MarketBasedOp-miza-on: Applica-ons 20September,2016 CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on MBO:Overview MBO Buyandsell Agentsmaximize profit • • • • Usedtodescribeadistributedsystem U-lisesagentsandtheir‘fitness’ Decentralisedsystemforlargecomplexity Agentscancooperateoroperateindependently • Agentsinteracttobothbuyandsellresources • Resourcescanbeanythingdependingontheproblem • Individualagentsarefocusedonmaximisingtheirown ‘profit’ • Systemthereforetendstowardsanop-maldistribu-on CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-2 MBO:Overview Biddingpolicy • AnofferofseTngapriceoneiswillingtopayfor something • Biddingcanbeuniqueordynamic Auc-ons • Phases:Announcement,BiddingandClearing&Winner determina-on • Types:Sealed-bid,Double,Walrasian Auc-onmechanism selec-on • Situa-onal • Besttobekeptsimple • Ifmorethanoneresource,mul-pleauc-onscanoccur CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-3 Summaryofexamples Resourcealloca-on • Appliedtodistributedcompu-ng • U-lisesacon-nuousdoubleauc-on(CDA) • Discussesnego-atonwithinmarkets Loadbalancing • Describesawaytoexchangejobsbetweenserversina loadbalancertodistributetheloadasmuchaspossible overmanyservers • MBOisusedprovideaserverpairingmechanismto avoidequilibriumwhenbenefitscouldbemade Trafficcontrolsystems • Usedinanurbanroadscenario • UsestheWalrasianauc-onmethod • ShowshowMBOcanshowmarketscomparedtotraffic lights CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-4 ResourceAlloca-on inGridCompu-ng GridCompu-ng • Aformofdistributedcompu-ng • Nodesaregeographicallydistributedandcan beheterogeneous • Looselycoupled,soli_leifany communica-ondirectlybetweennodes • Forexample:SETI@Home CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-6 Agents ResourceProducers • Representsthecomputa-on nodesofthegrid • 𝑅↓𝑖 =(𝑐↓𝑖 ,𝑠𝑡↓𝑖 ,𝑤𝑙↓𝑖 ,𝑟↓𝑖 ,𝑚𝑝↓𝑖 ) – 𝑐 ↓𝑖 −computa-onalspeed(inMI/ s) – 𝑠𝑡↓𝑖 −star-ng-mefornewly acceptedjobs(basedoncurrent workload) – 𝑤𝑙↓𝑖 −stored𝑠𝑡↓𝑖 fromthelast -meajobwasallocatedtoit – 𝑟↓𝑖 −minimumprice(reserve) – 𝑚𝑝↓𝑖 −maximumprice CITS4404Ar-ficialIntelligence&Adap-veSystems ResourceConsumers • Representsusers • Eachhasoneormorejobs • 𝐽↓𝑖 =(𝑙↓𝑖 ,𝑏↓𝑖 ,𝑑↓𝑖 ) – 𝑙 ↓𝑖 =lengthofjob,inmillions ofinstruc-ons(MI) – 𝑏↓𝑖 =budget – 𝑑↓𝑖 =deadline • Jobsmustbecompleted withinbudgetbeforethe deadline MarketBasedOp-miza-on-7 Con-nuousDoubleAuc-on(CDA) • Producersplaceasks • Consumersplacebids • Tradesoccurwhen𝑚𝑎𝑥 𝑏𝑖𝑑≥𝑚𝑖𝑛 𝑎𝑠𝑘 • Marketpriceistheaverage ofmaxbidandminask • Tradesthatarepossibleat themarketpriceoccur CITS4404Ar-ficialIntelligence&Adap-veSystems Bids (BuyOrders) Asks (SellOrders) Amount Price Price Amount 10 17.0 18.5 15 15 16.5 19.0 30 40 16.0 19.5 20 20 15.5 20.0 15 30 15.0 20.5 25 MarketBasedOp-miza-on-8 U-lityFunc-ons(PriceperMI) ResourceProducers • Askpricebasedoncurrent workload – Resetstomaximumwhena newjobisaccepted – Reducesover-me,reaches minimumwhenallqueued jobsarefinished CITS4404Ar-ficialIntelligence&Adap-veSystems ResourceConsumers • Bidpricebasedon availabilityofResource Producersand-meun-l deadline – ResourceProducer consideredavailableiffitcan completejobwithindeadline – FeweravailableResource Producersresultsinahigher price – Priceincreasesas-meun-l deadlinedecreases MarketBasedOp-miza-on-9 U-lityFunc-onPlots ResourceProducers(𝝈=𝟓) CITS4404Ar-ficialIntelligence&Adap-veSystems ResourceConsumers() MarketBasedOp-miza-on-10 Results • Outperforms: – Firstcome,firstserved – Shortestjobfirst – Earliestdeadlinefirst – Incen-vebased • Performancecanbe furtherimprovedusing: – Morecomplexu-lity func-ons – Differentmarketmodels CITS4404Ar-ficialIntelligence&Adap-veSystems ExtractedfromIzakianetal. MarketBasedOp-miza-on-11 Nego-a-on 1. JobbroadcastedtoResource Producers 2. AvailableRPsrespond 3. EachRPnego-ateswithRC 4. Bestfinalpricegetsthejob • Allowsu-litytobecalculated onaperjobbasis • Canreacttonumberof compe-tors – Morecompe-torsresultsin higherconcessionrates ExtractedfromAdabietal. • Moresuitablewhen requirementsforjobsvary CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-12 LoadBalancing LoadBalancing Twoagentmarket: clients‘buy’serverresources servers‘sell’serverresources h_ps://assets.wp.nginx.com/wp-content/uploads/2015/10/uneven-hash-distribu-on.png CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-14 Methodology • Keyassump-ons: – Jobshaveapredicted ini-alcost – Jobscanbetransferred betweenserverswhile running • Basicalgorithm:findtwo bestserverstoexchange jobswith • Selec%onpolicy: whichjobsshouldbe exchanged? CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-15 SimpleSelec-onPolicies • • • Latestarrivaljob(LAJ) –sendthelastreceivedjob Backfilllowest(BL) – fillthetarget’s leastusedresource Backfillbalance(BB) – minimisetarget’s maximumload/averageload CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-16 Market-basedselec-onpolicy • Addanaddi-onalexchanger statetopreventbadmarket equilibrium • Keymetricforpairing:loadimbalancedegree • Secondarymetric:resourcecapacity – maximise where - CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-17 Improvementscenario Before CITS4404Ar-ficialIntelligence&Adap-veSystems Aner MarketBasedOp-miza-on-18 Results CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-19 Urbanroadtrafficcontrol systems Urbanroadtrafficcontrolsystems Fig.1.Urbanroadnetworkusedfortheevalua-on O=originordes-na-onpointsoutsidethecitycenter C=cri-calintersec-onpointsconnectedthefreewaysgoingdowntownwiththeringroad CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-21 Walrasianauc-on Atagiven-met,tradingbeginwithpricevectorPt quan-tyofresourcesrequired Setofbuyerβ Actualprice Setofsupplierϒ quan-tyofgoodsprovided Suppliercomputedemand/supply Excesssupply->currentP Excessdemand->currentP Supplier->newpricevectorPt+1->buyers Transac-ontakesplaceatequilibriumpricep* CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-22 Intersec-onmanagerpriceupdate Algorithm 01:whiletruedo 02: forallincominglinkthatisamemberofintersec-onjdo 03: evaluatedemand 04: Excessdemand/supply=demand–supply 05: newlinkprice=currentlinkprice *totaldemandatcurrentprice/supply 06. endfor 07: incrementt 08:endwhile Note: Supplyofthatlinkisaconstantand-meindependent Totaldemand=numbersofvehicleswillingtocrossthatincominglinkatapar-cularprice CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-23 Fundamentaldiagramoftrafficflow Fig.2.Fundamentaldiagramoftrafficflow. Legend: =theassumedop-maldensitythatmaximisesthetrafficflowonlink =lengthoflink CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-24 Compe--vemarketvstrafficlights Averagetravel-me= CITS4404Ar-ficialIntelligence&Adap-veSystems Averagespeed= MarketBasedOp-miza-on-25 Vehicledensityvaria-on Fig.3.Vehicledensityvaria-onover-meforcri-calintersec-ons. (e)Cri-calintersec-onc5and(f)Cri-calintersec-onc6. CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-26 Fig.1.Urbanroadnetworkusedfortheevalua-on. Furtherenhancements/poten-alexpansionofthis applica-on 1. Discountsforusageatapar-cular-me 2. Dailysubscrip-ons 3. Real-mereportoftheunexpectedconges-on 4. Automa-cinfringement-cketsforspeeding CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on-27 MarketBasedOp-miza-on: Applica-ons 20September,2016 CITS4404Ar-ficialIntelligence&Adap-veSystems MarketBasedOp-miza-on References • Izakian,H.,Abraham,A.,&Ladani,B.T. (2010).Anauc-onmethodforresource alloca-onincomputa-onalgrids.Future Genera%onComputerSystems,26(2),228-235. • Adabi,S.,Movaghar,A.,Rahmani,A.M.,& Beigy,H.(2013).Market_basedgridresource alloca-onusingnewnego-a-on model.JournalofNetworkandComputer Applica%ons,36(1),543-565. Appendix:Jobexchangingmaths Costfunc-onofaddingajob Benefitofexchangingajob
© Copyright 2026 Paperzz