Gemcitabine as Single-Agent Therapy in the

Gemcitabine as Single-Agent Therapy in the Management of A
Published on Cancer Network (http://www.cancernetwork.com)
Gemcitabine as Single-Agent Therapy in the Management of
Advanced Breast Cancer
Review Article [1] | February 01, 2001 | Breast Cancer [2], Ovarian Cancer [3]
By Andrew D. Seidman, MD [4]
Many active cytotoxic agents exist for breast cancer therapy, and numerous combination
chemotherapy regimens are derived from them. Creating these combinations is sometimes
empirically motivated by non-overlapping
ABSTRACT: Many active cytotoxic agents exist for breast cancer therapy, and numerous
combination chemotherapy regimens are derived from them. Creating these
combinations is sometimes empirically motivated by non-overlapping toxicities or the
expectation of non-cross resistance. Yet, there is usually no absolute division of these
aspects among cytotoxic agents, and the median survival for patients with metastatic
breast cancer has not been dramatically prolonged by this approach. When the outcome
of treatment is palliation rather than cure, it becomes paramount to optimize the
dynamic equilibrium between chemotherapy-induced side effects and the benefits
attributable to relief of cancer-related symptoms. To this end, several recent clinical
trials have evaluated the novel nucleoside analog gemcitabine (Gemzar) as single-agent
therapy for advanced breast cancer. This article reviews these trials. [ONCOLOGY
15(Suppl 3):11-14, 2001]
Introduction
The management of estrogen-receptor-poor or hormone-refractory metastatic breast cancer involves
the judicious and timely use of chemotherapy.[1] The application of radiotherapy and
bisphosphonates can significantly reduce skeletal complications attributable to osteolytic
metastases.[2,3] With the notable singular exception of the humanized monoclonal antibody
trastuzumab (Herceptin), which is specific for the HER2 oncoprotein, cytotoxic chemotherapy
remains standard treatment for advanced breast cancer insensitive to antiestrogen therapy.[4]
Within this realm, taxanes and anthracyclines are recognized as the most active single agents in the
management of metastatic breast cancer.[ 5-10] Other commonly used agents in the treatment of
advanced breast cancer include cyclophosphamide (Cytoxan, Neosar), methotrexate, fluorouracil
(5-FU), capecitabine (Xeloda), and vinorelbine (Navelbine).[11]
Unlike treatment for advanced lymphomas or germ-cell tumors, combinations of cytotoxic
chemotherapeutic agents do not consistently offer a survival advantage to women with metastatic
breast cancer. There are data from recent clinical trials demonstrating that monotherapy was similar
to or even more effective than combination therapy, often with less toxicity.[10,12-15]
One recent notable exception is the survival benefit reported by Norton et al with the concomitant
use of trastuzumab when administered with chemotherapy (either doxorubicin [Adriamycin] plus
cyclophosphamide or single-agent paclitaxel [Taxol]) as first-line therapy for HER2-overexpressing
metastatic breast cancer.[16]
In the absence of survival advantage, cytotoxic chemotherapy may be employed to prolong time
until disease progression, maintain or improve quality of life, and provide a higher response rate. The
first two goals may have greater relevance to patients, who are more likely to care about how long
they can receive a given treatment without evidence of cancer progression, rather than whether or
not cancer has decreased in biperpendicular diameters by 60% (partial response) or 40% (a
"nonresponder").
In the absence of a survival benefit, the dynamic balance between the treatment’s "plus side" (eg,
relieving cancer-associated symptomatology) and the "minuses" (toxicities) of chemotherapy must
be carefully considered. This balance between benefit and harm can be imagined as the therapeutic
index of a specific drug or regimen. An agent or combination of agents may yield a very high
response rate, which may[17] (but not always) be associated with relief of cancer-related symptoms.
However, it may also be associated with significant toxicity that impairs quality of life (ie, a low
Page 1 of 7
Gemcitabine as Single-Agent Therapy in the Management of A
Published on Cancer Network (http://www.cancernetwork.com)
therapeutic index). On the other hand, a less active agent or regimen may not yield as high a
response rate, but may cause meaningfully less toxicity, thereby actually offering the higher
therapeutic index. This is the ultimate goal of palliative therapy, and it is through this lens that the
following review of gemcitabine (Gemzar) monotherapy for metastatic disease is best viewed.
Chemistry and Mechanism of Action
Gemcitabine possesses a chemical structure related to cytarabine (ara-C), which is an agent not
regarded as significantly active in breast cancer. However, gemcitabine differs from cytarabine in
several important respects. This nucleoside analog (2´,2´-difluoro-deoxycytidine [dFdC]) is
progressively phosphorylated intracellularly by deoxycytidine kinase. The di- and tri-phosphate forms
possess cytotoxic activity; the diphosphate inhibits ribonucleotide reductase that catalyzes the
production of deoxynucleotide triphosphates necessary for normal DNA synthesis. The triphosphate
competes with deoxycytidine triphosphate for incorporation into DNA as a fraudulent base.[18]
Several mechanisms self-potentiate gemcitabine’s activity, and may partly explain both the greater
intracellular concentration of gemcitabine compared to cytarabine and the increased, broader
antitumor activity.[ 19]
Phase I Trials
A phase I trial of gemcitabine administered weekly for 3 of every 4 weeks determined the maximum
tolerated dose at 790 mg/m . Cumulative thrombocytopenia and anemia were the dose-limiting
toxicities in previously treated patients.[20] Another phase I study evaluated gemcitabine as a
continuous 6-hour infusion weekly for 3 weeks, followed by 1 week of rest.[21] Dose escalation
started at 200 mg/m with planned incremental increases of 50 mg/m . In this study, the maximum
tolerated dose was 250 mg/m . The dose-limiting toxicities of grade 3 reversible transaminase
elevations occurred in two patients; grade 3 skin reactions occurred in one patient. With this
schedule, an overall response rate of 15% was reported in 13 evaluable patients.
These results—along with gemcitabine’s subsequent demonstration of activity in non-small-cell lung
cancer,[22] epithelial ovarian cancer,[23] and advanced pancreatic cancer[24]— motivated the
drug’s evaluation for patients with metastatic breast cancer.
2
2
2
2
Phase II Development
Carmichael et al[25] conducted a phase II trial evaluating the efficacy and safety of gemcitabine for
patients with locally advanced or metastatic breast cancer. Of the 40 patients evaluable for
response, 14 were chemo-naive, 7 had received prior adjuvant chemotherapy, and 19 had received
prior chemotherapy for metastatic disease; 17 patients had received prior anthracyclines. The
median age was 54.5 years (range: 32 to 77 years). The majority of patients had an ECOG (Eastern
Cooperative Oncology Group) performance status of 1 (range: 0 to 2), despite a preponderance of
visceral disease (50% with hepatic metastases).
Gemcitabine was administered as a 30-minute infusion at a starting dose of 800 mg/m every week
for 3 weeks, followed by a 1-week rest. Dose reduction for grade 2 hematologic toxicity or dose
omission in the event of grade 3 hematologic toxicity resulted in a mean delivered dose intensity of
725 mg/m . Patients completed an average of 2.7 cycles (median: 2.0), and 81.2% of planned doses
were administered as assigned. A 25% response rate (95% confidence interval [CI]: 12.7%-41.2%)
was observed among the 40 assessable patients, with 3 complete and 7 partial responses. The
reported median response duration was 13.5 months (range: 6 to 43+ months). Minimal anemia or
thrombocytopenia was noted. Grade 3 and 4 elevation of hepatic transaminase (aspartate amino
transferase [AST]) was reported in 7% and 2% of patients, respectively; 18.2% had a grade 3
elevation of amino alanine transferase. Flu-like symptoms were reported in 6.8% of patients, but
were mild, transient, and treated with acetominophen. Alopecia was uncommon, as was significant
nausea and vomiting. The authors noted that gemcitabine deserves further investigation in the
management of breast cancer.
A second study reported by Blackstein et al[26] confirmed meaningful antitumor activity and good
tolerability for gemcitabine as first-line chemotherapy in metastatic breast cancer. Patients in this
trial had a median age of 58 (range: 34 to 84 years), and 21 patients had received prior adjuvant
therapy. Of 35 evaluable patients, 13 responded (37.1%; 95% CI: 23%-57%), with 4 complete and 10
partial responses observed. Grade 3 neutropenia occurred in 9 patients, thrombocytopenia in 2, and
nausea/vomiting in 4. A higher dose (1,200 mg/m ) was administered 3 of every 4 weeks. These
patients had less extensive prior therapy than patients in the Carmichael trial, yet the toxicity
2
2
2
Page 2 of 7
Gemcitabine as Single-Agent Therapy in the Management of A
Published on Cancer Network (http://www.cancernetwork.com)
profiles were remarkably similar, with severe neutropenia and infection being uncommon.
Gemcitabine has also been evaluated as monotherapy in a cohort of patients who received prior
anthracycline therapy, as reported by Spielmann et al.[27] This phase II trial involved five centers
and enrolled 43 evaluable patients with bidimensionally measurable metastatic breast cancer. They
received gemcitabine per protocol at a dose of 1,200 mg/m as a 30-minute infusion weekly for 3
weeks, followed by 1 week of rest. All patients had received prior anthracycline-containing
chemotherapy; 14 patients also received prior adjuvant chemotherapy. The majority had multi-organ
system disease, primarily liver (60%), lung (34%), and bone (28%). The median age was 56 years
(range: 33 to 75 years).
The overall response proportion was 28%, with 4 complete and 8 partial remissions. The
treatment-limiting toxicity in this trial was asthenia, for which four patients discontinued treatment.
Hematologic toxicity was mild, with grade 4 neutropenia observed in two patients, and grade 3
thrombocytopenia in 1. A significant cutaneous hypersensitivity reaction was observed in two
patients, requiring treatment cessation in one. Radiation-recall-type skin changes occurred in three
patients, which necessitated discontinuation of treatment for one person.
Possinger et al[28] conducted a phase II trial in 42 patients with locally advanced or metastatic
breast cancer. All had received up to one prior adjuvant chemotherapy regimen, and 28 patients had
visceral metastases. Gemcitabine was administered at a dose of 1,000 mg/m on days 1, 8, and 15,
with the cycle repeated every 28 days; the mean dose delivered was 942.2 mg/m . Grade 3/4
toxicities were nausea and vomiting (n = 5), diarrhea (n = 1), pain (n = 1), alanine transaminase
elevation (n = 7), and segmented neutrophils (n = 8). The overall response rate was a modest 14.3%
(95% CI: 5.4%-28.5%), and no complete responses were reported; the authors noted 6 partial
responses and 24 patients with stable disease. The median overall survival duration was 15.2
months.
A trial by Brodowicz et al[29] evaluated gemcitabine as second- (n = 6) or third-line (n = 18) therapy
for metastatic breast cancer. All 24 women had received prior anthracyclines, and 8 were previously
treated with taxanes; all patients had visceral metastases. Gemcitabine was administered at a dose
of 1,250 mg/m on days 1, 8, and 15, with the cycle repeated every 28 days. Grade 3 leukopenia was
noted in 4 of 6 patients receiving second-line therapy. Grade 3/4 leukopenia was seen in 4 of 18
patients receiving third-line therapy. Grade 3 thrombocytopenia was observed in 3 patients receiving
third-line therapy.
Of the 6 patients receiving gemcitabine as second-line therapy, 2 had partial responses, with a
median time to progression of 12 months. Of the 18 patients receiving gemcitabine as third-line
therapy, one (6%) had a complete response, with a median time to progression of 3.9 months
(range: 1.5 to 8 months).
Currently, Memorial Sloan-Kettering Cancer Center is conducting a phase II evaluation of
"3-weeks-on/1-week-off" gemcitabine, using 800 mg/m in patients with anthracycline- and
taxane-refractory metastatic breast cancer. Preliminary results on 16 patients have noted antitumor
activity in several patients (V. Currie, personal communication, December 2000).
2
2
2
2
2
Conclusions
Gemcitabine is a novel nucleoside analog that possesses meaningful antitumor activity in the
treatment of metastatic breast cancer. Indeed, its antitumor activity is relatively unencumbered by
severe toxicities in most patients. While there are no randomized prospective data addressing this
issue, it seems unlikely that gemcitabine’s single-agent antitumor activity against advanced breast
cancer is comparable to that of very active agents, such as taxanes and anthracyclines. Yet, is
gemcitabine a useful agent in breast cancer therapy? Given the available data reviewed herein, the
answer clearly appears to be yes.
Among the goals of managing metastatic breast cancer, prolonging survival ranks high for both
patients and physicians. Higher response rates inspire physicians, whereas patients are more
concerned with prolonging the time until disease progression on a given treatment. In considering
the systemic care of patients with metastatic breast cancer, the dynamic equilibria of benefit vs
harm as well as relief of tumor-associated symptomatology vs treatment-related toxicity seem of
paramount importance and relevance.
In this regard, gemcitabine is emerging as a most welcome addition to the growing
chemotherapeutic armamentarium against breast cancer. This is particularly apropos of
monotherapy, where the sequential use of gemcitabine with other active agents not only has appeal
but is the focus of ongoing clinical investigation. Its use in combination with other cytotoxic
Page 3 of 7
Gemcitabine as Single-Agent Therapy in the Management of A
Published on Cancer Network (http://www.cancernetwork.com)
agents,[30-44] as discussed by the other authors in this issue, derives in part from the potential for
"nonoverlapping" toxicities (particularly in an era where the use of hematopoietic growth factor
support is commonplace), a potential lack of complete cross resistance, and the occasional
demonstration of promising preclinical results.
Still, the relative benefits for the use of gemcitabine combinations vs single agents has not been
clarified in the randomized clinical trials conducted thus far. A large, prospective, randomized phase
III trial of paclitaxel with or without gemcitabine for metastatic breast cancer is underway. The
meaningful, proven augmentation of the activity (reflected by survival) of chemotherapy by the
addition of trastuzumab[16] motivates the exploration of gemcitabine trastuzumab-containing
regimens for HER2/neu-overexpressing metastatic breast cancer, as well.
References:
1. Fornier M, Munster P, Seidman AD: An update on the management of metastatic breast cancer.
Oncology 13:1-12, 1999.
2. Hortobagyi GN, Theriault RL, Porter L, et al: Efficacy of pamidronate in reducing skeletal
complications in patients with breast cancer and lytic bone metastases. N Engl J Med 335:1785-1791,
1996.
3. Seidman AD, Gollamudi S: Combining chemotherapy and radiotherapy for metastatic breast
cancer: Opportunities and obstacles. Adv Oncol 14:25-29, 1998.
4. Shak S: Overview of the trastuzumab anti-HER2 monoclonal antibody clinical program in
HER2-overexpressing metastatic breast cancer. Semin Oncol 26(4 suppl 12):71-77, 1999.
5. D’Andrea G, Seidman AD: Docetaxel and paclitaxel for breast cancer: Present status and future
prospects. Semin Oncol 24(suppl 13):S13-S17, 1997.
6. Seidman AD, Hudis CA, Albanell J, et al: Dose-dense therapy with weekly 1-hour paclitaxel
infusions in the treatment of metastatic breast cancer. J Clin Oncol 16:3353-3361, 1998.
7. Nabholtz JM, Falkson G, Campos D, et al: A phase III trial comparing doxorubicin and docetaxel to
doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer (abstract
485). Proc Am Soc Clin Oncol 18:127a, 1999.
8. Seidman AD, Tiersten A, Hudis C, et al: Phase II trial of paclitaxel by 3-hour infusion as initial and
as salvage chemotherapy for metastatic breast cancer. J Clin Oncol 13:2575-2581, 1995.
9. Sparano JA: Taxanes for breast cancer: An evidence-based review of randomized phase II and
phase III trials. Clin Breast Cancer 1:32-40, 2000.
10. Sledge GW, Neuberg D, Ingle J, et al: Phase III trial of doxorubicin vs paclitaxel vs doxorubicin +
paclitaxel as first-line therapy for metastatic breast cancer: An Intergroup trial (abstract 2). Proc Am
Soc Clin Oncol 16:1a, 1997.
11. Munster P, Seidman AD: Management of metastatic breast cancer: Reasons for optimism.
Oncology Special Edition 2:101-104, 1999.
12. Nabholtz JM, Senn JH, Bezwoda WR, et al: Prospective randomized trial of docetaxel versus
mitomycin plus vinblastine in patients with metastatic breast cancer progressing despite previous
anthracycline-containing therapy. J Clin Oncol 17:1413-1424, 1999.
13. Bishop J, Dewar J, Toner GC, et al: Initial paclitaxel improves outcome compared with CMFP
combination chemotherapy as front-line therapy in untreated metastatic breast cancer. J Clin Oncol
17:2355-2364, 1999.
14. Joensuu H, Holli K, Heikkinen M, et al: Combination chemotherapy versus single-agent therapy as
first- and second-line treatment in metastatic breast cancer: A prospective randomized trial. J Clin
Page 4 of 7
Gemcitabine as Single-Agent Therapy in the Management of A
Published on Cancer Network (http://www.cancernetwork.com)
Oncol 16:3720-3730, 1998.
15. Heidemann H, Stoeger H, Souchon R, et al: Balance of time to progression, quality of life, and
overall survival: More gain from treatment in single agent treatment with mitoxantrone than with the
combination of fluorouracil, epirubicin, cyclophosphamide: Results of a multicenter randomized trial
in high risk metastatic breast cancer (abstract 284). Proc Am Soc Clin Oncol 19:74a, 2000.
16. Norton L, Slamon D, Leyland-Jones B, et al: Overall survival advantage to simultaneous
chemotherapy plus the humanized anti-HER2 monoclonal antibody Herceptin in
HER2-overexpressing metastatic breast cancer (abstract 483). Proc Am Soc Clin Oncol 18:127a,
1999.
17. Geels P, Eisenhauer E, Bezjak A, et al: Palliative effect of chemotherapy: Objective tumor
response is associated with symptom improvement in patients with metastatic breast cancer. J Clin
Oncol 18:2395-2405, 2000.
18. Huang I, Chubb S, Hertel LW, et al: Mechanism of action of 2′,2′-deoxycytidine triphosphate on
DNA synthesis. Proc Am Assoc Cancer Res 31:426, 1990.
19. Hertel LW, Boder GB, Kroin JS, et al: Evaluation of the antitumor activity of gemcitabine. Cancer
Res 50:4417-4122, 1990.
20. Abbruzzese JL, Grunewald R, Weeks EA, et al: A phase I clinical, plasma, and cellular
pharmacology study of gemcitabine. J Clin Oncol 12:1535-1540, 1991.
21. Akrivakis K, Schmid P, Flath B, et al: Prolonged infusion of gemcitabine in stage IV breast cancer:
A phase I study. Anticancer Drugs 10:525-531, 1999.
22. Anderson H, Lund B, Bach F, et al: Single agent activity of weekly gemcitabine in advanced
non-small-cell lung cancer: A phase II study. J Clin Oncol 12:1821-1826, 1994.
23. Lund B, Hansen OP, Theilade K, et al: Phase II study of gemcitabine in previously treated ovarian
cancer. J Natl Cancer Inst 86:1530-1533, 1994.
24. Casper ES, Green MR, Kelsen DP, et al: Phase II trial of gemcitabine in patients with
adenocarcinoma of the pancreas. Invest New Drugs 12:29-34, 1994.
25. Carmichael J, Possinger K, Philip P, et al. Advanced breast cancer: A phase II trial with
gemcitabine. J Clin Oncol 13:2731-2736, 1995.
26. Blackstein M, Vogel CL, Ambinder R, et al: Phase II study of gemcitabine in patients with
metastatic breast cancer. Eur J Cancer 33(suppl 8):A664, 1997.
27. Spielmann M, Kalla S, Llombart-Cussac A, et al: Activity of gemcitabine in metastatic breast
cancer patients previously treated with anthracycline-containing regimens. Eur J Cancer 33(suppl
8):A663, 1997.
28. Possinger K, Kaufmann M, Coleman R, et al: Phase II study of gemcitabine as first-line
chemotherapy in patients with advanced or metastatic breast cancer. Anticancer Drugs 10:155-162,
1999.
29. Brodowicz T, Moslinger R, Herscovici V, et al: Second- and third-line treatment of metastatic
breast cancer with gemcitabine. Eur J Cancer 34(suppl 5):A180, 1998.
30. Fram RJ, Rochibaud N, Bishov SD, et al: Interactions of cis-diamminedichloroplatinum(II) with
1-beta-D-arabinofuranosylcytosine in LoVo colon carcinoma cells. Cancer Res 47:3360-65, 1987.
31. Bergman AM, Ruiz van Helperen VWT, Veerman G, et al: Synergistic interactions between
cisplatin and gemcitabine in ovarian and colon cancer cell lines, in Sahota A, Taylor M (eds): Purine
Page 5 of 7
Gemcitabine as Single-Agent Therapy in the Management of A
Published on Cancer Network (http://www.cancernetwork.com)
and Pyrimidine Metabolism in Man VIII, pp 139-143. New York, Plenum, 1995.
32. Nagourney RA, Link JS, Blitzer JB, et al: Gemcitabine plus cisplatin repeating doublet therapy in
previously treated, relapsed breast cancer patients. J Clin Oncol 18:2245-2249, 2000.
33. Doroshow JH, Tetef M, Margolin K, et al: Significant activity of gemcitabine and cisplatin in both
heavily- and minimally-pretreated metastatic breast cancer patients: A California Cancer
Consortium/Loyola University Chicago Trial (abstract 609H). Proc Am Soc Clin Oncol 19:155a, 2000.
34. Tagliabue P, Mariani G, Brambilla C, et al: Dose-finding study of gemcitabine plus vinorelbine in
metastatic breast cancer (abstract 423). Proc Am Soc Clin Oncol 18:112a, 1999.
35. Gokmen E, Karabulut B, Sezgin C, et al: A phase II study of gemcitabine and vinorelbine in
patients with advanced breast cancer (abstract 427). Proc Am Soc Clin Oncol 19:110a, 1999.
36. Berton-Rigaud D, Pouillart P, Pujade-Lau-raine M, et al: Gemzar and epirubicin in patients with
metastatic breast cancer: Final results of a phase I dose finding study (abstract 433). Proc Am Soc
Clin Oncol 19:112a, 2000.
37. Murad AM, Guimaraes RC, Arago BC, et al: Phase II trial of the use of paclitaxel and gemcitabine
as a salvage treatment in metastatic breast cancer (MBC) (abstract 422). Proc Am Soc Clin Oncol
19:422, 2000.
38. Colomer R, Llombart A, Lluch A, et al: Biweekly paclitaxel and gemcitabine in advanced breast
cancer: Phase II trial and predictive value of HER2 extracellular domain (abstract 373). Proc Am Soc
Clin Oncol 19:2000.
39. Brugnatelli S, Danova M, Tamburo De Bella M, et al: Weekly schedule of gemcitabine plus
docetaxel in refractory advanced breast cancer: A dose-finding study (abstract 6091). Proc Am Soc
Clin Oncol 19:609i, 2000.
40. Laufman L, Spiridonidis C, Carman L, et al: Second-line chemotherapy with weekly gemcitabine
and monthly docetaxel in patients with metastatic breast cancer: A phase II study (abstract 408).
Proc Am Soc Clin Oncol 19:2000.
41. Conte P, Bengala C, Donati S, et al: Gemcitabine, epirubicin, and Taxol followed by high dose
chemotherapy: High activity with good tolerability in metastatic breast cancer patients (abstract
511). Proc Am Soc Clin Oncol 18:118a, 1999.
42. Gennari A, Donati S, Danesi R, et al: The gemcitabine/epirubicin/ paclitaxel combination in
advanced breast cancer. Semin Oncol 27(suppl 2):14-19, 2000.
43. Sanchez-Rovira P, Jaen A, Gonzalez-Flores E, et al: Biweekly gemcitabine/Adriamycin/paclitaxel
combination in metastatic breast cancer patients: Results from a phase II trial (abstract 423). Proc
Am Soc Clin Oncol 19:109a, 2000.
44. Perez-Mango G, Lluch A, Alba E, et al: Gemcitabine in combination with doxorubicin in advanced
breast cancer: Final results of a phase II pharmacokinetic trial. J Clin Oncol 18:2545-2552, 2000.
Source URL:
http://www.cancernetwork.com/breast-cancer/gemcitabine-single-agent-therapy-management-advan
ced-breast-cancer
Links:
[1] http://www.cancernetwork.com/review-article
[2] http://www.cancernetwork.com/breast-cancer
[3] http://www.cancernetwork.com/ovarian-cancer
[4] http://www.cancernetwork.com/authors/andrew-d-seidman-md
Page 6 of 7
Gemcitabine as Single-Agent Therapy in the Management of A
Published on Cancer Network (http://www.cancernetwork.com)
Page 7 of 7