OCTOGON MATHEMATICAL MAGAZINE Vol. 17, No.1, April 2009, pp 291-293 ISSN 1222-5657, ISBN 978-973-88255-5-0, www.hetfalu.ro/octogon 291 About one algebraic inequality Šefket Arslanagić33 ABSTRACT. In this paper we present the error by the proof of one algebraic inequality. INTRODUCTION In [2], p. 39, problem AQ.10.; in [3], p.15, problem 80. and in [4], p.5, problem A1991-6. we have the next problem: Prove the inequality x2 y y 2 z z 2 x + + ≥ x2 + y 2 + z 2 z x y (1) for all positive numbers x, y, z. Remark. In [2] and [3] in the place x, y, z we have a, b, c. MAIN RESULTS In [2], p. 69 and [3], p. 38, we have only this phrase as the solution: With the Cauchy-Buniakowsky-Schwarzs inequality, we get: 2 2 2 x y y2z z2x x z y2x z2y + + + + ≥ x2 + y 2 + z 2 z x y y z x (2) But , I see not in what way to receive the proof of the given inequality (1) from the inequality (2)?! In [4], p. 41 we have this solution: Without lost of generality we may assume that x ≥ y ≥ z > 0. We have 33 Received: 26.02.2009 2000 Mathematics Subject Classification. 26D15 Key words and phrases. Algebraic inequality; symmetric cyclic and homogeneous inequality, contraexample. 292 Šefket Arslanagić x2 y y 2 z z 2 x + + ≥ x2 + y 2 + z 2 ⇔ x3 y 2 + y 3 z 2 + z 3 x2 ≥ x3 yz + y 3 zx + z 3 xy z x y ⇔ x3 y (y − z) + y 2 z 2 (y − z) + z 3 y 2 − 2yx + x2 − xyz y 2 − z 2 ≥ 0 ⇔ (y − z) (x − z) x2 y + yz (x − y) + z 3 (x − y)2 ≥ 0 Then the last inequality holds. Unfortunately, this proof is not complete. Why? The inequality (1) is cyclic and homogeneous, but this inequality is not symmetric! We can not take only that is x ≥ y ≥ z > 0. It is not heawily give one contraexample, i.e. show that this inequality is not exact, for example so x = 16, y = 1, z = 2 (x ≥ z ≥ y > 0); now we have: 256 1 1 + + 64 ≥ 256 + 1 + 4 ⇔ 192 ≥ 261(?!) 2 8 8 4 In general, for x = n , y = 1, z = n; (n ∈ i; n ≥ 2) we have of (1): n7 + 1 + n6 ≥ n8 + 1 + n2 ⇔ n10 + n9 + 1 ≥ n11 + n5 + n3 ⇔ n3 ⇔ n10 (n − 1) + n5 1 − n4 + n3 − 1 ≤ 0 ⇔ ⇔ n10 (n − 1) − n5 n4 − 1 + (n − 1) n2 + n + 1 ≤ 0 ⇔ ⇔ (n − 1) n10 − n5 (n + 1) n2 + 1 + n2 + n + 1 ≤ 0 ⇔ ⇔ (n − 1) n10 + n2 + n + 1 − n8 − n7 − n6 − n5 ≤ 0 ⇔ 8 7 6 ⇔ (n − 1) n + n + n + n 5 n10 + n2 + n + 1 −1 ≤0⇔ n8 + n7 + n6 + n5 n6 + n2 + n + 1 ≤0 ⇔ n5 (n − 1) n3 + n2 + n + 1 n (n − 1) − 1 + 8 n + n7 + n6 + n5 what is not exact because n ≥ 2. About one algebraic inequality 293 The inequality (1) not holds too for 0 < x ≤ y ≤ z, because for x = 1, y = 2, z = 16, we get of (1): 1 1 + 64 + 128 ≥ 1 + 4 + 256 ⇔ 192 ≥ 261, 8 8 what is not true. Therefore, the inequality (1) not holds for all x, y, z > 0. This inequality holds for x ≥ y ≥ z > 0. REFERENCES [1] Arslanagić, Š., Matematika za nadarene, Bosanska rijec, Sarajevo, 2005. [2] Maftei, I.V., Popescu, P.G., Piticari, M., Lupu, C., Tataram, M.A., Inegalitati alese in matematica Inegalitati clasice, Editura Niculescu, Bucuresti, 2005. [3] Mortici, C., 600 de probleme, Editura Gil, Zalau, 2001. [4] The Vietnamese Mathematical Olympiad (1990-2006), Selected Problems, Education Publishing House, Hanoi-Vietnam, 2007. University of Sarajevo Faculty of Natural Sciences and Mathematics Department of Mathematics Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina E-mail: [email protected]
© Copyright 2026 Paperzz