along a streamline

57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
1
Chapter 3 Bernoulli Equation
3.1 Flow Patterns: Streamlines, Pathlines, Streaklines
1) A streamline ๐œ“(๐‘ฅ, ๐‘ก) is a line that is everywhere tangent to the velocity
vector at a given instant.
Examples of streamlines around an airfoil (left) and a car (right)
2) A pathline is the actual path traveled by a given fluid particle.
An illustration of pathline (left) and an example of pathlines, motion of water induced by surface waves (right)
3) A streakline is the locus of particles which have earlier passed through a
particular point.
An illustration of streakline (left) and an example of streaklines, flow past a full-sized streamlined vehicle in the GM aerodynamics laboratory wind tunnel, and 18-ft by 34-ft test section facilility by a 4000-hp, 43-ft-diameter fan (right)
Chapter 3
2
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Note:
1. For steady flow, all 3 coincide.
2. For unsteady flow, ๐œ“(๐‘ก) pattern changes with time, whereas pathlines and
streaklines are generated as the passage of time
Streamline:
By definition we must have ๐‘‰ × ๐‘‘๐‘Ÿ = 0 which upon expansion yields the
equation of the streamlines for a given time ๐‘ก = ๐‘ก1
๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ง
=
=
= ๐‘‘๐‘ 
๐‘ข
๐‘ฃ
๐‘ค
where ๐‘  = integration parameter. So if (๐‘ข, ๐‘ฃ, ๐‘ค) know, integrate with respect to ๐‘ 
for ๐‘ก = ๐‘ก1 with I.C. (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 , ๐‘ก1 ) at ๐‘  = 0 and then eliminate ๐‘ .
Pathline:
The path line is defined by integration of the relationship between velocity
and displacement.
๐‘‘๐‘ฅ
=๐‘ข
๐‘‘๐‘ก
๐‘‘๐‘ฆ
=๐‘ฃ
๐‘‘๐‘ก
๐‘‘๐‘ง
=๐‘ค
๐‘‘๐‘ก
Integrate ๐‘ข, ๐‘ฃ, ๐‘ค with respect to ๐‘ก using I.C. (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 , ๐‘ก0 ) then eliminate ๐‘ก.
Streakline:
To find the streakline, use the integrated result for the pathline retaining
time as a parameter. Now, find the integration constant which causes the pathline to pass through (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) for a sequence of time ๐œ‰ < ๐‘ก. Then eliminate ๐œ‰.
Chapter 3
3
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
3.2 Streamline Coordinates
Equations of fluid mechanics can be expressed in different coordinate systems, which are chosen for convenience, e.g., application of boundary conditions:
Cartesian (๐‘ฅ, ๐‘ฆ, ๐‘ง) or orthogonal curvilinear (e.g., ๐‘Ÿ, ๐œƒ, ๐‘ง) or non-orthogonal curvilinear. A natural coordinate system is streamline coordinates (๐‘ , ๐‘›, โ„“); however,
difficult to use since solution to flow problem (V) must be known to solve for
steamlines.
For streamline coordinates, since V is tangent to ๐‘  there is only one velocity
component.
ฬ‚
V(๐‘ฅ, ๐‘ก) = ๐‘ฃ๐‘  (๐‘ฅ, ๐‘ก)๐’”ฬ‚ + ๐‘ฃ๐‘› (๐‘ฅ, ๐‘ก)๐’
where ๐‘ฃ๐‘› = 0 by definition.
Figure 4.8 Streamline coordinate system for two-dimensional flow.
The acceleration is
๐‘Ž=
๐ทV ๐œ•V
=
+ (V โ‹… โˆ‡)V
๐ท๐‘ก
๐œ•๐‘ก
where,
โˆ‡=
๐œ•
๐œ•
ฬ‚;
๐’”ฬ‚ +
๐’
๐œ•๐‘ 
๐œ•๐‘›
V โ‹… โˆ‡= ๐‘ฃ๐‘ 
๐œ•
๐œ•๐‘ 
Chapter 3
4
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
ฬ‚=
๐‘Ž = ๐‘Ž๐‘  ๐’”ฬ‚ + ๐‘Ž๐‘› ๐’
๐œ•V
๐œ•V
+ ๐‘ฃ๐‘ 
๐œ•๐‘ก
๐œ•๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐’”ฬ‚
๐œ•๐‘ฃ๐‘ 
๐œ•๐’”ฬ‚
=[
๐’”ฬ‚ + ๐‘ฃ๐‘  ] + ๐‘ฃ๐‘  [
๐’”ฬ‚ + ๐‘ฃ๐‘  ]
๐œ•๐‘ก
๐œ•๐‘ก
๐œ•๐‘ 
๐œ•๐‘ 
Figure 4.9 Relationship between the unit vector along the streamline, ๐’”ฬ‚, and the radius of
curvature of the streamline, ๐•ฝ
Space increment
๐’”ฬ‚ +
๐œ•๐’”ฬ‚
๐‘‘๐‘ 
๐œ•๐‘ 
๐œ•๐œƒ
ฬ‚
๐‘‘๐‘ ๐’
๐œ•๐‘ 
๐‘‘๐œƒ
Normal to ๐‘ ฬ‚
๐‘‘๐‘  = โ„œ๐‘‘๐œƒ
๐’”ฬ‚
๐’”ฬ‚ +
๐œ•๐œƒ
๐œ•๐’”ฬ‚
ฬ‚ = ๐’”ฬ‚ + ๐‘‘๐‘ 
๐‘‘๐‘ ๐’
๐œ•๐‘ 
๐œ•๐‘ 
ฬ‚
๐œ•๐’”ฬ‚ ๐’
=
๐œ•๐‘  โ„œ
Time increment
๐’”ฬ‚ +
๐œ•๐’”ฬ‚
๐’”ฬ‚ + ๐‘‘๐‘ก
๐œ•๐‘ก
๐‘‘๐œƒ
๐’”ฬ‚
๐œ•๐œƒ
ฬ‚
๐‘‘๐‘ก๐’
๐œ•๐‘ก
๐œ•๐œƒ
๐œ•๐’”ฬ‚
ฬ‚ = ๐’”ฬ‚ + ๐‘‘๐‘ก
๐‘‘๐‘ก๐’
๐œ•๐‘ก
๐œ•๐‘ก
๐œ•๐’”ฬ‚ ๐œ•๐œƒ
ฬ‚
=
๐’
๐œ•๐‘ก ๐œ•๐‘ก
Chapter 3
5
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•ฮธ ๐‘ฃ๐‘ 2
ฬ‚
ฬ‚
๐‘Ž=(
+ ๐‘ฃ๐‘ 
+ )๐’
) ๐’” + ( ๐‘ฃ๐‘ 
โŸ ๐œ•๐‘ก
๐œ•๐‘ก
๐œ•๐‘ 
โ„œ
๐œ•๐‘ฃ๐‘› โ„๐œ•๐‘ก
or
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘› ๐‘ฃ๐‘ 2
๐‘Ž๐‘  =
+ ๐‘ฃ๐‘ 
, ๐‘Ž๐‘› =
+
๐œ•๐‘ก
๐œ•๐‘ 
๐œ•๐‘ก
โ„œ
where,
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ก
๐œ•๐‘ฃ๐‘›
๐œ•๐‘ก
๐‘ฃ๐‘ 
= local ๐‘Ž๐‘  in ๐‘ ฬ‚ direction
= local ๐‘Ž๐‘› in ๐‘›ฬ‚ direction
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
= convective ๐‘Ž๐‘  due to spatial gradient of V
i.e. convergence /divergence ๐œ“
๐‘ฃ๐‘ 2
โ„œ
= convective ๐‘Ž๐‘› due to curvature of ๐œ“ : centrifugal accerleration
Chapter 3
6
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
3.3 Bernoulli Equation
Consider the small fluid particle of size ๐›ฟ๐‘  by ๐›ฟ๐‘› in the plane of the figure and ๐›ฟ๐‘ฆ normal to the figure as shown in the free-body diagram below. For
steady flow, the components of Newtonโ€™s second law along the streamline and
normal directions can be written as following:
1) Along a streamline
๐›ฟ๐‘š โ‹… ๐‘Ž๐‘  = โˆ‘๐›ฟ๐น๐‘  = ๐›ฟ๐’ฒ๐‘  + ๐›ฟ๐น๐‘๐‘ 
where,
๐›ฟ๐‘š โ‹… ๐‘Ž๐‘  = (๐œŒ๐›ฟV) โ‹… (๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
)
๐›ฟ๐’ฒ๐‘  = โˆ’๐›พ๐›ฟV sin ๐œƒ
๐›ฟ๐น๐‘๐‘  = (๐‘ โˆ’ ๐›ฟ๐‘๐‘  )๐›ฟ๐‘›๐›ฟ๐‘ฆ โˆ’ (๐‘ + ๐›ฟ๐‘๐‘  )๐›ฟ๐‘›๐›ฟ๐‘ฆ = โˆ’2๐›ฟ๐‘๐‘  ๐›ฟ๐‘›๐›ฟ๐‘ฆ
=โˆ’
๐œ•๐‘
๐œ•๐‘ 
๐›ฟV
๐›ฟ๐‘๐‘  =
๐œ•๐‘ ๐›ฟ๐‘ 
๐œ•๐‘  2
1st order Taylor Series
Thus,
(๐œŒ๐›ฟV) โ‹… (๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
๐œ•๐‘
) = โˆ’ ๐œ•๐‘  ๐›ฟV โˆ’ ๐›พ๐›ฟV sin ๐œƒ
Chapter 3
7
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
๐œŒ (๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘
) = โˆ’ ๐œ•๐‘  โˆ’ ๐›พ sin ๐œƒ
๐œ•๐‘ 
=โˆ’
๐œ•
๐œ•๐‘ 
sin ๐œƒ =
๐‘‘๐‘ง
๐‘‘๐‘ 
(๐‘ + ๐›พ๐‘ง)
๏‚ฎ change in speed due to
๐œ•๐‘
๐œ•๐‘ 
and
๐œ•๐‘ง
๐œ•๐‘ 
(i.e. ๐’ฒ along ๐’”ฬ‚)
2) Normal to a streamline
๐›ฟ๐‘š โ‹… ๐‘Ž๐‘› = โˆ‘๐›ฟ๐น๐‘› = ๐›ฟ๐’ฒ๐‘› + ๐›ฟ๐น๐‘๐‘›
where,
๐‘ฃ2
๐›ฟ๐‘š โ‹… ๐‘Ž๐‘› = (๐œŒ๐›ฟV) โ‹… ( ๐‘  )
โ„œ
๐›ฟ๐’ฒ๐‘› = โˆ’๐›พ๐›ฟV cos ๐œƒ
๐›ฟ๐น๐‘๐‘› = (๐‘ โˆ’ ๐›ฟ๐‘๐‘› )๐›ฟ๐‘ ๐›ฟ๐‘ฆ โˆ’ (๐‘ + ๐›ฟ๐‘๐‘› )๐›ฟ๐‘ ๐›ฟ๐‘ฆ = โˆ’2๐›ฟ๐‘๐‘› ๐›ฟ๐‘ ๐›ฟ๐‘ฆ
=โˆ’
๐œ•๐‘
๐œ•๐‘›
๐›ฟV
๐›ฟ๐‘๐‘› =
๐œ•๐‘ ๐›ฟ๐‘›
๐œ•๐‘› 2
1st order Taylor Series
Thus,
๐‘ฃ2
๐œ•๐‘
(๐œŒ๐›ฟV) โ‹… ( ๐‘  ) = โˆ’ ๐›ฟV โˆ’ ๐›พ๐›ฟV cos ๐œƒ
โ„œ
๐œ•๐‘›
๐‘ฃ2
๐œ•๐‘
๐œŒ ๐‘  = โˆ’ โˆ’ ๐›พ cos ๐œƒ
โ„œ
๐œ•๐‘›
=โˆ’
๐œ•
๐œ•๐‘›
cos ๐œƒ =
๐‘‘๐‘ง
๐‘‘๐‘›
(๐‘ + ๐›พ๐‘ง)
๏‚ฎ streamline curvature is due to
๐œ•๐‘
๐œ•๐‘›
and
๐œ•๐‘ง
๐œ•๐‘›
ฬ‚)
(i.e. ๐’ฒ along ๐’
Chapter 3
8
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
In a vector form:
๐œŒ๐‘Ž = โˆ’โˆ‡(๐‘ + ๐›พ๐‘ง)
๐œŒ (๐‘ฃ๐‘ 
or
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
๐’”ฬ‚ +
๐‘ฃ๐‘ 2
โ„œ
(Euler equation)
๐œ•
๐œ•
๐œ•๐‘ 
๐œ•๐‘›
ฬ‚ ) = โˆ’ ( ๐’”ฬ‚ +
๐’
ฬ‚ ) (๐‘ + ๐›พ๐‘ง)
๐’
Steady flow, ๐œŒ = constant, ๐’”ฬ‚ equation
๐œŒ๐‘ฃ๐‘ 
๐œ•
๐œ•๐‘ 
[
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
๐‘ฃ๐‘ 2
2
=โˆ’
๐œ•
๐œ•๐‘ 
(๐‘ + ๐›พ๐‘ง)
๐‘
+ + ๐‘”๐‘ง] = 0
๐œŒ
๐‘ฃ๐‘ 2 ๐‘
โˆด
+ + ๐‘”๐‘ง = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
2 ๐œŒ
โŸ
๐ต๐‘’๐‘Ÿ๐‘›๐‘œ๐‘ข๐‘™๐‘™๐‘– ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›
ฬ‚ equation
Steady flow, ๐œŒ = constant, ๐’
๐œŒ
๐‘ฃ๐‘ 2
โ„œ
=โˆ’
๐œ•
๐œ•๐‘›
(๐‘ + ๐›พ๐‘ง)
๐‘ฃ๐‘ 2
๐‘
โˆด โˆซ ๐‘‘๐‘› + + ๐‘”๐‘ง = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
โ„œ
๐œŒ
For curved streamlines ๐‘ + ๐›พ๐‘ง (= constant for static fluid) decreases in the ๐‘›ฬ‚ direction, i.e. towards the local center of curvature.
It should be emphasized that the Bernoulli equation is restricted to the following:
๏‚ท
๏‚ท
๏‚ท
๏‚ท
inviscid flow
steady flow
incompressible flow
flow along a streamline
Note that if in addition to the flow being inviscid it is also irrotational, i.e.
rotation of fluid = ๐œ” = vorticity = โˆ‡ × V = 0, the Bernoulli constant is same for all ๐œ“,
as will be shown later.
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
9
3.4 Physical interpretation of Bernoulli equation
Integration of the equation of motion to give the Bernoulli equation actually corresponds to the work-energy principle often used in the study of dynamics.
This principle results from a general integration of the equations of motion for an
object in a very similar to that done for the fluid particle. With certain assumptions, a statement of the work-energy principle may be written as follows:
The work done on a particle by all forces acting on the particle is equal to
the change of the kinetic energy of the particle.
The Bernoulli equation is a mathematical statement of this principle.
In fact, an alternate method of deriving the Bernoulli equation is to use the
first and second laws of thermodynamics (the energy and entropy equations), rather than Newtonโ€™s second law. With the approach restrictions, the general energy equation reduces to the Bernoulli equation.
An alternate but equivalent form of the Bernoulli equation is
๐‘ ๐‘‰2
+
+ ๐‘ง = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐›พ 2๐‘”
along a streamline.
Pressure head:
Velocity head:
๐‘
๐›พ
๐‘‰2
2๐‘”
Elevation head: ๐‘ง
The Bernoulli equation states that the sum of the pressure head, the velocity
head, and the elevation head is constant along a streamline.
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
10
3.5 Static, Stagnation, Dynamic, and Total Pressure
1
๐‘ + ๐œŒ๐‘‰ 2 + ๐›พ๐‘ง = ๐‘๐‘‡ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
2
along a streamline.
Static pressure: ๐‘
1
Dynamic pressure: ๐œŒ๐‘‰ 2
2
Hydrostatic pressure: ๐›พ๐‘ง
Stagnation points on bodies in flowing fluids.
1
Stagnation pressure: ๐‘ + ๐œŒ๐‘‰ 2 (assuming elevation effects are negligible)
2
1
Total pressure: ๐‘๐‘‡ = ๐‘ + ๐œŒ๐‘‰ 2 + ๐›พ๐‘ง (along a streamline)
2
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
The Pitot-static tube (left) and typical Pitot-static tube designs (right).
Typical pressure distribution along a Pitot-static tube.
Chapter 3
11
Chapter 3
12
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
3.6 Applications of Bernoulli Equation
1) Stagnation Tube
๐‘‰12
๐‘‰22
๐‘1 + ๐œŒ
= ๐‘2 + ๐œŒ
2
2
๐‘‰12 =
2
(๐‘ โˆ’ ๐‘1 )
๐œŒ 2
=
2
(๐›พ๐‘™)
๐œŒ
๐‘‰1 = โˆš2๐‘”๐‘™
๐‘ง1 = ๐‘ง2
๐‘1 = ๐›พ๐‘‘, ๐‘‰2 = 0
๐‘2 = ๐›พ(๐‘™ + ๐‘‘) ๐‘”๐‘Ž๐‘”๐‘’
Limited by length of tube and need
for free surface reference
Chapter 3
13
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
2) Pitot Tube
๐‘1 ๐‘‰12
๐‘2 ๐‘‰22
+
+ ๐‘ง1 = +
+ ๐‘ง2
๐›พ 2๐‘”
๐›พ 2๐‘”
1
2
๐‘‰2 = {2๐‘” [(
๐‘1
๐‘2
+ ๐‘ง1 ) โˆ’ ( + ๐‘ง2 )]}
๐›พ
๐›พ
โŸ
โŸ
โ„Ž1
โ„Ž2
where, ๐‘‰1 = 0 and โ„Ž = piezometric head
๐‘‰ = ๐‘‰2 = โˆš2๐‘”(โ„Ž1 โˆ’ โ„Ž2 )
โ„Ž1 โˆ’ โ„Ž2 from manometer or pressure gage
For gas flow ฮ”๐‘โ„๐›พ โ‰ซ ฮ”๐‘ง
๐‘‰=โˆš
2ฮ”๐‘
๐œŒ
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
14
3) Free Jets
Vertical flow from a tank
Application of Bernoulli equation between points (1) and (2) on the streamline
shown gives
1
1
๐‘1 + ๐œŒ๐‘‰12 + ๐›พ๐‘ง1 = ๐‘2 + ๐œŒ๐‘‰22 + ๐›พ๐‘ง2
2
2
Since ๐‘ง1 = โ„Ž, ๐‘ง2 = 0, ๐‘‰1 โ‰ˆ 0, ๐‘1 = 0, ๐‘2 = 0, we have
1
๐›พโ„Ž = ๐œŒ๐‘‰22
2
๐‘‰2 = โˆš2
๐›พโ„Ž
= โˆš2๐‘”โ„Ž
๐œŒ
Bernoulli equation between points (1) and (5) gives
๐‘‰5 = โˆš2๐‘”(โ„Ž + ๐ป)
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
4) Simplified form of the continuity equation
Steady flow into and out of a tank
Obtained from the following intuitive arguments:
Volume flow rate: ๐‘„ = ๐‘‰๐ด
Mass flow rate: ๐‘šฬ‡ = ๐œŒ๐‘„ = ๐œŒ๐‘‰๐ด
Conservation of mass requires
๐œŒ1 ๐‘‰1 ๐ด1 = ๐œŒ2 ๐‘‰2 ๐ด2
For incompressible flow ๐œŒ1 = ๐œŒ2 , we have
๐‘‰1 ๐ด1 = ๐‘‰2 ๐ด2
or
๐‘„1 = ๐‘„2
Chapter 3
15
Chapter 3
16
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
5) Volume Rate of Flow (flowrate, discharge)
1. Cross-sectional area oriented normal to velocity vector
(simple case where ๐‘‰ โŠฅ ๐ด)
๐‘ˆ = constant: ๐‘„ = volume flux = ๐‘ˆ๐ด [m/s ๏‚ด m2 = m3/s]
๐‘ˆ โ‰  constant: ๐‘„ = โˆซ๐ด ๐‘ˆ๐‘‘๐ด
Similarly the mass flux = ๐‘šฬ‡ = โˆซ๐ด ๐œŒ๐‘ˆ๐‘‘๐ด
2. General case
๐‘„ = โˆซ V โ‹… ๐’๐‘‘๐ด
๐ถ๐‘†
= โˆซ |V| cos ๐œƒ ๐‘‘๐ด
๐ถ๐‘†
๐‘šฬ‡ = โˆซ ๐œŒ(V โ‹… ๐’)๐‘‘๐ด
๐ถ๐‘†
Average velocity:
๐‘‰ฬ… =
๐‘„
๐ด
Chapter 3
17
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Example:
At low velocities the flow through a long circular tube, i.e. pipe, has a parabolic velocity distribution (actually paraboloid of revolution).
๐‘Ÿ 2
๐‘ข = ๐‘ข๐‘š๐‘Ž๐‘ฅ (1 โˆ’ ( ) )
๐‘…
where, ๐‘ข๐‘š๐‘Ž๐‘ฅ = centerline velocity
a) find ๐‘„ and ๐‘‰ฬ…
๐‘„ = โˆซ V โ‹… ๐’ ๐‘‘๐ด = โˆซ ๐‘ข๐‘‘๐ด
๐ด
๐ด
2๐œ‹
โˆซ ๐‘ข๐‘‘๐ด = โˆซ
๐ด
๐‘…
โˆซ ๐‘ข(๐‘Ÿ)๐‘Ÿ๐‘‘๐œƒ๐‘‘๐‘Ÿ
0
0
๐‘…
= 2๐œ‹ โˆซ ๐‘ข(๐‘Ÿ)๐‘Ÿ๐‘‘๐‘Ÿ
0
2๐œ‹
where, ๐‘‘๐ด = 2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿ, ๐‘ข = ๐‘ข(๐‘Ÿ) and not ๐œƒ, โˆด โˆซ0 ๐‘‘๐œƒ = 2๐œ‹
๐‘…
๐‘Ÿ 2
1
๐‘„ = 2๐œ‹ โˆซ ๐‘ข๐‘š๐‘Ž๐‘ฅ (1 โˆ’ ( ) ) ๐‘Ÿ๐‘‘๐‘Ÿ = ๐‘ข๐‘š๐‘Ž๐‘ฅ ๐œ‹๐‘…2
๐‘…
2
0
๐‘‰ฬ… =
๐‘„ ๐‘ข๐‘š๐‘Ž๐‘ฅ
=
๐ด
2
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
18
6) Flowrate measurement
Various flow meters are governed by the Bernoulli and continuity equations.
Typical devices for measuring flowrate in pipes.
Three commonly used types of flow meters are illustrated: the orifice meter, the nozzle meter, and the Venturi meter. The operation of each is based on
the same physical principlesโ€”an increase in velocity causes a decrease in pressure. The difference between them is a matter of cost, accuracy, and how closely
their actual operation obeys the idealized flow assumptions.
We assume the flow is horizontal (๐‘ง1 = ๐‘ง2 ), steady, inviscid, and incompressible between points (1) and (2). The Bernoulli equation becomes:
1
1
๐‘1 + ๐œŒ๐‘‰12 = ๐‘2 + ๐œŒ๐‘‰22
2
2
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
19
If we assume the velocity profiles are uniform at sections (1) and (2), the continuity equation can be written as:
๐‘„ = ๐‘‰1 ๐ด1 = ๐‘‰2 ๐ด2
where ๐ด2 is the small (๐ด2 < ๐ด1 ) flow area at section (2). Combination of these
two equations results in the following theoretical flowrate
2(๐‘1 โˆ’ ๐‘2 )
๐‘„ = ๐ด2 โˆš
๐œŒ[1 โˆ’ (๐ด2 โ„๐ด1 )2 ]
assumed vena contracta = 0, i.e., no viscous effects. Otherwise,
2(๐‘1 โˆ’ ๐‘2 )
๐‘„ = ๐ถ๐ถ ๐ด๐ถ โˆš
๐œŒ[1 โˆ’ (๐ด2 โ„๐ด1 )2 ]
where ๐ถ๐ถ = contraction coefficient
A smooth, well-contoured nozzle (left) and a sharp corner (right)
The velocity profile of the left nozzle is not uniform due to differences in elevation, but in general ๐‘‘ โ‰ช โ„Ž and we can safely use the centerline velocity, ๐‘‰2 , as
a reasonable โ€œaverage velocity.โ€
For the right nozzle with a sharp corner, ๐‘‘๐‘— will be less than ๐‘‘โ„Ž . This phenomenon, called a vena contracta effect, is a result of the inability of the fluid to
turn the sharp 90๏‚ฐ corner.
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
20
Figure 3.14 Typical flow patterns and contraction coefficients
The vena contracta effect is a function of the geometry of the outlet. Some
typical configurations are shown in Fig. 3.14 along with typical values of the experimentally obtained contraction coefficient, ๐ถ๐ถ = ๐ด๐‘— โ„๐ดโ„Ž , where ๐ด๐‘— and ๐ดโ„Ž are
the areas of the jet a the vena contracta and the area of the hole, respectively.
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
21
Other flow meters based on the Bernoulli equation are used to measure
flowrates in open channels such as flumes and irrigation ditches. Two of these
devices, the sluice gate and the sharp-crested weir, are discussed below under
the assumption of steady, inviscid, incompressible flow.
Sluice gate geometry
We apply the Bernoulli and continuity equations between points on the free surfaces at (1) and (2) to give:
1
1
๐‘1 + ๐œŒ๐‘‰12 + ๐›พ๐‘ง1 = ๐‘2 + ๐œŒ๐‘‰22 + ๐›พ๐‘ง2
2
2
and
๐‘„ = ๐‘‰1 ๐ด1 = ๐‘๐‘‰1 ๐‘ง1 = ๐‘‰2 ๐ด2 = ๐‘๐‘‰2 ๐‘ง2
With the fact that ๐‘1 = ๐‘2 = 0:
2๐‘”(๐‘ง1 โˆ’ ๐‘ง2 )
๐‘„ = ๐‘ง2 ๐‘โˆš
1 โˆ’ (๐‘ง2 โ„๐‘ง1 )2
In the limit of ๐‘ง1 โ‰ซ ๐‘ง2 :
๐‘„ = ๐‘ง2 ๐‘โˆš2๐‘”๐‘ง1
Chapter 3
22
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Rectangular, sharp-crested weir geometry
For such devices the flowrate of liquid over the top of the weir plate is dependent on the weir height, ๐‘ƒ๐‘ค , the width of the channel, ๐‘, and the head, ๐ป, of
the water above the top of the weir. Between points (1) and (2) the pressure and
gravitational fields cause the fluid to accelerate from velocity ๐‘‰1 to velocity ๐‘‰2 . At
(1) the pressure is ๐‘1 = ๐›พโ„Ž, while at (2) the pressure is essentially atmospheric,
๐‘2 = 0. Across the curved streamlines directly above the top of the weir plate
(section aโ€“a), the pressure changes from atmospheric on the top surface to some
maximum value within the fluid stream and then to atmospheric again at the bottom surface.
For now, we will take a very simple approach and assume that the weir flow
is similar in many respects to an orifice-type flow with a free streamline. In this
instance we would expect the average velocity across the top of the weir to be
proportional to โˆš2๐‘”๐ป and the flow area for this rectangular weir to be proportional to ๐ป๐‘. Hence, it follows that
๐‘„ = ๐ถ1 ๐ป๐‘โˆš2๐‘”๐ป =
3
๐ถ1 ๐‘โˆš2๐‘”๐ป2
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
Chapter 3
23
3.7 Energy grade line (EGL) and hydraulic grade line (HGL)
This part will be covered later at Chapter 5.
3.8 Limitations of Bernoulli Equation
Assumptions used in the derivation Bernoulli Equation:
(1) Inviscid
(2) Incompressible
(3) Steady
(4) Conservative body force
1) Compressibility Effects:
The Bernoulli equation can be modified for compressible flows. A simple,
although specialized, case of compressible flow occurs when the temperature of a
perfect gas remains constant along the streamlineโ€”isothermal flow. Thus, we
consider ๐‘ = ๐œŒ๐‘…๐‘‡, where ๐‘‡ is constant (In general, ๐‘, ๐œŒ, and ๐‘‡ will vary). An
equation similar to the Bernoulli equation can be obtained for isentropic flow of a
perfect gas. For steady, inviscid, isothermal flow, Bernoulli equation becomes
๐‘…๐‘‡ โˆซ
๐‘‘๐‘ 1 2
+ ๐‘‰ + ๐‘”๐‘ง = ๐‘๐‘œ๐‘›๐‘ ๐‘ก
๐‘ 2
The constant of integration is easily evaluated if ๐‘ง1 , ๐‘1 , and ๐‘‰1 are known at some
location on the streamline. The result is
๐‘‰12
๐‘…๐‘‡
๐‘1
๐‘‰22
+ ๐‘ง1 +
ln ( ) =
+ ๐‘ง2
2๐‘”
๐‘”
๐‘2
2๐‘”
Chapter 3
24
57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2008
2) Unsteady Effects:
The Bernoulli equation can be modified for unsteady flows. With the inclusion of the unsteady effect (๐œ•๐‘‰ โ„๐œ•๐‘ก โ‰  0) the following is obtained:
๐œŒ
๐œ•๐‘‰
๐œ•๐‘ก
1
๐‘‘๐‘  + ๐‘‘๐‘ + ๐œŒ๐‘‘(๐‘‰ 2 ) + ๐›พ๐‘‘๐‘ง = 0 (along a streamline)
2
For incompressible flow this can be easily integrated between points (1) and (2) to
give
1
๐‘  ๐œ•๐‘‰
2
1
๐‘1 + ๐œŒ๐‘‰12 + ๐›พ๐‘ง1 = ๐œŒ โˆซ๐‘  2
๐œ•๐‘ก
1
๐‘‘๐‘  + ๐‘2 + ๐œŒ๐‘‰22 + ๐›พ๐‘ง2 (along a streamline)
2
3) Rotational Effects
Care must be used in applying the Bernoulli equation across streamlines. If
the flow is โ€œirrotationalโ€ (i.e., the fluid particles do not โ€œspinโ€ as they move), it is
appropriate to use the Bernoulli equation across streamlines. However, if the
flow is โ€œrotationalโ€ (fluid particles โ€œspinโ€), use of the Bernoulli equation is restricted to flow along a streamline.
4) Other Restrictions
Another restriction on the Bernoulli equation is that the flow is inviscid. The
Bernoulli equation is actually a first integral of Newton's second law along a
streamline. This general integration was possible because, in the absence of viscous effects, the fluid system considered was a conservative system. The total energy of the system remains constant. If viscous effects are important the system
is nonconservative and energy losses occur. A more detailed analysis is needed
for these cases.
The Bernoulli equation is not valid for flows that involve pumps or turbines.
The final basic restriction on use of the Bernoulli equation is that there are no
mechanical devices (pumps or turbines) in the system between the two points
along the streamline for which the equation is applied. These devices represent
sources or sinks of energy. Since the Bernoulli equation is actually one form of
the energy equation, it must be altered to include pumps or turbines, if these are
present.