Name: _____________________________________________Date:________________________Period:_____ Algebra 2 Review of Sections 7-1 to 7-3 NON CALCULATOR Exponential function form: y ab x Exponential Parent function: y bx Translated Exponential Function form: y ab x h k 𝑎 =Stretch or compress factor Logarithmic function form: 𝑘 =Vertical shift ℎ =Horizontal shift y log b x Logarithmic parent function: y log b x y a log b x h k Translated Logarithmic Function form: 𝑘 =Vertical Shift ℎ =Horizontal Shift 𝑎 =Stretch or compress factor Domain: x-values (read graph left to right) Range: y-values (read graph down/up) Without graphing, determine whether the function represents a growth or decay. Recall: Look at the “b” value! If b is between 0 and 1, it’s a decay. If b is greater than 1, it’s a growth. 1 1. y 2 5 x 15 ________________ 2. y 22 x ________________ 3. y 3 ________________ x Without graphing, determine the y-intercept for each exponential function. Recall: Plug in 0 for x and solve for y. State your answer as an ordered pair! (0, #) 1 4. y 2 5 x x ________________ 5. y 15 ________________ 22 6. y 3 ________________ x Describe how the parent function is transformed for each of the following. 7. y 1 x 4 2 __________________________________________________________________________ 3 1 8. y 1.08 2 9. y 8 x 7 x 3 4 _______________________________________________________________________ 3 ___________________________________________________________________________ 10. y 2 log 3 x 1 ________________________________________________________________________ 11. y log 5 x 7 2 _______________________________________________________________________ 12. y 2 log 4 x 5 _______________________________________________________________________ 5 Fill in the table, graph the function, and then give the domain and range. 13. 1 y 4 x x y -2 -1 0 1 13. 2 D = __________________________ 3 R = __________________________ y 2 x x y -2 -1 0 1 2 D = __________________________ 3 R = __________________________ Graph the Parent function and its transformation on the same coordinate plane. Be sure to name your functions! 14. y 23 4 x 𝑥 𝑦= 𝑦= −2 −1 0 1 2 15. What is the equation of the asymptote of the parent function? ________________ 16. What is the equation of the asymptote of the transformation? ________________ Recall: Asymptote is the line that the graph approaches, but never touches! Logarithmic Functions If b and y are positive numbers and b 1, then log b x y Rewrite each equation in exponential form. 17. log 2 32 5 18. log 5 1 0 19. log 10 10 1 20. log 1 2 1 2 Rewrite each equation in logarithmic form. 21. 4 3 64 23. 8 1 1 8 2 22. 3 3 24. 6 2 36 27 8 by x and vice versa Evaluate each expression. 25. log 3 1 27 26. log 32 2 27. log 7 343 Complete. 28. Common logarithms have a base of ___________. 29. Logarithms without a base are assumed to have a base of ___________. 30. Write “Y” for yes or “N” for no to indicate whether each logarithm is a common logarithm. a. ______ log 2 4 b. ______ log 64 c. ______ log 10 100 d. ______ log 5 5 Graphing a Logarithm. 1. Rewrite the logarithmic equation in exponential form. 2. Create a table to find points on the graph of the exponential function. 3. Find the inverse of those coordinates. 4. Graph the logarithmic function using those reversed points. 5. *The graphs of the exponential function and logarithmic function are inverses; they are reflected over the line _________________! 31. What is the graph of y log 3 x 𝑥 Point (𝑥, 𝑦) Inverse (𝑦, 𝑥) What is the domain? : ____________________ y-intercept? : _______________________ What is the range? : _____________________ Vertical Asymptote? : ______________________
© Copyright 2025 Paperzz