Limits and Continuity Derivatives Integrals Arclength Exercises Calculus of Vector-Valued Functions Mathematics 54 - Elementary Analysis 2 Institute of Mathematics University of the Philippines-Diliman 1 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Limits and Continuity of Vector Functions Definition ® Given ~ R (t) = f (t) , g (t) , h (t) . 1 We define the limit of ~ R as t approaches a by D E R (t) = limf (t) , limg (t) , limh (t) , lim~ t→a t→a t→a t→a provided that lim f (t), lim g (t), and lim h (t) exist. t→a 2 t→a t→a The function ~ R (t) is continuous at t = a if ~ R (a) exists; lim~ R (t) exists; t→a ~ R (a) = lim~ R (t). t→a 2 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Limits of Vector-Valued Functions Example 1. Evaluate lim~ R (t) where t→2 À ¿ t 2 − 4 sin (2t − 4) ~ , . R (t) = t + 1, t −2 t −2 Solution. ¿ À t2 − 4 sin (2t − 4) R (t) = lim (t + 1) , lim lim~ , lim t→2 t→2 t − 2 t→2 t→2 t −2 ¿ À 2 cos (2t − 4) = 3, lim (t + 2) , lim t→2 t→2 1 (L’Hopital’s Rule) = 〈3, 4, 2〉 3 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Limits of Vector-Valued Functions Example 2. Evaluate lim−~ R (t) where t→1 ~ R (t) = ¿ À |t − 1| sin(πt) tan(πt) , , . t − 1 t2 − 1 t −1 Solution. Note that for t → 1− , t < 1. We have ¿ À |t − 1| sin(πt) tan(πt) ~ lim R (t) = lim− , lim , lim t→1− t→1 t − 1 t→1− t 2 − 1 t→1− t − 1 ¿ À sin(πt) − (t − 1) tan(πt) = lim− , lim− 2 , lim− t→1 t − 1 t→1 t − 1 t→1 t − 1 ¿ À π cos(πt) π sec2 (πt) = −1, lim− , lim− (L’Hopital’s Rule) t→1 t→1 2t 1 D π E = −1, − , π 2 4 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Continuity of Vector-Valued Functions Example 3. Determine if the function À ¿ sin(t) , t − 1, et , t 6= 0 ~ t R (t) = ı̂ − 2 ̂ + k̂ ,t = 0 is continuous at t = 0. Solution. ~ R (0) exists. ~ R (0) = ı̂ − 2 ̂ + k̂. ¿ µ ¶ À sin(t) t lim~ R (t) = lim , lim(t − 1), lim e = 〈1, −1, 1〉 t→0 t→0 t→0 t→0 t ~ ~ R (0) = 〈1, −2, 1〉 6= 〈1, −1, 1〉 = lim R (t) t→0 Hence, ~ R(t) is discontinuous at t = 0. 5 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Derivatives of Vector-Valued Functions Definition The derivative of a vector-valued function ~ R is defined by ~ R (t + ∆t) −~ R (t) , t→∆t ∆t ~ R 0 (t) = lim if this limit exists. ~ ~ R(t) The vectors R(t+∆t)− and ∆t ~ R (t + ∆t) −~ R (t) are parallel. ~ R (t + ∆t) −~ R (t) As ∆t → 0, the vector ∆t approaches a vector tangent to the graph of ~ R (t). Thus, ~ R 0 (t) is a vector tangent to the graph of ~ R (t) in the direction of the curve. 6 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Derivatives of Vector-Valued Functions Let ~ R(t) = 〈f (t), g(t), h(t)〉, where f , g and h are differentiable scalar functions of t. ~ R (t + ∆t) −~ R (t) ∆t→0 ∆t ® ® f (t + ∆t) , g (t + ∆t) , h (t + ∆t) − f (t) , g (t) , h (t) = lim ∆t→0 ∆t ¿ À f (t + ∆t) − f (t) g (t + ∆t) − g (t) h (t + ∆t) − h (t) = lim , lim , lim ∆t→0 ∆t→0 ∆t→0 ∆t ∆t ∆t ® 0 0 0 = f (t) , g (t) , h (t) ~ R 0 (t) = lim Theorem ® ® Given ~ R (t) = f (t) , g (t) , h (t) . Then ~ R 0 (t) = f 0 (t) , g 0 (t) , h 0 (t) provided that f 0 (t), g 0 (t) and h 0 (t) exist. 7 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Derivatives of Vector-Valued Functions Example 4. Determine ~ R 0 (0) and ~ R 00 (0) if ® ~ R (t) = e2t , cos t, − tan−1 t . Solution. ~ R 0 (t) ~ R 00 (t) ¿ À −1 2e2t , − sin t, =⇒ ~ R 0 (0) = 〈2, 0, −1〉 1 + t2 ¿ À 2t = 4e2t , − cos t, =⇒ ~ R 00 (0) = 〈4, −1, 0〉 (1 + t 2 )2 = 8 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Tangent Line Example 5. Determine a vector equation of the tangent line to the curve p ® ~ R (t) = ln t, 5 − 4t, t 3 − 6 at the point corresponding to t = 1. Solution. point of tangency: terminal of the vector ~ R(1), which is (0, 1, −5) R 0 (1) direction vector of the tangent line : tangent vector ~ ~ R 0 (t) = ¿ 1 2 , −p , 3t 2 t 5 − 4t À =⇒ ~ R 0 (1) = 〈1, −2, 3〉 Hence, the vector equation of the tangent line is ~L(t) = 〈t, 1 − 2t, −5 + 3t〉 . 9 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Theorems on Differentiation Let ~ F ) and ~ G be vector functions and f be a real-valued function. 1 2 3 4 5 (~ F ±~ G)0 (t) = ~ F 0 (t) ± ~ G 0 (t) ¡ ¢ 0 ¡ ¢ (f ~ F )0 (t) = f (t) ~ F (t) + f 0 (t) ~ F (t) (~ F ·~ G)0 (t) = ~ F (t) · ~ G 0 (t) + ~ G (t) · ~ F 0 (t) (~ F ×~ G)0 (t) = ~ F (t) × ~ G 0 (t) + ~ F 0 (t) × ~ G(t) ¡ ¢ ¡ ¢ (~ F ◦ f )0 (t) = ~ F 0 f (t) f 0 (t) 10 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Theorems on Differentiation Example 6. ® Let ~ F (t) = t − 1, t 3 , cos t , ~ G (t) = 〈ln t, sinh t, −4〉 and f (t) = e−t . 0 0 Find (~ F ·~ G) (t) and (~ G ◦ f ) (t). Solution. À 1 , cosh t, 0 + t ® 〈ln t, sinh t, −4〉 · 1, 3t 2 , − sin t t −1 = + ln t + t 3 cosh t + 3t 2 sinh t + 4 sin t t ¡ ¢0 ~ F ·~ G (t) = ® t − 1, t 3 , cos t · ¿ 11 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Definition Examples Theorems on Differentiation Example 6. ® Let ~ F (t) = t − 1, t 3 , cos t , ~ G (t) = 〈ln t, sinh t, −4〉 and f (t) = e−t . 0 0 Find (~ F ·~ G) (t) and (~ G ◦ f ) (t). Solution. ~ G 0 (t) = ¿ 1 , cosh t, 0 t À and f 0 (t) = −e−t À ¡ ¢ 1 −t , cosh e , 0 −e−t −t e ® = −1, −e−t cosh e−t , 0 (~ G ◦ f )0 (t) = ¿ 12 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Integrals of Vector-Valued Functions ® Given ~ R (t) = f (t) , g (t) , h (t) . Z indefinite integral : b Z definite integral : a ~ R (t) dt = ~ R (t) dt = ¿Z Z f (t) dt, ¿Z b À Z g (t) dt, b Z f (t) dt, h (t) dt b Z g (t) dt, a a À h (t) dt a Example 7. Z 1 Evaluate 〈3t 2 − 5, cos t, 2t〉 dt. 0 Solution. Z 1 〈3t 2 − 5, cos t, 2t〉 dt 0 À Z 1 cos tdt, 2tdt 0 0 ¿ 0 ¯1 ¯1 ¯1 À ¯ ¯ ¯ (t 3 − 5t)¯ , sin t ¯ , t 2 ¯ = 〈−4, sin 1, 1〉 = ¿Z = 1 (3t 2 − 5)dt, 0 Z 1 0 0 13 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Integrals of Vector-Valued Functions Example 8. ® Given ~ R 0 (t) = t 2 − 1, sin t, 2e2t and ~ R(0) = 〈2, −1, 0〉. Find ~ R(t). Solution. Z ~ R 0 (t) dt ¿Z = ~ R(t) = ¿ ¡ 2 ¢ t − 1 dt, Z Z sin t dt, 2e2t dt À À 1 3 t − t + C1 , − cos t + C2 , e2t + C3 , C1 , C2 , C3 ∈ R 3 ~ R(0) = 〈C1 , −1 + C2 , 1 + C3 〉 = 〈2, −1, 0〉 =⇒ C1 = 2, C2 = 0, C3 = −1 ¿ À 1 3 ~ R(t) = t − t + 2, − cos t, e2t − 1 3 14 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Arclength of a Space Curve Recall that the length of a plane curve with parametric equations x = f (t), y = y(t), a É t É b, is given by Z s= a b q¡ ¢2 ¡ ¢2 f 0 (t) + g 0 (t) dt. The length of a space curve is defined in the same way. Theorem ® The length of the graph of ~ R (t) = f (t) , g (t) , h (t) , where t ∈ [a, b], is given by Z bq ¢2 ¡ ¢2 ¡ s = f 0 (t) + g 0 (t) + (h0 (t))2 dt Za b ° 0 ° °~ = R (t)° dt. a 15 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Arclength of a Space Curve Example 9. D 3 E Find the length of the curve defined by ~ R (t) = 4t 2 , −3sint, 3cost , where t ∈ [0, 2]. Solution. D 1 E ~ R0 (t) = 6t 2 , −3cost, −3sint Z 2 r³ ´ 1 2 s = 6t 2 + (−3cost)2 + (−3sint)2 dt 0 Z 2p = 36t + 9dt 0 ¯ 1 27 − 1 3 ¯2 = (4t + 1) 2 ¯ = = 13. 0 2 2 16 / 17 Limits and Continuity Derivatives Integrals Arclength Exercises Exercises 1 2 3 4 ¿ À −1 −2t ln t Evaluate lim tan t, e , . t→∞ t −1 ¿ Find the derivative of ~ R (t) = sin2 (3t + 1), ln(t 2 − 1), À t . t2 + 1 Find the vector equation of the tangent line to the graph of ® p ~ R (t) = 1 + 2 t, t 3 − t, t 3 + t at the point (3, 0, 2). Evaluate the integral Z π ® 2 sin2 t cos t, cos t sin2 t, tan2 t dt. 0 5 6 ¿ À 2 2 3 ~ Find the length of the graph of R (t) = 2t, t , t , t ∈ [0, 1]. 3 Set-up the definite integral that represents the arc length of the sin t curve ~ R(t) = e3t ı̂ − ̂ + ln(t + cos t)k̂ from the point (1, 0, 0) 2t + π 3π to point (e , 0, ln(π − 1)). 17 / 17
© Copyright 2026 Paperzz