.06016 0.06738 0.06979 0.07957 0.08578 0.09177 0.08847 0.09299 0.09882 0.10227 0.10739 0.09799 0.11033 0.10859 0.11063 0.11068 -0.13213 -0.12515 -0.12836 -0.12787 -0.12052 -0.11807 -0.10812 -0.10179 -0.09570 -0.09906 -0.09446 -0.08853 -0.08502 -0.07980 -0.08937 -0.07681 -0.07858 -0.07650 -0.07645 -0.03201 -0.02503 -0.02824 -0.02775 -0.02040 -0.01795 -0.00800 -0.00167 0.00442 0.00106 0.00566 0.01159 0.01510 0.02032 0.01075 0.02331 0.02154 0.02362 0.02367 0.06811 0.07509 0.07188 0.07237 0.07972 0.08217 0.09212 0.09845 0.10454 0.10118 0.10578 0.11171 0.11522 0.12044 0.11087 0.12343 0.12166 0.12374 0.12379 Table: 7 Two-Way Error Component Model Absolute Prediction Error in Percentage Method Pred. Type In-Sample n =18, m = 19 N = 342 Std. Mean Dev. Min. Max. Out of -Sample n =18, m = 4 N = 72 Std. Mean Dev. Min. Max. Wallace and Hussein BK_1 SB_1 BK_2 SB_2 BK_3 SB_3 1.48853 1.45149 1.48300 1.47380 1.48306 1.47615 1.38900 1.35948 1.39134 1.38037 1.39119 1.38257 0.00265 0.00041 0.00153 0.00042 0.00198 0.00042 8.01828 7.84597 8.02139 7.96658 8.02172 7.97925 4.44417 4.44912 4.46674 4.46770 4.47036 4.47182 4.32244 4.32399 4.32958 4.32989 4.33074 4.33121 0.08768 0.09620 0.12650 0.12815 0.13076 0.12819 15.54077 15.54778 15.57273 15.57409 15.57785 15.57993 Amemiya BK_1 SB_1 BK_2 SB_2 BK_3 SB_3 2.47954 1.48311 2.47941 1.54926 2.47957 1.55094 1.92787 1.36907 1.92789 1.40013 1.92786 1.40124 0.00468 0.01103 0.00551 0.01632 0.00446 0.01588 11.86577 9.53317 11.86797 9.71797 11.86518 9.72511 7.71453 6.66773 7.70709 6.76351 7.70978 6.72575 7.09830 6.73220 7.09640 6.76448 7.09709 6.75241 0.11524 0.06527 0.10471 0.09864 0.10852 0.03522 27.04638 25.64423 27.03769 25.78135 27.04083 25.72830 Swamy and Arora BK_1 1.47052 1.37798 0.00146 7.82731 4.64396 4.50365 0.05252 16.26869 SB_1 BK_2 SB_2 BK_3 SB_3 1.45915 1.47045 1.46410 1.47071 1.46539 1.36347 1.37770 1.36810 1.37738 1.36974 0.00223 0.00125 0.00224 0.00242 0.00111 7.75425 7.82622 7.78057 7.82581 7.78897 4.64564 4.64394 4.64563 4.64681 4.65163 4.50429 4.50364 4.50428 4.50473 4.50656 0.05571 0.05249 0.05569 0.05791 0.06704 16.27134 16.26867 16.27132 16.27316 16.28072 Fuller And Battese BK_1 1.78864 1.48110 0.00254 9.66659 5.63341 5.32737 0.16250 20.39134 SB_1 BK_2 SB_2 BK_3 SB_3 1.49509 1.78980 1.54527 1.79016 1.54303 1.33861 1.47994 1.36379 1.47962 1.36343 0.00374 0.00228 0.00345 0.00065 0.00408 8.82149 9.65778 8.98992 9.65554 8.98725 5.30760 5.64040 5.39850 5.64373 5.38002 5.30888 5.32788 5.31337 5.32812 5.31251 0.00167 0.15296 0.06515 0.14841 0.04787 20.04742 20.39870 20.14384 20.40222 20.12437 5. Summary We consider the one-way error component model, i.e. yit = α + xitβ* + δi + u it i = 1, 2...m, t = 1, 2...n and propose an estimate of δi by the estimate of E(δi | εi), where, ε i δi i n ui , is like a composite error term. We also provide expression for Var (δi | εi). Using E(δi | εi) and Var (δi | εi) one can obtain the confidence interval for the random component. Next, an expression for the prediction of the i-th crosssectional unit is provided, i.e., ŷ i X i β̂ GLS δ̂ i i n û i where û i = E(ui | εi) , is also included besides E(δi | εi).
© Copyright 2026 Paperzz