Batch Presorting Problems: Models and Complexity Results

J. Kallrath, M. C. Müller, S. Nickel
Batch Presorting Problems:
Models and Complexity Results
Berichte des Fraunhofer ITWM, Nr. 40 (2002)
© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2002
ISSN 1434-9973
Bericht 40 (2002)
Alle Rechte vorbehalten. Ohne ausdrückliche, schriftliche Genehmigung
des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in
irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu
reproduzieren oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, verwendbare Sprache zu übertragen. Dasselbe gilt für das
Recht der öffentlichen Wiedergabe.
Warennamen werden ohne Gewährleistung der freien Verwendbarkeit
benutzt.
Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM
können bezogen werden über:
Fraunhofer-Institut für Techno- und
Wirtschaftsmathematik ITWM
Gottlieb-Daimler-Straße, Geb. 49
67663 Kaiserslautern
Telefon:
Telefax:
E-Mail:
Internet:
+49 (0) 6 31/2 05-32 42
+49 (0) 6 31/2 05-41 39
[email protected]
www.itwm.fraunhofer.de
Vorwort
Das Tätigkeitsfeld des Fraunhofer Instituts für Techno- und Wirtschaftsmathematik
ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung
sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Techno- und Wirtschaftsmathematik bedeutsam sind.
In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts kontinuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissenschaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit
internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und
Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Berichtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Dissertationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu
aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.
Darüberhinaus bietet die Reihe ein Forum für die Berichterstattung über die zahlreichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirtschaft.
Berichterstattung heißt hier Dokumentation darüber, wie aktuelle Ergebnisse aus
mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen
und Softwareprodukte transferiert werden, und wie umgekehrt Probleme der Praxis neue interessante mathematische Fragestellungen generieren.
Prof. Dr. Dieter Prätzel-Wolters
Institutsleiter
Kaiserslautern, im Juni 2001
Edwfk Suhvruwlqj Sureohpv1 Prghov dqg
Frpsoh{lw| Uhvxowv
Mxold Ndooudwk @ / Pduwlq F1 Pÿoohu A / Vwhidq Qlfnho @
>
@ LWZP/ Jrwwolhe0Gdlpohu Vwu1 7</ 9:996 Ndlvhuvodxwhuq
M Vlhphqv DJ/ FW VH 9/ Rwwr0Kdkq0Ulqj 9/ ;4:6: Pÿqfkhq
,ALMK@BM
Lq wklv sdshu zh frqvlghu vkruw whup vwrudjh v|vwhpv1 Zh dqdo|}h suhvruwlqj vwudwh0
jlhv wr lpsuryh wkh h!flhqf| ri wkhvh vwrudjh v|vwhpv1 Wkh suhvruwlqj wdvn lv fdoohg
Edwfk SuhVruwlqj Sureohp +ESVS,1 Wkh ESVS lv d yduldwlrq ri dq dvvljqphqw sure0
ohp/ l1h1/ lw kdv dq dvvljqphqw sureohp nhuqho dqg vrph dgglwlrqdo frqvwudlqwv1
Zh suhvhqw glhuhqw w|shv ri wkhvh suhvruwlqj sureohpv/ lqwurgxfh pdwkhpdwl0
fdo surjudpplqj irupxodwlrqv dqg suryh wkh QS 0frpsohwhqhvv iru rqh w|sh ri wkh
ESVS1 H{shulphqwv duh fduulhg rxw lq rughu wr frpsduh wkh glhuhqw prgho irupx0
odwlrqv dqg wr lqyhvwljdwh wkh ehkdylru ri wkhvh prghov1
Nh| zrugv= Frpsoh{lw| wkhru|/ Lqwhjhu surjudpplqj/ Dvvljqphqw/ Orjlvwlfv
4 Lqwurgxfwlrq
Wkh qhhg iru dsso|lqj rswlpl}dwlrq wrrov dulvhv lq pdq| dvshfwv ri lqgxvwuldo
dssolfdwlrqv ^4`1 Hvshfldoo| pdwkhpdwlfdo surjudpplqj lv d yhu| qdwxudo dqg
srzhuixo wrro wr vroyh sureohpv lq lqkrxvh orjlvwlfv +f1i1 ^5`/ ^6`/ ^7`, ru frpsdq|
zlgh orjlvwlfv +vxsso| fkdlq, ^8`1 Rqh pljkw dujxh wkdw orz vwuxfwxuh v|vwhpv
fdq suredeo| eh kdqgohg zhoo zlwkrxw rswlpl}dwlrq/ exw frpsoh{ v|vwhpv zlwk
pdq| ghjuhhv ri iuhhgrp dqg uhvwulfwlrqv vwurqjo| uhtxluh rswlpl}dwlrq lq rughu
wr lqyhvwljdwh d vlwxdwlrq frpsohwho| +wr dqdo|}h sureohpv zklfk fdq dsshdu/
wr shuirup vroxwlrqv dqg wr pdnh vdih frqfoxvlrqv111,1
Fruuhvsrqglqj dxwkru1
Hpdlo dgguhvvhv= ndooudwkClwzp1ikj1gh +Mxold Ndooudwk,/
pduwlq1f1pxhoohuCpfks1vlhphqv1gh +Pduwlq F1 Pÿoohu,/ qlfnhoClwzp1ikj1gh
+Vwhidq Qlfnho,1
Suhsulqw vxeplwwhg wr Hovhylhu Vflhqfh
45 Rfwrehu 5335
Prghuq pdqxidfwxulqj v|vwhpv uhtxluh wkh xvh ri kljk shuirupdqfh/ vkruw
whup vwrudjh1 Frqyhqwlrqdo vwdnhu fudqh vroxwlrqv surylglqj wkh qhfhvvdu| rxw0
sxw iuhtxhqf| duh riwhq qrw surwdeoh1 Wkhuh duh dw ohdvw wzr pdlq w|shv ri
vwrudjhv ghylfhv lq lqgxvwu|/ vkhoi udfnhv dqg fdurxvho vwrudjh v|vwhpv1 Iru
orqj whup vwrudjh/ xvxdoo| rqh xvhv vkhoi udfnhv/ zkhuh rqh fdq jlyh suhflvho|
wkh wzr0glphqvlrqdo frruglqdwhv ri zkhuh wr sodfh dqg vwruh remhfwv/ f1i1 ^9`/
^:`1 Dqrwkhu w|sh lv d vkruw whup vwrudjh v|vwhp zklfk vkrxog doorz vruwlqj1
Pdq| sdshuv duh ghyrwhg wr d zhdowk ri lqwhuhvwlqj frpelqdwruldo sureohpv/
zklfk dulvh lq dxwrpdwhg fdurxvho vwrudjh v|vwhpv/ vhh/ f1i1 ^;`/ ^<`1
Lq wklv sdshu zh dqdo|}h wkh vshfldo fdurxvho edvhg vwrudjh v|vwhp URWD0
VWRUH ^43` zklfk qrw rqo| doorzv vwrulqj exw dovr vruwlqj1 Ehfdxvh vruwlqj
riwhq kdv wr eh grqh lq d vkruw wlph shulrg/ wklv sureohp kdv dq rqolqh dvshfw1
Lq rqolqh vlwxdwlrqv remhfwv duh rqo| nqrzq vkruwo| lq dgydqfh1 D jurxs ri
remhfwv mxvw duulylqj zh fdoo d edwfk1 Rqfh vxfk d edwfk duulyhv zh qhhg wr
ghflgh krz wr glvwulexwh wkh remhfwv ri wklv edwfk ehiruh wkh qh{w edwfk ri
remhfwv duulyhv1 D ghflvlrq pdgh fdq qrw eh fkdqjhg odwhu1 Pruh ghwdlov rq
rqolqh rswlpl}dwlrq fdq eh irxqg lq ^44`1
Wkh sdshu lv rujdq}hg dv iroorzv= dw uvw zh jlyh d ghwdlohg ghvfulswlrq ri wkh
Urwdvwruh1 Wkh Edwfk Suhvruwlqj Sureohpv zklfk dsshdu lq wklv dssolfdwlrq
duh ghvfulehg lq Vhfwlrq 61 Wkh frpsoh{lw| vwdwxv ri rqh ri wkh sureohpv lv
lqyhvwljdwhg lq Vhfwlrq 7/ Vhfwlrq 8 suhvhqwv qxphulfdo whvwv1 Ilqdoo|/ wkh odvw
vhfwlrq sxw uhvxowv lqwr shuvshfwlyh1
5 Wkh Urwdvwruh
Lq wkh iroorzlqj zh ghvfuleh wkh vwrudjh v|vwhp Urwdvwruh/ surgxfhg e| sve
JpeK/ Slupdvhqv/ Jhupdq| ^43`1 Wklv v|vwhp ryhufrphv wkh srru shuirpdqfh
ri vwdfnhu fudqh v|vwhpv e| lpsohphqwlqj d prgxodu pxowl0fdurxvho sulqflsoh1
Wklv sulqflsoh doorzv sdudooho ordglqj dqg xqordglqj e| phdqv ri hohydwruv lq0
whuidflqj wkh yhuwlfdoo| vwdnhg fdurxvho od|huv1 Dv vkrzq lq Ilj1 4/ d w|slfdo
frqjxudwlrq frqvlvwv ri wzr hohydwruv dqg d vwdfn ri fdurxvhov hdfk zlwk lghq0
wlfdo qxpehuv ri vorwv1 Lghqwlfdoo| vl}hg wud|v duh wudqvsruwhg wr dqg iurp wkh
oliwv e| frqyh|ruv1 Hdfk fdurxvho dqg hdfk hohydwru pd| pryh lqghshqghqwo|1
Dv lqglfdwhg e| wkh duurzv/ wzr frpev ri sxqfkhv sxvk wud|v vlpxowdqhrxvo|
rq doo od|huv lq ru rxw ri wkh fdurxvho vwdfn1 Wkh zkroh dvvhpeo| lv frqwuroohg e|
d vrsklvwlfdwhg kljk0ohyho surjudppdeoh frpsxwhu v|vwhp zklfk nhhsv wudfn
ri rshudwlrqv dqg lqyhqwru|1
Wkh v|vwhp qrupdoo| rshudwhv rxwsxw0gulyhq/ l1h1/ dq lqsxw2rxwsxw0f|foh +L2R0
f|foh, vwduwv zlwk dffhswlqj d vhw ri rughuv zlwk rqh rughuhg wud| rq hdfk od|hu1
Wkh fdurxvhov wkhq sodfh e| urwdwlqj wkh rughuhg wud|v lq iurqw ri wkh rxwsxw
5
Ilj1 41 W|slfdo Urwdvwruh frqjxudwlrq zlwk hohydwruv
hohydwru +vhhnlqj,1 Qh{w/ wkh sxqfkhv sxvk rxw doo rughuhg wud|v rqwr wkh
rxwsxw hohydwru zklfk lpphgldwho| vwduwv xqordglqj wkhp rqwr wkh ohdylqj
frqyh|hu +vwhsslqj,1 Wkh fdurxvhov pryh wkh qrz hpsw| vorwv lq iurqw ri wkh
lqsxw hohydwru dqg wkh sxqfk sxvk lq wkh zdlwlqj wud|v1 Zkloh wkh hohydwruv
ordg dqg xqordg wkh qh{w L2R0f|foh vwduwv zlwk vhhnlqj wkh qh{w vhw ri rughuv1
Iru wkh shuirupdqfh ri wkh v|vwhp wkh qxpehu ri L2R0f|fohv shu wlph xqlw lv ri
frxuvh fulwlfdo1 Wkh h{shfwhg shuirupdqfh ri d Urwdvwruh zlwk 6 vorwv rq hdfk
ri ? od|huv zdv lqyhvwljdwhg lq ^45`1 Sudfwlfdo h{shulhqfh vkrzv wkdw dgglwlrqdo
phdvxuhv kdyh wr eh wdnhq lqwr dffrxqw wr glvwulexwh wkh wud|v hyhqwxdoo|
zlwk uhvshfw wr wkh od|huv lq rughu wr uhdol}h wkh sdudoohol}lqj vshhgxs ri wkh
Urwdvwruh1 Zh zloo frqvlghu wkh fdvh ri d glvwulexwlrq fhqwhu ri d pd|ru Jhupdq
ghsduwphqw vwruh frpsdq|1 Lq wklv fdvh/ wkh wud|v duh douhdg| sduwlwlrqhg lqwr
vhwv ri rughuv zkhq lqsxw lqwr wkh Urwdvwruh dqg wkh Urwdvwruh pd| rxwsxw
d frpsohwh vhw ri rughuv dv vrrq dv doo wud|v ri wkh vhw ri rughuv duh suhvhqw1
Wr lpsuryh wkh shuirupdqfh/ wkh lqfrplqj wud|v duh suhvruwhg vxfk wkdw hdfk
edwfk vsuhdgv ryhu dv pdq| od|huv dv srvvleoh1 Frqyh|ruv wudqvsruw wkh wud|v
Ilj1 51 Wkuhh vwdfnhu iudphv
wkurxjkrxw wkh v|vwhp1 Uhrughulqj lv grqh rqolqh e| vwdfnhu iudphv/ vpdoo
urerwlf ghylfhv zklfk oliw rqh wud| kljk hqrxjk iurp wkh frqyh|ru wr ohw dq
duelwudu| qxpehu ri wud|v sdvv dqg vhw wkh oliwhg wud| grzq djdlq1 Dv Ilj1 5
looxvwudwhv/ xvxdoo| vhyhudo vwdfnhu iudphv duh sodfhg lq d urz dorqj wkh frqyh|hu
6
vr d wud| pd| ryhuwdnh vhyhudo suhfhglqj wud|v hdvlo|1 Wkh dvvhpeo| lv xvxdoo|
orfdwhg gluhfwo| lq iurqw ri wkh Urwdvwruh lq wkh plggoh ri vx!flhqw ohqjwk ri
dffxpxodwlrq frqyh|ru +h1j1/ uroohu frqyh|hu,1
6 Edwfk Suhvruwlqj Sureohpv
Lq wkh iroorzlqj zh frqvlghu wkh sureohp ri qglqj dq vhtxhqfh ri wud|v wr
jxdudqwhh dq rswlpdo +hyhq, glvwulexwlrq zlwk uhvshfw wr wkh od|huv/ wkdw fdq
eh dfklhyhg zlwk wkh jlyhq kdugzduh +vwdfnhu iudph dvvdpeoh|,1 Wklv sureohp
zloo eh fdoohg wkh Edwfk SuhVruwlqj Sureohp +ESVS,/ ehfdxvh wkh remhfwv kdyh
wr eh vruwhg zklwklq rqh edwfk ehiruh wkh| hqwhu wkh vwrudjh v|vwhp1 Iru d
pruh hohjdqw suhvhqwdwlrq zh suhihu wr vshdn ri froruv lqvwhdg ri rughuv dqg
wkxv frqvlghu doo wud|v ri rughu & dv kdylqj wkh vdph froru &1 Zh suhvhqw wkuhh
w|shv ri ESVS zlwk glhu lq wkhlu remhfwlyh1 Lq ESVS wkh remhfwlyh lv wr
plqlpl}h wkh wrwdo qxpehu ri wud|v ri wkh vdph froru rq rqh od|hu1 Lq ESVS2
wkh remhfwlyh lv wr plqlpl}h wkh pd{lpxp qxpehu ri wud|v ri wkh vdph froru
rq wkh vdph od|hu1 Ilqdoo|/ ESVS dlpv wr plqlpl}h wkh vxp ri wkh pd{lpxp
qxpehu ri wud|v ri wkh vdph froru ryhu doo od|huv1 Odwhu zh vkrz wkdw ESVS
lv sro|qrpldo/ exw ESVS2 lv QS0frpsohwh1 Lq Vxevhfwlrq 614 zh suhvhqw wkh
rswlpl}dwlrq prgho ri ESVS1 Lq Vxevhfwlrq 615 zh irupxodwh ESVS2 dqg
ESVS dv ghflvlrq sureohpv dqg lqwurgxfh rswlpl}dwlrq prghov1
614
Pdwkhpdwlfdo Irupxodwlrq ri ESVS
Dq lqvwdqfh ri wkh ESVS kdv wkh iroorzlqj lqsxw gdwd=
D vhtxhqfh ri froruhg wud|v1 Wkhvh wud|v duh lqgh{hg e| ru 1 V& lv wkh
vhw ri wud|v ri froru & dqg 5 V& phdqv wkdw wkh wud| dw srvlwlrq lq wkh
vhtxhqfh +dovr fdoohg wk wud| ru wud| iru vkruw, kdv froru &1
gu lv wkh qxpehu ri froruv/ lqgh{hg e| &>
7 lv wkh qxpehu ri od|huv/ lqgh{hg e| ,>
lv wkh qxpehu ri vwdfnhu iudphv1
D ihdvleoh vroxwlrq wr ESVS/ l1h1/ wkh vhtxhqfh ri wud|v diwhu wkh vwdfnhu
iudph dvvhpeo|/ lv jlyhq e| d shupxwdwlrq B ri wkh lqgh{ vhw icc j/ l1h1/
BE ' / li wud| lv sodfhg rqwr srvlwlrq 1 Lq ^45` lw zdv vkrzq wkdw h{dfwo|
wkh shupxwdwlrqv B zlwk
BE 7
+614,
7
fdq eh dfklhyhg e| wkh jlyhq kdugzduh1 Qrwh ixuwkhu wkdw h{dfwo| wkh wud|v dw
wkh shupxwhg srvlwlrqv BE ' zlwk , 4L_ u zloo eh sodfhg rqwr od|hu ,1
Lq dgglwlrq zh lqwurgxfh wkh iroorzlqj qrwdwlrq=
;
A
?
B ' A= c li BE ' fc rwkhuzlvh
;
A
u
?
' A= c li od|hu , 4L_ kdv d wud| ri wkh vdph rughu zlwk wud| fc rwkhuzlvh
Wkh rswlpdo shupxwdwlrq fdq eh frqvwuxfwhg iurp wkh vroxwlrq ri wkh iroorzlqj
olqhdu surjudp=
[ [ B
4?
' '
+615,
[B
'
[B
' c ; ' ic c ' c ; ' ic c '
j
+616,
j
+617,
B ' fc
B
;iEc 'm 7
j
+618,
5 ifc jc ;ic j
+619,
Wkh remhfwlyh ixqfwlrq +615, plqlpl}hv wkh wrwdo qxpehu ri wud|v ri wkh vdph
froru rq rqh od|hu1 Xqihdvleoh shupxwdwlrqv duh h{foxghg +lq ghshqghqfh rq
7
, d sulrul e| +618,1
Lw lv zhoo nqrzq wkdw wklv nlqg ri lqwhjhu surjudp lv wrwdo xqlprgxodu +f1i1
^46`, dqg pd| eh vroyhg h!flhqwo| e| vrph yhuvlrqv ri wkh vlpsoh{ dojrulwkp1
Pdq| vshfldo pdwfklqj dojrulwkpv vroyh wkh sureohp lq sro|qrpldo wlph +f1i1
^47`,1 Wkh vlpsolflw| ri wkh irupxodwlrq +615,0+619, ohqgv lwvhoi wr h{whqvlrqv1
Lq dssolfdwlrqv zkhuh wkh Urwdvwruh qhhgv wr rxwsxw doo wud|v ri d vhw ri rughuv
frqvhfxwlyho|/ shuirupdqfh ghshqgv rq wkh qxpehu ri L2R f|fohv qhhghg wr
frpsohwho| rxwsxw d vhw1 Iru d jlyhq vhw ri rughuv/ wkh qxpehu ri L2R0f|fohv
qhhghg iru rxwsxw lv wkh pd{lpxp qxpehu ri wud|v ri wklv vhw ri rughuv irxqg
rq d vlqjoh od|hu1 Wklv sureohp lv suhvhqwhg qh{w1
8
615 Pdwkhpdwlfdo Irupxodwlrqv ri ESVS2 dqg ESVS
Lq wklv vhfwlrq zh suhvhqw irupxodwlrqv ri wkh ESVS2 dqg ESVS dv ghflvlrq
sureohpv1 Zh nhhs prvw ri wkh qrwdwlrqv xvhg lq wkh suhylrxv vhfwlrq1 Exw zh
fkdqjh
,
c zklfk lv wkh qxpehu ri wud|v ri froru & douhdg| suhvhqw rq
wr
&,
od|hu 1 Dgglwlrqdoo| zh ghqh=
dq lqwhjhu erxqg
;A? c
7 'A
= fc
;A? c
 'A
= fc
frqvwdqwv=
&
,
li
c
5V
&
rwkhuzlvh
li
, 4L_ u
1
rwkhuzlvh1
Wklv hqdeohv xv wr ghqh
(
&,
G' 7 
&
, 1
Qrz zh fdq irupxodwh wkh iroorzlqj ghflvlrq sureohpv=
G0ESVS2=
Lv wkhuh d shupxwdwlrq
BE ' ', &
4@
4@
grhv qrw h{fhhg
G0ESVS=
[
&
g
4@
&,
&,
' '
grhv qrw h{fhhg
+61:,
B G ic c 3 [[ 4
C n ( B D
7
vxfk wkdw wkh wrwdo frvw
u
vdwlvi|lqj
vxfk wkdw wkh pd{lpdo frvw
Lv wkhuh d shupxwdwlrq
' ,'cc
j $ ic c jc
B
BE ' ', 3 [[ 4
C n ( B D
7
'cc g ,'cc u
B G ic c &,
j $ ic c jc
vdwlvi|lqj
' '
& ,
+61;,
B
Uhpdunv= Wkh whup (
B ehfrphv  h{dfwo| li dq dgglwlrqdo wud| ri froru &
, e| uhdol}lqj shupxwdwlrq B Dv ghqrwhvwkh qxpehu
ri
wud|v ri froru & douhdg| suhvhqw rq wkdw od|hu/ wkh frvw n
' ' ( B
&,
lv sodfhg rqwr od|hu
&,
&,
9
S S
&,
jlyhv wkh qxpehu ri wud|v diwhu wkh shupxwhg wud|v kdyh doo hqwhuhg wkh Ur0
wdvwruh1 Lq rwkhu zrugv/ G0ESVS2 lv wkh sureohp ri qglqj d shupxwdwlrq ri
wud|v vxfk wkdw wkh pd{lpxp qxpehu ri wud|v ri wkh vdph froru rq dq| od|hu
lv ohvv wkdq ru htxdo wr
iru doo froruv1 Wr rxwsxw doo wud|v ri d fhuwdlq froru/
wkh Urwdvwruh qhhgv dw ohdvw dv pdq| L2R0f|fohv dv wkhuh duh wud|v ri wkdw froru
rq dq| od|hu/ vr wkh wrwdo frvw whup ri G0ESVS2 fdq eh lqwhusuhwhg dv d zruvw0
fdvh hvwlpdwlrq ri wkh shuirupdqfh1 Wkh wrwdo frvw ri G0ESVS dqdorjrxvo|
uhsuhvhqwv wkh dyhudjh shuirupdqfh ryhu doo froruv1
61514 Dq rswlpl}dwlrq yhuvlrq ri ESVS2
Vlqfh wkh remhfwlyh lv wr plqlpl}h wkh pd{lpdo frvw +61:, zh qrz irupxodwh
3 [[ 4
C n ' ' ( B D
wkh ghflvlrq sureohp dv dq rswlpl}dwlrq sureohp=
4? '4@
&
cc
g,
4@
'
cc
u
plqlpd{
Zh uhsodfh wkh
&,
&,
remhfwlyh ixqfwlrq e| dq htxlydohqw olqhdu irupxod0
wlrq1 Iru wklv uhdvrq qhz yduldeohv duh lqwurgxfhg=
ri wud|v ri froru
dqg
,
cc
u
+ ' 't4@

&
3 [[ 4
C n ( B D
' '4@
&
& rq dq| od|hu/ l1h1/
cc
&,
&
wkh pd{lpdo qxpehu
' '
& ,
+61<,
i& j1
g
Wkdw ohdgv xv wr wkh wudqviruphg remhfwlyh ixqfwlrq
4? +c
+6143,
dqg wr vrph dgglwlrqdo frqvwudlqwv
&
+c ;& ' ic c g j
&,
[[(
n
[B
& ,
B
& c ;i&c ,j
' c ; ' ic c ' c ; ' ic c '
' '
'
+6145,
[B
+6144,
j
+6146,
j
+6147,
:
B ' fc
B
;iEc m 5 ifc jc ;ic j
7
j
+6148,
+6149,
Ohw xv pdnh d ihz uhpdunv uhodwhg wr wkrvh frqvwudlqwv=
i j1 Wkh
+ ' 't4@
g

lqhtxdolwlhv +6145, h{suhvv wkdw wkh qxpehu ri wud|v ri froru & zklfk duh douhdg|
rq wkh od|hu , soxv d qxpehu ri wud|v ri froru & dvvljqhg rqwr wklv od|hu fdqqrw
eh pruh wkdq wkh pd{lpdo qxpehu ri wud|v ri froru & rq dq| od|hu1 Wkh
Qrwh wkdw +6143, dqg +6144, hvwdeolvk wkh lghqwlw|
&
cc
&
&
dvvljqphqw frqvwudlqwv +6146,0+6147, dffrxqw iru wkh shupxwdwlrq ri wud|v/
l1h1/
hdfk wud| fdq wdnh rqo| rqh srvlwlrq lq d qhz rughu ri wud|v dqg hdfk qhz
srvlwlrq fdq eh oohg rqo| e| rqh wud|1 Fhuwdlq shupxwdwlrqv +lq ghshqghqfh
rq
7
, fdq eh h{foxghg d sulrul e| +6148,1
Lq vrph vlwxdwlrqv zkhq wkh glhuhqfh ehwzhhq wkh qxpehu ri wud|v ri glhuhqw
rughuv lv yhu| elj lw pd| qrw eh dgylvdeoh wr plqlpl}h mxvw wkh pd{lpxp
qxpehu ri wud|v ri wklv vhw ri rughuv irxqg rq d vlqjoh od|hu1 Lqvwhdg lw lv pruh
h!flhqw wr plqlpl}h wkh wrwdo dprxqw ri rxwsxw f|fohv1 Zh wuhdw wklv dssurdfk
lq wkh rswlpl}dwlrq sureohp ESVS lqwurgxfhg ehorz1
61515 Dq rswlpl}dwlrq yhuvlrq ri ESVS
Wkh remhfwlyh ixqfwlrq zlfk fruuhvsrqgv wr +61;, lv=
[
4?
&
g
4@
' ,'cc
3 [[ 4
C n ' ' ( B D
u
[
4? &
&,
Xvlqj wkh qhz yduldeohv
&,
&
+61<,/ zh jhw=
g
'
+614:,
&
vxemhfw wr +6145,0+6149,1
Dv rqh fdq vhh/ ESVS2 dqg ESVS kdyh ESVS dv d nhuqho1 Xqiruwxqdwho|
wkh sro|khgurq ri ESVS2 lv qrw lqwhjudo1 Wkh iroorzlqj vhfwlrq lv ghyrwhg wr
wkh frpsoh{lw| ri ESVS2 1
;
Ilj1 61 Wkh frqwhqw ri wkh Urwdvwruh ehiruh glvwulexwlrq wud|v iurp vht1
7 Frpsoh{lw| Uhvxowv
Uhjduglqj wkh frpsoh{lw| ri ESVS2 zh fdq suryh wkh iroorzlqj wkhruhp1
Wkhruhp 4 Sureohp ESVS2 lv QS0frpsohwh1
Surri1 Zh surfhhg e| vkrzlqj wkdw ESVS2 fdq eh uhgxfhg wr wkh zhoo0nqrzq
QS 0frpsohwh 60VDW +60Vdwlvdelolw|,
sureohp1 Frqfhuqlqj wkh frpsoh{lw| lv0
vxhv ri wkh 60VDW sureohp zh uhihu wkh uhdghu wr ^48`1 Ehorz zh jlyh wkh
ghqlwlrq ri wkh Vdwlvdelolw| sureohp +^49`,1
Ghqlwlrq 4 Ohw f ' i%c %2c c % j eh d vhw ri ? Errohdq yduldeohv1 D olwhudo
?
lv hlwkhu d yduldeoh % ru lwv qhjdwlrq %7 D fodxvh 8 lv d glvmxqfwlrq ri
olwhudov1 Ohw irupxod 8 ' 8 a 82 a a 86 eh d frqmxqfwlrq ri 6 fodxvhv1
Wkh irupxod 8 lv vdwlvdeoh li dqg rqo| li wkhuh lv d wuxwk dvvljqphqw | G f $
ifc j/ zklfk vlpxowdqhrxvo| vdwlvhv doo fodxvhv 8 lq 8 1 Wkh Vdwlvdelolw|
sureohp lv wkh sureohp wr ghflgh zkhwkhu iru d jlyhq lqvwdqfh Efc 8 wkhuh lv
d wuxwk dvvljqphqw iru f wkdw vdwlvhv 8 1 Wkh 60VDW sureohp lv d uhvwulfwlrq
ri wkh Vdwlvdelolw| sureohp zkhuh hdfk fodxvh frqwdlqv h{dfwo| 6 olwhudov1 Wkh
60VDW sureohp lv vwloo QS0frpsohwh1
+
Iru dq duelwudu| lqvwdqfh
Efc 8 ri 60VDW
zh ghqh dq lqvwdqfh ri wkh vh0
txhqflqj sureohp ESVS2 / vxfk wkdw wkhuh h{lvwv d ihdvleoh shupxwdwlrq ri wkh
<
wud|v
&
B G ic c 4@
j $ ic c jc vdwlvi|lqj BE ' ', 7
3
C E&c , n [ [ (
4@
'cc g ,'cc u
' '
li dqg rqo| li wkhuh lv d wuxwk dvvljqphqw
Zh fkrrvh
&,
B
&,
4
D
zlwk
| G f $ ifc j vdwlvi|lqj 8
' dqg '  +wklv phdqv wkdw d wud| fdq pryh iruzdug dw
7
prvw rqh srvlwlrq,1 Wkh qxpehu ri od|huv lv
G' 2E6 n /
u
+714,
wkh qxpehu ri wud|v lv
G' 2?
u
/
+715,
dqg wkh qxpehu ri vhwv
V&
lv
G' 2? n 6 n 26?1
g
+716,
Vshflfdoo|/ zh kdyh
2? froruv & / &
f
8
/
u
/
rqh iru hdfk yduldeoh
6 froruv & rqh iru hdfk fodxvh 8 /
6? dgglwlrqdo froruv & dqg
6? dgglwlrqdo froruv & 7 1
%/
f8
f8
re^ frqvlvwv ri 2? vxevhtxhqw sduwv re^ ri wud|v hdfk/ l1h1/
re^ G' Ere^c re^2c c re^ c re^ nc re^ n2c c re^2 Hdfk re^ kdv 2E6 n 
wud|v/ l1h1/ re^ G' E^ c ^ 2c c ^ 2 n2 Qrz zh ghqh wkh vhwv V c l1h1/ wkh
froru iru hdfk wud| ri wkh vhtxhqfh re^ G
Wkh vhtxhqfh
?
c
?
c
?
?
c 6
u
&
wkh uvw dqg odvw wud|v ri
% / l1h1/
re^2 3 dqg re^2
dozd|v kdyh wkh froruv ri wkh yduldeoh
^2 3 c ^2
c
 5 V&f
^2 3 u c^2
c
+717,
c
c
u
5 V&u 1
+718,
43
Wkh froruv ri wkh
ri yduldeoh
%
26 wud|v lq ehwzhhq duh ghqhg ghshqglqj rq wkh rffxuuhqfh
lq wkh fodxvhv
5 8 ',
%
8
dv iroorzv=
^2
^2
2 5 V&8
c %
2 n 5 V&f8
+719,
c ^2 3 2 c^2 3 2 n 5 V f8
%7
5 8 ',
c 5 V&8
c c &
c &
+71:,
^2 3 2 c ^2 3 2 n 5 V f8
%
^2 2 c^2 2 n 5 V f8
c c Wkh ydoxhv ri wkh frvw ixqfwlrq
;A? 2c
' A=
c
;A? c
' A=
fc
&
^2 3 2 n 5 V f8
%
^2 2 c^2 2 n 5 V f8
% c %7 5* 8 ',
c ^2 3 2
c c &
c &
+71;,
E&c , G' i&c ,j dvG
&,
+zklfk uh hfwv wkh frqwhqw ri
wkh Urwdvwruh, duh ghqhg iru dq|
f
&
8
&
c,
c,
li
, 5 ic u
j
hovh
li
, ' 2 
hovh
c ; 5 ic c ?j
+71<,
c ; 5 ic c 6j
+7143,
%
f8 c f8
c u ' fc ;ic c ,j
&
c,
&
c,
&
+7144,
c,
Ilj1 6 looxvwudwhv wkhvh frh!flhqwv iru h{dpsoh zlwk
? ' dqg 6 ' 21 Lq wkh
uhpdlqlqj sduw ri wkh surri zh vkrz wkdw d ihdvleoh shupxwdwlrq ri wkh wud|v
iurp
re^ zlwk
&
4@
4@
'cc g ,'cc u
h{lvwv li dqg rqo| li
3
C E&c , n [' [' (
8
lv vdwlvdeoh/
l1h1/
ifc j wkdw vdwlvhv hdfk fodxvh lq 8 1
Iluvw/ zh dvvxph wkdw
8
&,
B
&,
4
D
wkhuh lv d wuxwk dvvljqphqw
|Gf$
lv vdwlvdeoh1 Zh vkrz wkdw wkhuh h{lvwv d ihdvleoh
shupxwdwlrq ri wud|v zlwk qr pruh wkdq 6 wud|v ri wkh vdph froru rq dq|
44
od|hu1 Uhfdoo wkdw=
iru hdfk froru
&
f
zh kdyh douhdg| h{dfwo| wkuhh wud|v rq wkh od|huv
2c c wzr wud|v rq wkh od|huv c u
re^2 >
iru hdfk froru
lq
re^>
&
8
u
/ rqh wud| lq re^23
zh kdyh rqh wud| rq od|hu
2c c 2  dqg h{dfwo| wkuhh wud|v
f8
f8
u
Lw kdv wr eh vhqw wr od|hu

u
re^2 31 Wklv wud| kdv wkh froru &
u
 douhdg| frqwdlq wzr wud|v ri froru &
f
 dqg
dqg fdq dffrpprgdwh rqo| rqh
dgglwlrqdo wud| hdfk1 Wkhuhiruh/ wkh vhfrqg wud| ri froru
re^2
f
1
ru kdv wr uhpdlq rq wkh uvw od|hu/ ehfdxvh
doo rwkhu od|huv duh douhdg| rffxslhg e| wkuhh wud|v ri wklv froru1 Od|huv
ri
dqg rqh wud| lq
& c & 7 zh kdyh dw prvw wzr wud|v lq re^>
iru hdfk froru & rqo| wzr wud|v h{lvw lq re^1
iru hdfk froru
Qrz frqvlghu wkh uvw wud| ri vxevhtxhqfh
u
&
f
wkh uvw wud|
kdv wr eh vhqw wr wkh od|hu qrw xvhg e| wkh uvw wud|1 Wklv zloo
eh grqh e| prylqj wkh wud|v wkh plqlpdo glvwdqfh +l1h1/ wr wkh uvw srvvleoh
od|hu,/ vxfk wkdw
BEre^ ' re^ Wkdw phdqv zh fdq glvfxvv hdfk vxevhtxhqfh
lqghshqghqwo|1 Zh zloo xvh wklv dowhuqdwlrq wr pds wkh wuxwk dvvljqphqw rqwr
B=
;A ^ :$ ^
AAA 2   2  
? ^ :$ ^2   c  % :$  ', A 2 
AAA ^2  :$ ^2 
= ^2 :$ ^2 c  ;A ^ :$ ^
AAA 2  2 
? ^ :$ ^2  c  % :$ f ', A 2
AA ^2 :$ ^2
A= ^2  :$ ^2  c  wkh shupxwdwlrq
|
3 c
B
3 c
B
3 c
3 c 3
3 c u
c
c
c
|
c
B
+7145,
u
c
B
u
3 c u
B
B
u3
u3
u
c 3
c u
B
c u
3 c
B
3 c
+7146,
u
| dvvljqv  wr % / wkhq iurp +7145, wkh uvw wud| ri re^2 3 pryhv
dqg doo rwkhu wud|v lq re^2 3 pryh rqh od|hu xs +h{fhsw
iru wkh odvw rqh zklfk vwd|v rq wkh odvw od|hu,1 Doo wud|v ri re^2 nhhs wkhlu
srvlwlrq1 Rwkhuzlvh/ lw iroorzv iurp +7146, wkdw li | dvvljqv f wr % wkhq doo
wud|v iurp re^2 3 nhhs wkhlu srvlwlrqv dqg wkh uvw wud| ri re^2 pryhv wr wkh
od|hu 1 Doo rwkhu wud|v lq re^2 pryh rqh od|hu xs +h{fhsw iru wkh odvw
Lq wklv zd|/ li
wr od|hu
u
/
u
rqh zklfk vwd|v rq wkh odvw od|hu,1
, zlwk 7 ru pruh wud|v7 ri wkh vdph froru1 Ohw
xv uvw glvfxvv wkh froru1 Lw fdqqrw eh rqh ri &
c & c & vlqfh wkhuh duh dw
Dvvxph wkhuh zrxog eh d od|hu
f8
45
f8
u
prvw wzr ri wkrvh dqg
&,
lv }hur iru wkhp1 Zlwkrxw orvv ri jhqhudolw| zh
,
mV ,8 m ' / 8
pxvw eh  dqg ehfdxvh ri +7143, lw iroorzv wkdw , ' 2 1 Qrz frqvlghu rqh
ri wkh 6 wud|v1 Iurp +719, dqg +71:, zh nqrz wkdw V 8 i^2 2 c ^2 3 2 j1 Zh
,
&
dvvxph wkdw wkhuh duh 7 wud|v ri froru
8
rq od|hu 1 Vlqfh
&
c &
&
c,
c glvwlqjxlvk wzr fdvhv=
Fdvh 4=
EeS % 5 8 a ^
B
2 5 V&,8 ',
2c2 :$ ^2c2 3
Ee % :$| f
vlqfh , ' 2  ',
^2
+7147,
c +7148,
Fdvh 5=
5 V&,8 ',EeS %7 5 8 a ^23c2 :$B ^23c2 3
Ee2 %7 :$| f
vlqfh , ' 2  ',
^2 3 2
+7149,
c Wkhuhiruh/ lq erwk fdvhv wkh wuxwk ydoxh ri wkh olwhudo ri
+714:,
%
lq
8
lv idovh/ vr
8
frqwdlqv rqh idovh olwhudo1 Wkh vdph uhdvrqlqj krogv iru wkh rwkhu wzr wud|v1
Wkxv/
8
frqwdlqv wkuhh idovh olwhudov dqg lv wkhuhiruh idovh lwvhoi1 Wklv lv d
frqwudglfwlrq wr wkh suhfrqglwlrq wkdw
| vdwlvhv Efc 8 1
Efc 8 lv xqvdwlvdeoh1
B wkhuh h{lvwv dw ohdvw rqh froru
Iru wkh plvvlqj gluhfwlrq ri wkh surri/ zh dvvxph wkdw
Rxu jrdo lv wr suryh wkdw iru dq| shupxwdwlrq
iru zklfk 7 wud|v duh orfdwhg rq wkh vdph od|hu1 Eduulqj wulyldo fdvhv/ wkdw zloo
eh froru
&
8
1
Frqvlghu wkh shupxwdwlrqv/ zkhuh
BE^2  , 4L_ c
u
zlwk
2,
u

, ' c l1h1/ zkhq wkh uvw wud| ri d vxevhtxhqfh 2 lv qrw pryhg wr wkh
uvw ru odvw0exw0rqh od|hu1 Ehfdxvh ri +71<, f ' / od|hu , krogv irxu wud|v
ri wkh froru & 1 Wkhuhiruh zh mxvw qhhg wr frqvlghu wkh uhpdlqlqj fdvhv/ l1h1/
ru
u
&
c,
f
wkh uvw wud| pryhg wr wkh uvw ru wr wkh odvw0exw0rqh od|hu1
Zlwk wkh vdph uhdvrqlqj zh fdq dvvxph wkdw
rqo| ghdo zlwk fdvhv zkhuh
BE^2   4L_ c
u
dqg
BE^2 3   4L_ c
u
1 Vr zh
BE^2 3   4L_ u
+714;,
BE^2 3   4L_ u
+714<,
c
ru
BE^2   4L_ c
u
dqg
c
46
;A? 
A= f
|
Ohw xv ghqh d wuxwk dvvljqphqw
%
|B
:$
B
e|
BE^2   4L_ li BE^2   4L_ li
u
c
c
BE Ixuwkhupruh/ +614, whoov xv wkdw
+7153,
u

dv
'
7
e| frqvwuxfwlrq1
Efc 8 lv xqvdwlvdeoh e| dvvxpswlrq/ wkhuh pxvw eh vrph fodxvh 8
Vlqfh
|1
zklfk lv qrw vdwlvhg e|
Fdvh 4= 8
B
%1
frqwdlqv d qrq0qhjdwhg olwhudo
BE^2   4L_ dqg
iurp +714;, wkdw B E^2 3   4L_ 1 Ehfdxvh ri BE^2  ^2   f 4L_ / vr BE^2  ^2  n 2 vlqfh BE& : & 2/ l1h1/ wkh vwdfnhu iudph
oliwhg wkh wud| ^2  dw ohdvw iru 2 srvlwlrqv1 Wkhuhiruh/ B E^2 ' ^2 
iru 2 & / hvshfldoo| iru & ' 2 1 Iurp +719, zh nqrz wkdw ^2 2 5 V 8 /
khqfh wkhuh lv rqh dgglwlrqdo wud| ri froru & lq od|hu 2 1
%
Wkhq
:$|B
f/
vr iurp +7153, zh nqrz wkdw
u
u
c
c
u
c
c
c
u
c
u
c
c&
u
c&
c &
8
Fdvh 5= 8
frqwdlqv d qhjdwhg olwhudo
%7 1
% :$ B / vr iurp +7153, zh nqrz wkdw BE^2   4L_ dqg iurp +714<,
wkdw B E^2 3   4L_ 1 Dv lq wkh uvw fdvh zh frqfoxgh wkdw BE^2 3  ^2 3  n 2 dqg wkhuhiruh/ lw iroorzv wkdw BE^2 3 2 ' ^2 3 2  2  4L_ 1 Vlqfh +71:, ^2 3 2 5 V 8 wkhuh lv dq dgglwlrqdo wud| ri froru &
rq od|hu 2 1
Wkhq
|
c
c
u
u
c 2  dqg 2 3
c&
8
frqwdlqv irxu wud|v ri froru
'
&
8
c c
c 8
&
8
Khqfh/ iru hdfk ri wkh wkuhh olwhudov ri
od|hu
u
c
u
& rq
od|hu 2 
8
wkhuh lv rqh wud| ri froru
dffruglqj wr +7143,1 Wkhuhiruh/
wrwdo dqg wkh surri lv frpsohwh1
Zh looxvwudwh Wkhruhp 4 zlwk wkh iroorzlqj h{dpsoh1
H{dpsoh 4 Vxssrvh zh kdyh wkh iroorzlqj lqvwdqfh ri 60VDW sureohp= 8 '
E% b %2 b %E7% b %2 b %7c l1h1/ ? ' dqg 6 ' 2 Qrz zh ghqh doo gdwd
qhhghg iru frqvwuxfwlqj wkh vhtxhqfh re^1 E| +714,0+716, zh rewdlq ' Sc
' S/ dqg wkh qxpehu ri vhwv V lv ' 2fc l1h1/
& / & / ' c 2c >
& / ' c 2(
& / & 7 / ' c 2c / ' c 2>
u
g
f
8
f8
&
g
u
f8
Ilj1 6 vkrzv wkh frqwhqw ri wkh Urwdvwruh zlwk uhvshfw wr irupxodv +71<, dqg
+7143, ehiruh wkh wud|v iurp re^ duh glvwulexwhg lq1 Ilj1 7 glvsod|v wkh vhtxhqfh
re^ ' Ere^c re^2c c re^S1 Lq dgglwlrq/ wklv slfwxuh looxvwudwhv wkh glhuhqw
47
dvvljqphqwv/ h1j1/ iru % / ghvfulehg e| irupxodv +7145, dqg +7146, dqg wkh
vxevhtxhqw glvwulexwlrq rq wkh od|huv ri wkh Urwdvwruh1 Vlplodu wudqvirupdwlrq
zloo dsso| wr wkh vhtxhqfhv re^ c re^e c re^D c re^S +wkh uvw wzr fruuhvsrqg wr
%2/ wkh rwkhuv wr %,1
8 Qxphulfdo Whvwv
Wr lqyhvwljdwh wkh ehkdylru ri wkh prghov ESVS2 dqg ESVS vhyhudo qxphulfdo
h{shulphqwv kdyh ehhq fduulhg rxw1 Dw uvw/ zh zhuh lqwhuhvwhg lq nqrzlqj
zklfk prgho surgxfhv d vroxwlrq zlwk plqlpdo qxpehu ri rxwsxw f|fohv iru wkh
Urwdvwruh1 Lq erwk prghov/
&
duh wkh yduldeohv frqqhfwhg wr rxwsxw f|fohv1
Ilj1 71 Fkdqjhv lq wkh vhtxhqfh diwhu dvvljqlqj d ydoxh wr {
48
S ' Wkh wrwdo qxpehu ri rxwsxw f|fohv lv fdofxodwhg dv wkh vxp ryhu doo wkhvh
yduldeohv=
&
g
&1
Wkh vhfrqg srlqw zh duh lqwhuhvwhg lq lv wkh dyhudjh FSX
wlph qhhghg1
Frpsxwdwlrqdo h{shulphqwv zlwk udqgrpo| jhqhudwhg h{dpsohv ri wkh vhwv
V&
zhuh fduulhg rxw xvlqj LORJ*v RSO0vwxglr ^4:` zlwk wkh iroorzlqj lqsxw gdwd=
' bff lv wrwdo qxpehu ri wud|v>
' Sf lv d qxpehu ri nqrzq wud|v>
' D>
' 2D>
' dc o
wlphv wr vroyh d sureohp lq rughu wr glvwulexwh doo wud|v
Lw qhhgv *
dprqj wkh od|huv ri wkh Urwdvwruh +hdfk wlph rqo| wud|v duh dydlodeoh/
qh{w wud|v ehfrph nqrzq rqo| diwhu glvwulexwlrq ri wkh uvw wud|v,1
Wkhq vhwv V zhuh jhqhudwhg1 Iru h{dpsoh/ li ' ec ' ./ wkhq
u
g
o
7
u
p
g
g
&
wkh jhqhudwhg vhwv frxog eh=
V ' ic ejc
V2 ' i>jc
V ' i2c Dc Sc .jc
Ve ' ij
Ilj1 81 Wkh uxqqlqj wlph yhuvxv qxpehu ri vwdfnhu iudphv1
c whq uxqv zhuh pdgh +hdfk rqh vwduwlqj zlwk dq hpsw|
l1h1/ ' f ;i&c ,j, iru glhuhqw lqsxwv V 1 Iljxuhv 8 dqg 9
Iru hdfk ydoxh
Urwdvwruh/
7
&,
&
vkrz wkh dyhudjh ydoxhv ri FSX wlph +lq vhfrqgv, dqg wkh qxpehu ri rxwsxw
f|fohv/ uhvshfwlyho|1
49
Ilj1 91 Wkh qxpehu ri rxwsxw f|fohv yhuvxv wkh qxpehu ri vwdfnhu iudphv1
Ilj1 :1 Wkh lqwhjudolw| jds yhuvxv wkh oolqj ri wkh Urwdvwruh iru glhuhqw qxpehu
ri vwdnhu iudphv +VI,1
Lw lv reylrxv wkdw ESVS jlyhv xv d ehwwhu ydoxh iru wkh qxpehu ri rxwsxw f|fohv
+zklfk zdv h{shfwhg/ ehfdxvh wkh remhfwlyh +614:, ri ESVS lv wr plqlpl}h
wkh qxpehu ri rxwsxw f|fohv,1 Exw dw wkh vdph wlph/ iru vrph h{dpsohv/ wkh
dyhudjh uxqqlqj wlph lv yhu| odujh1 Dqdorjrxv uhvxowv zhuh rewdlqhg iru ydulrxv
c c dqg Wkh prgho vkrzv wkh zruvw uxqqlqj wlph zkhq
' dc o Zkdw frxog eh wkh uhdvrq iru wklvB Wr dqvzhu wkdw zh lqyhvwljdwhg
ydoxhv ri
u
g
7
7
4:
krz wkh lqwhjudolw| jds
{ ' 5 5 5

U
u
U
{ +lq shufhqwv,
ffI
ghshqghg rq wkh ghjuhh ri oolqj ri wkh Urwdvwruh +vhh Ilj1 :, zlwk ydulrxv
7
iru ESVS 1 Rq dyhudjh/ rqh revhuyhv wkdw
oov +
&,
{ ghfuhdvhv zkhq wkh Urwdvwruh
ehfrphv odujhu,1 Wklv lv h{sodlqhg e| wkh idfw wkdw wkh ihdvleoh uhjlrq
ehfrphv vpdoohu/ dqg wkhuhiruh/ wkhuh duh ohvv srvvleoh frpelqdwlrqv ri wkh
elqdu| yduldeohv
B
1
Dv d frqvhtxhqfh ri wklv/ wkh qxpehu ri dfwlyh qrghv lq
wkh Eudqfk0dqg0Erxqg dojrulwkp ehfrphv vpdoohu/ zklfk lq wxuq ghfuhdvhv
wkh uxqqlqj wlph1 Vr/ zh frqfoxgh wkdw ESVS lv ehwwhu lq xvh zkhq wkh
Urwdvwruh lv qrw hpsw|1 Krzhyhu/ lq sudfwlfdo vlwxdwlrqv wklv kdsshqv yhu|
vhogrp1 Lq vrph uduh fdvhv/ zkhq wkh Urwdvwruh lv hpsw|/ zh fdq oo lw xvlqj
ESVS2 / dqg frqwlqxh zlwk ESVS 1
Lq dgglwlrq/ zh revhuyh wkdw lw lv qrw xvhixo wr kdyh pruh wkdq 8 vwdfnhu iudphv
ehfdxvh wklv grhv qrw ohdg wr d vpdoohu qxpehu ri rxwsxw f|fohv1 Wklv idfw zdv
dovr frquphg iru glhuhqw lqsxw vhtxhqfhv1
9 Vxppdu| ) Frqfoxvlrqv
Lq wklv sdshu zh kdyh frqvlghuhg wkh ESVS zklfk dsshduv lq pdq| dssol0
fdwlrqv ri vwrudjh v|vwhpv1 Zh lqwurgxfhg wkuhh glhuhqw w|shv ri wkh ESVS
dqg suhvhqwhg wkhlu rswlpl}dwlrq prghov1 ESVS lv sro|qrpldo/ ehfdxvh lw lv
dsshduv dv dq dvvljqphqw sureohp1 Dowkrxjk ESVS2 dqg ESVS kdyh dq dv0
vljqphqw sureohp nhuqhov/ ESVS2 lv vkrzq wr eh QS0kdug1 Wkh frpsoh{lw|
vwdwxv ri ESVS lv xqnqrzq1 Lq vrph fdvhv zkhq zh kdyh dq dgglwlrqdo nqrzo0
hgjh rq wkh lqsxw vhtxhqfh/ wkh sureohp vhhpv wr ehfrph hdvlhu wr vroyh1 Wkh
gluhfwlrq iru wkh ixwxuh zrun lv wr uhirupxodwh wkh sureohp lq fdvh zh kdyh ixoo
nqrzohgjh rq gdwd dqg wr lqyhvwljdwh lwv frpsoh{lw| vwdwxv iru vrph sduwlfxodu
fdvhv1
Uhihuhqfhv
^4` W1 D1 Fluldql/ V1 Jolr}}l/ H1 O1 Mrkqvrq/ U1 Wdghl/ Rshudwlrqdo Uhvhdufk lq
Lqgxvwu|/ Pdfploodq/ Krxqgploov/ Edvlqjvwrnh/ XN/ 4<<<1
^5` V1 F1 Judyhv/ D1 K1 J1 Ulqqrr| Ndq/ S1 K1 ]lsnlq/ Orjlvwlfv ri Surgxfwlrq dqg
Lqyhqwru|/ Hovhylhu/ Dpvwhugdp/ Wkh Qhwkhuodqgv/ 4<<61
4;
^6` F1 I1 Gdjdq}r/ Orjlvwlfv V|vwhp Dqdo|vlv/ 5qg Hglwlrq/ Vsulqjhu/ Ehuolq/
Khlghoehuj/ Jhupdq|/ 4<<91
^7` M1 Eudpho/ G1 Vlpfkl0Ohyl/ Wkh Orjlf ri Orjlvwlfv/ Vsulqjhu/ Qhz \run/ XVD/
4<<:1
^8` K1 Vwdgwohu/ Olqhdu dqg Pl{hg Lqwhjhu Surjudpplqj/ lq= K1 Vwdgwohu/ F1 Nlojhu
+Hgv1,/ Vxsso| Fkdlq Pdqdjhphqw dqg Dgydqfhg Sodqqlqj/ Vsulqjhu/ Ehuolq/
Ghxwvfkodqg/ 5333/ ss1 6686771
^9` K1 I1 Ohh/ Shuirpdqfh dqdo|vlv iru dxwrpdwhg vwrudjh dqg uhwulhydo v|vwhpv/
LLH Wudqvdfwlrqv 5< +4<<:, 485;1
^:` K1 I1 Ohh/ V1 N1 Vfkdhihu/ Vhtxhqflqj phwkrgv iru dxwrpdwhg vwrudjh dqg
uhwulhydo v|vwhpv zlwk ghglfdwhg vwrudjh/ Frpsxwhuv dqg Lqgxvwuldo Hqjlqhhulqj
65 +4<<:, 6846951
^;` M1 Uhwkpdqq/ H1 Zdqnh/ Vwrudjh frqwuroohg sloh0xs v|vwhp/ wkhruhwlfdo
irxqgdwlrqv/ Hxurshdq Mrxuqdo ri Rshudwlrqdo Uhvhdufk 436 +4<<:, 8488631
^<` G1 S1 Mdfrev/ M1 F1 Shfn/ M1 V1 Gdylv/ D vlpsoh khxulvwlf iru pd{lpl}lqj vhuylfh
ri fdurxvho vwrudjh/ Frpsxwhuv dqg Rshudwlrqv Uhvhdufk 5: +5333, 468446891
^43` URWDVWRUH/
sve1
JpeK/
Slupdvhqv/
kwws=22zzz1sve0jpek1gh2vfulswv2hq2lqgh{1sks1
Jhupdq|/
^44` D1 Erurglq/ U1 Ho0\dqly/ Rqolqh Frpsxwdwlrq dqg Frpshwlwlyh Dqdo|vlv/
Fdpeulgjh Xqlyhuvlw| Suhvv/ Qhz \run/ XVD/ 4<<;1
^45` K1 Z1 Kdpdfkhu/ P1 F1 Pÿoohu/ V1 Qlfnho/ Prghoolqj Urwdvwruh 0 d kljko|
sdudooho/ vkruw whup vwrudjh v|vwhp/ lq= Rshudwlrqv Uhvhdufk Surfhhglqjv/
Vsulqjhu Yhuodj/ Ehuolq/ 4<<;/ ss1 8468541
^46` J1 O1 Qhpkdxvhu/ O1 D1 Zrovh|/ Lqwhjhu dqg Frpelqdwruldo Rswlpl}dwlrq/ Zloh|/
Qhz \run/ XVD/ 4<;;1
^47` N1 K1 Urvhq/ Kdqgerrn ri Glvfuhwh dqg Frpelqdwruldo Pdwkhpdwlfv/ FUF
Suhvv/ Erfd Udwrq/ XVD/ 53331
^48` P1 U1 Jduh|/ G1 V1 Mrkqvrq/ Frpsxwhuv dqg Lqwudfwdelolw| 0 D Jxlgh wr wkh
Wkhru| ri QS Frpsohwhqhvv/ 55qg Hglwlrq/ Iuhhpdq/ Qhz \run/ XVD/ 53331
^49` F1 K1 Sdsdglplwulrx/ N1 Vwhljolw}/ Frpelqdwruldo Rswlpl}dwlrq= Dojrulwkpv dqg
Frpsoh{lw|/ GRYHU/ Plqhrod/ XVD/ 4<<;1
^4:` LORJ Rswlpl}dwlrq Vxlwh/ LORJ/ Lqf1/ Lqfolqh Yloodjh/ Qhydgd/
kwws=22zzz1lorj1frp2surgxfwv2rswlpl}dwlrq +5333,1
4<
Published reports of the
Fraunhofer ITWM
The PDF-files of the following reports
are available under:
www.itwm.fraunhofer.de/zentral/
berichte.html
1. D. Hietel, K. Steiner, J. Struckmeier
A Finite - Volume Particle Method for
Compressible Flows
We derive a new class of particle methods for conser vation laws, which are based on numerical flux
functions to model the interac tions between moving
particles. The derivation is similar to that of classical
Finite-Volume methods; except that the fixed grid
structure in the Finite-Volume method is substituted
by so-called mass packets of par ticles. We give some
numerical results on a shock wave solution for Burgers
equation as well as the well-known one-dimensional
shock tube problem.
(19 pages, 1998)
2. M. Feldmann, S. Seibold
Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothesis Testing
In this paper, a combined approach to damage diagnosis of rotors is proposed. The intention is to employ
signal-based as well as model-based procedures for an
improved detection of size and location of the damage.
In a first step, Hilbert transform signal processing techniques allow for a computation of the signal envelope
and the instantaneous frequency, so that various types
of non-linearities due to a damage may be identified
and classified based on measured response data. In a
second step, a multi-hypothesis bank of Kalman Filters
is employed for the detection of the size and location
of the damage based on the information of the type
of damage provided by the results of the Hilbert transform.
Keywords: Hilbert transform, damage diagnosis, Kalman filtering, non-linear dynamics
(23 pages, 1998)
3. Y. Ben-Haim, S. Seibold
Robust Reliability of Diagnostic MultiHypothesis Algorithms: Application to
Rotating Machinery
Damage diagnosis based on a bank of Kalman filters, each one conditioned on a specific hypothesized
system condition, is a well recognized and powerful
diagnostic tool. This multi-hypothesis approach can
be applied to a wide range of damage conditions. In
this paper, we will focus on the diagnosis of cracks in
rotating machinery. The question we address is: how to
optimize the multi-hypothesis algorithm with respect
to the uncertainty of the spatial form and location of
cracks and their resulting dynamic effects. First, we
formulate a measure of the reliability of the diagnostic algorithm, and then we discuss modifications of
the diagnostic algorithm for the maximization of the
reliability. The reliability of a diagnostic algorithm is
measured by the amount of uncer tainty consistent with
no-failure of the diagnosis. Uncer tainty is quantitatively
represented with convex models.
Keywords: Robust reliability, convex models, Kalman
filtering, multi-hypothesis diagnosis, rotating machinery,
crack diagnosis
(24 pages, 1998)
4. F.-Th. Lentes, N. Siedow
Three-dimensional Radiative Heat Transfer
in Glass Cooling Processes
For the numerical simulation of 3D radiative heat transfer in glasses and glass melts, practically applicable
mathematical methods are needed to handle such
problems optimal using workstation class computers.
Since the exact solution would require super-computer
capabilities we concentrate on approximate solutions with a high degree of accuracy. The following
approaches are studied: 3D diffusion approximations
and 3D ray-tracing methods.
(23 pages, 1998)
5. A. Klar, R. Wegener
A hierarchy of models for multilane
vehicular traffic
Part I: Modeling
In the present paper multilane models for vehicular
traffic are considered. A microscopic multilane model
based on reaction thresholds is developed. Based on
this model an Enskog like kinetic model is developed.
In particular, care is taken to incorporate the correlations between the vehicles. From the kinetic model a
fluid dynamic model is derived. The macroscopic coefficients are deduced from the underlying kinetic model.
Numerical simulations are presented for all three levels
of description in [10]. Moreover, a comparison of the
results is given there.
(23 pages, 1998)
Part II: Numerical and stochastic
investigations
In this paper the work presented in [6] is continued.
The present paper contains detailed numerical investigations of the models developed there. A numerical
method to treat the kinetic equations obtained in [6]
are presented and results of the simulations are shown.
Moreover, the stochastic correlation model used in [6]
is described and investigated in more detail.
(17 pages, 1998)
6. A. Klar, N. Siedow
Boundary Layers and Domain Decomposition for Radiative Heat Transfer and Dif fusion Equations: Applications to Glass Manufac turing Processes
In this paper domain decomposition methods for
radiative transfer problems including conductive heat
transfer are treated. The paper focuses on semi-transparent materials, like glass, and the associated conditions at the interface between the materials. Using
asymptotic analysis we derive conditions for the coupling of the radiative transfer equations and a diffusion
approximation. Several test cases are treated and a
problem appearing in glass manufacturing processes is
computed. The results clearly show the advantages of a
domain decomposition approach. Accuracy equivalent
to the solution of the global radiative transfer solution is achieved, whereas computation time is strongly
reduced.
(24 pages, 1998)
7. I. Choquet
Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium
A new approach is proposed to model and simulate
numerically heterogeneous catalysis in rarefied gas
flows. It is developed to satisfy all together the following points:
1) describe the gas phase at the microscopic scale, as
required in rarefied flows,
2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,
3) reproduce on average macroscopic laws correlated
with experimental results and
4) derive analytic models in a systematic and exact
way. The problem is stated in the general framework
of a non static flow in the vicinity of a catalytic and
non porous surface (without aging). It is shown that
the exact and systematic resolution method based
on the Laplace transform, introduced previously by
the author to model collisions in the gas phase, can
be extended to the present problem. The proposed
approach is applied to the modelling of the EleyRideal
and LangmuirHinshelwood recombinations, assuming
that the coverage is locally at equilibrium. The models
are developed considering one atomic species and
extended to the general case of several atomic species.
Numerical calculations show that the models derived in
this way reproduce with accuracy behaviors observed
experimentally.
(24 pages, 1998)
8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images
A new method of determining some characteristics
of binary images is proposed based on a special linear
filtering. This technique enables the estimation of the
area fraction, the specific line length, and the specific
integral of curvature. Furthermore, the specific length
of the total projection is obtained, which gives detailed
information about the texture of the image. The
influence of lateral and directional resolution depending on the size of the applied filter mask is discussed in
detail. The technique includes a method of increasing
direc tional resolution for texture analysis while keeping
lateral resolution as high as possible.
(17 pages, 1998)
9. J. Orlik
Homogenization for viscoelasticity of the
integral type with aging and shrinkage
A multiphase composite with periodic distributed
inclusions with a smooth boundary is considered in this
contribution. The composite component materials are
supposed to be linear viscoelastic and aging (of the
nonconvolution integral type, for which the Laplace
transform with respect to time is not effectively applicable) and are subjected to isotropic shrinkage. The
free shrinkage deformation can be considered as a fictitious temperature deformation in the behavior law. The
procedure presented in this paper proposes a way to
determine average (effective homogenized) viscoelastic
and shrinkage (temperature) composite properties and
the homogenized stress field from known properties
of the components. This is done by the extension of
the as ymptotic homogenization technique known for
pure elastic nonhomogeneous bodies to the nonhomogeneous thermoviscoelasticity of the integral noncon-
volution type. Up to now, the homogenization theory
has not covered viscoelasticity of the integral type.
SanchezPalencia (1980), Francfort & Suquet (1987) (see
[2], [9]) have considered homogenization for viscoelasticity of the differential form and only up to the first
derivative order. The integralmodeled viscoelasticity
is more general then the differential one and includes
almost all known differential models. The homogenization procedure is based on the construction of an
asymptotic solution with respect to a period of the
composite struc ture. This reduces the original problem
to some auxiliary boundary value problems of elasticity and viscoelasticity on the unit periodic cell, of the
same type as the original non-homogeneous problem.
The existence and uniqueness results for such problems
were obtained for kernels satisfying some constrain
conditions. This is done by the extension of the Volterra
integral operator theory to the Volterra operators with
respect to the time, whose 1 kernels are space linear
operators for any fixed time variables. Some ideas of
such approach were proposed in [11] and [12], where
the Volterra operators with kernels depending additionally on parameter were considered. This manuscript
delivers results of the same nature for the case of the
spaceoperator kernels.
(20 pages, 1998)
10. J. Mohring
Helmholtz Resonators with Large Aperture
The lowest resonant frequency of a cavity resonator is usually approximated by the classical Helmholtz
formula. However, if the opening is rather large and
the front wall is narrow this formula is no longer valid.
Here we present a correction which is of third order
in the ratio of the diameters of aperture and cavity. In
addition to the high accuracy it allows to estimate the
damping due to radiation. The result is found by applying the method of matched asymptotic expansions. The
correction contains form factors describing the shapes
of opening and cavity. They are computed for a number of standard geometries. Results are compared with
numerical computations.
(21 pages, 1998)
11. H. W. Hamacher, A. Schöbel
On Center Cycles in Grid Graphs
Finding “good” cycles in graphs is a problem of great
interest in graph theory as well as in locational analysis. We show that the center and median problems are
NP hard in general graphs. This result holds both for
the variable cardinality case (i.e. all cycles of the graph
are considered) and the fixed cardinality case (i.e. only
cycles with a given cardinality p are feasible). Hence
it is of interest to investigate special cases where the
problem is solvable in polynomial time. In grid graphs,
the variable cardinality case is, for instance, trivially
solvable if the shape of the cycle can be chosen freely.
If the shape is fixed to be a rectangle one can analyze rectangles in grid graphs with, in sequence, fixed
dimension, fixed cardinality, and variable cardinality.
In all cases a complete charac terization of the optimal
cycles and closed form expressions of the optimal
objec tive values are given, yielding polynomial time
algorithms for all cases of center rectangle problems.
Finally, it is shown that center cycles can be chosen as
rectangles for small cardinalities such that the center
cycle problem in grid graphs is in these cases completely solved.
(15 pages, 1998)
12. H. W. Hamacher, K.-H. Küfer
Inverse radiation therapy planning a multiple objective optimisation approach
15. M. Junk, S. V. Raghurame Rao
A new discrete velocity method for NavierStokes equations
For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of
clinical radiation treatment planning to realize on the
one hand a high level dose of radiation in the cancer
tissue in order to obtain maximum tumor control. On
the other hand it is obvious that it is absolutely necessary to keep in the tissue outside the tumor, particularly
in organs at risk, the unavoidable radiation as low as
possible.
No doubt, these two objectives of treatment planning
- high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations compromising between overdosing the organs at risk and
underdosing the target volume.
Differing from the currently used time consuming
iterative approach, which measures deviation from an
ideal (non-achievable) treatment plan using recursively
trial-and-error weights for the organs of interest, we
go a new way trying to avoid a priori weight choices
and consider the treatment planning problem as a multiple objec tive linear programming problem: with each
organ of interest, target tissue as well as organs at risk,
we associate an objective function measuring the maximal deviation from the prescribed doses.
We build up a data base of relatively few efficient
solutions representing and approximating the variety
of Pareto solutions of the multiple objective linear
programming problem. This data base can be easily
scanned by physicians looking for an adequate treatment plan with the aid of an appropriate online tool.
(14 pages, 1999)
The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational
Fluid Dynamics, is explored. A new discrete velocity model for the numerical solution of Navier-Stokes
equations for incompressible fluid flow is presented by
combining both the approaches. The new scheme can
be interpreted as a pseudo-compressibility method and,
for a particular choice of parameters, this interpretation
carries over to the Lattice Boltzmann Method.
(20 pages, 1999)
13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images
This paper deals with the characterization of micro scopically heterogeneous, but macroscopically homogeneous spatial structures. A new method is presented
which is strictly based on integral-geometric formulae
such as Crofton’s intersection formulae and Hadwiger’s
recursive definition of the Euler number. The corresponding algorithms have clear advantages over other
techniques. As an example of application we consider
the analysis of spatial digital images produced by
means of Computer Assisted Tomography.
(20 pages, 1999)
14. M. Junk
On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes
A general approach to the construction of discrete
equilibrium distributions is presented. Such distribution
func tions can be used to set up Kinetic Schemes as
well as Lattice Boltzmann methods. The general principles are also applied to the construction of Chapman
Enskog distributions which are used in Kinetic Schemes
for compressible Navier-Stokes equations.
(24 pages, 1999)
16. H. Neunzert
Mathematics as a Key to Key Technologies
The main part of this paper will consist of examples,
how mathematics really helps to solve industrial problems; these examples are taken from our Institute for
Industrial Mathematics, from research in the Technomathematics group at my university, but also from
ECMI groups and a company called TecMath, which
originated 10 years ago from my university group and
has already a very successful history.
(39 pages (4 PDF-Files), 1999)
17. J. Ohser, K. Sandau
Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem
Wicksell’s corpuscle problem deals with the estimation of the size distribution of a population of particles,
all having the same shape, using a lower dimensional
sampling probe. This problem was originary formulated
for particle systems occurring in life sciences but its
solution is of actual and increasing interest in materials
science. From a mathematical point of view, Wicksell’s
problem is an inverse problem where the interesting size distribution is the unknown part of a Volterra
equation. The problem is often regarded ill-posed,
because the structure of the integrand implies unstable
numerical solutions. The accuracy of the numerical
solutions is considered here using the condition number, which allows to compare different numerical methods with different (equidistant) class sizes and which
indicates, as one result, that a finite section thickness
of the probe reduces the numerical problems. Furthermore, the relative error of estimation is computed
which can be split into two parts. One part consists
of the relative discretization error that increases for
increasing class size, and the second part is related
to the relative statistical error which increases with
decreasing class size. For both parts, upper bounds
can be given and the sum of them indicates an optimal
class width depending on some specific constants.
(18 pages, 1999)
18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel
Solving nonconvex planar location problems by finite dominating sets
It is well-known that some of the classical location
problems with polyhedral gauges can be solved in
polynomial time by finding a finite dominating set, i. e.
a finite set of candidates guaranteed to contain at least
one optimal location.
In this paper it is first established that this result holds
for a much larger class of problems than currently considered in the literature. The model for which this result
can be proven includes, for instance, location problems
with attraction and repulsion, and location-allocation
problems.
Next, it is shown that the approximation of general
gauges by polyhedral ones in the objective function of
our general model can be analyzed with regard to the
subsequent error in the optimal objec tive value. For
the approximation problem two different approaches
are described, the sandwich procedure and the greedy
algorithm. Both of these approaches lead - for fixed
epsilon - to polynomial approximation algorithms with
accuracy epsilon for solving the general model considered in this paper.
Keywords: Continuous Location, Polyhedral Gauges,
Finite Dominating Sets, Approximation, Sandwich Algo rithm, Greedy Algorithm
(19 pages, 2000)
19. A. Becker
A Review on Image Distortion Measures
Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “quality number” to an image. We distinguish between
mathematical distortion measures and those distortion
measures in-cooperating a priori knowledge about
the imaging devices ( e. g. satellite images), image processing algorithms or the human physiology. We will
consider representative examples of different kinds of
distortion measures and are going to discuss them.
Keywords: Distortion measure, human visual system
(26 pages, 2000)
20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn
Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem
We examine the feasibility polyhedron of the unca pacitated hub location problem (UHL) with multiple
allocation, which has applications in the fields of air
passenger and cargo transportation, telecommunication and postal delivery services. In particular we
determine the dimension and derive some classes of
facets of this polyhedron. We develop some general
rules about lifting facets from the uncapacitated facility
location (UFL) for UHL and projecting facets from UHL
to UFL. By applying these rules we get a new class of
facets for UHL which dominates the inequalities in the
original formulation. Thus we get a new formulation of
UHL whose constraints are all facet–defining. We show
its superior computational per formance by benchmarking it on a well known data set.
Keywords: integer programming, hub location, facility
location, valid inequalities, facets, branch and cut
(21 pages, 2000)
21. H. W. Hamacher, A. Schöbel
Design of Zone Tariff Systems in Public
Transpor tation
Given a public transportation system represented by its
stops and direct connections between stops, we consider two problems dealing with the prices for the customers: The fare problem in which subsets of stops are
already aggregated to zones and “good” tariffs have
to be found in the existing zone system. Closed form
solutions for the fare problem are presented for three
objective functions. In the zone problem the design
of the zones is part of the problem. This problem is NP
hard and we therefore propose three heuristics which
prove to be very successful in the redesign of one of
Germany’s transpor tation systems.
(30 pages, 2001)
22. D. Hietel, M. Junk, R. Keck, D. Teleaga:
The Finite-Volume-Particle Method for
Conservation Laws
In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is discretized
by restricting it to a discrete set of test functions. In
contrast to the usual Finite-Volume approach, the test
functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a
partition of unity with smooth and overlapping partition
functions (the particles), which can even move along
pre- scribed velocity fields. The information exchange
between particles is based on standard numerical flux
func tions. Geometrical information, similar to the surface area of the cell faces in the Finite-Volume Method
and the corresponding normal directions are given as
integral quantities of the partition functions. After a
brief derivation of the Finite-Volume-Particle Method,
this work focuses on the role of the geometric coeffi cients in the scheme.
(16 pages, 2001)
23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel
Location Software and Interface with GIS
and Supply Chain Management
The objective of this paper is to bridge the gap
between location theory and practice. To meet this
objective focus is given to the development of software capable of addressing the different needs of a
wide group of users. There is a very active community on location theory encompassing many research
fields such as operations research, computer science,
mathematics, engineering, geography, economics and
marketing. As a result, people working on facility location problems have a very diverse background and also
different needs regarding the soft ware to solve these
problems. For those interested in non-commercial
applications (e. g. students and researchers), the library
of location algorithms (LoLA can be of considerable
assistance. LoLA contains a collection of efficient algorithms for solving planar, network and discrete facility
location problems. In this paper, a detailed description
of the func tionality of LoLA is presented. In the fields
of geography and marketing, for instance, solving facility location problems requires using large amounts of
demographic data. Hence, members of these groups
(e. g. urban planners and sales managers) often work
with geographical information too s. To address the
specific needs of these users, LoLA was inked to a
geographical information system (GIS) and the details
of the combined functionality are described in the
paper. Finally, there is a wide group of prac titioners
who need to solve large problems and require special
purpose soft ware with a good data inter face. Many of
such users can be found, for example, in the area of
supply chain management (SCM). Logistics activities
involved in strategic SCM include, among others, facility location planning. In this paper, the development of
a commercial location soft ware tool is also described.
The too is embedded in the Advanced Planner and
Optimizer SCM software developed by SAP AG, Walldorf, Germany. The paper ends with some conclusions
and an outlook to future ac tivities.
Keywords: facility location, software development,
geographical information systems, supply chain management.
(48 pages, 2001)
24. H. W. Hamacher, S. A. Tjandra
Mathematical Modelling of Evacuation
Problems: A State of Art
This paper details models and algorithms which can
be applied to evacuation problems. While it concentrates on building evacuation many of the results are
applicable also to regional evacuation. All models
consider the time as main parameter, where the travel
time between components of the building is part of the
input and the overall evacuation time is the output. The
paper distinguishes between macroscopic and microscopic evacuation models both of which are able to
capture the evacuees’ movement over time.
Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not consider any individual behavior during the emergency
situation. These bounds can be used to analyze existing buildings or help in the design phase of planning a
building. Macroscopic approaches which are based on
dynamic network flow models (minimum cost dynamic
flow, maximum dynamic flow, universal maximum
flow, quickest path and quickest flow) are described. A
special feature of the presented approach is the fact,
that travel times of evacuees are not restricted to be
constant, but may be density dependent. Using multicriteria optimization priority regions and blockage due
to fire or smoke may be considered. It is shown how
the modelling can be done using time parameter either
as discrete or continuous parameter.
Microscopic models are able to model the individual
evacuee’s charac teristics and the interaction among
evacuees which influence their movement. Due to the
corresponding huge amount of data one uses simulation approaches. Some probabilistic laws for individual evacuee’s movement are presented. Moreover
ideas to model the evacuee’s movement using cellular
automata (CA) and resulting software are presented.
In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on building evacuation.
(44 pages, 2001)
25. J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson
equation
A Grid free method for solving the Poisson equation
is presented. This is an iterative method. The method
is based on the weighted least squares approximation
in which the Poisson equation is enforced to be satisfied in every iterations. The boundary conditions can
also be enforced in the iteration process. This is a local
approximation procedure. The Dirichlet, Neumann and
mixed boundary value problems on a unit square are
presented and the analytical solutions are compared
with the exact solutions. Both solutions matched perfectly.
Keywords: Poisson equation, Least squares method,
Grid free method
(19 pages, 2001)
26. T. Götz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier
Simulation of the fiber spinning process
To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air
the Lattice Boltzmann method is used. Simulations and
experiments for different process parameters and hole
configurations are compared and show a good agreement.
Keywords: Melt spinning, fiber model, Lattice
Bolt zmann, CFD
(19 pages, 2001)
27. A. Zemitis
On interaction of a liquid film with an
obstacle
In this paper mathematical models for liquid films
generated by impinging jets are discussed. Attention
is stressed to the interaction of the liquid film with
some obstacle. S. G. Taylor [Proc. R. Soc. London Ser.
A 253, 313 (1959)] found that the liquid film generated by impinging jets is very sensitive to properties
of the wire which was used as an obstacle. The aim of
this presentation is to propose a modification of the
Taylor’s model, which allows to simulate the film shape
in cases, when the angle between jets is different from
180°. Numerical results obtained by discussed models
give two different shapes of the liquid film similar as
in Taylors experiments. These two shapes depend on
the regime: either droplets are produced close to the
obstacle or not. The difference between two regimes
becomes larger if the angle between jets decreases.
Existence of such two regimes can be very essential for
some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.
Keywords: impinging jets, liquid film, models, numerical solution, shape
(22 pages, 2001)
28. I. Ginzburg, K. Steiner
Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids
The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice
Bolt zmann method in two and three dimensions. These
models combine the regularized Bingham model for
viscoplastic with a free-interface algorithm. The latter
is based on a modified immiscible lattice Boltzmann
model in which one species is the fluid and the other
one is considered as vacuum. The boundary conditions
at the curved liquid-vacuum interface are met without
any geometrical front reconstruc tion from a first-order
Chapman-Enskog expansion. The numerical results
obtained with these models are found in good agreement with available theoretical and numerical analysis.
Keywords: Generalized LBE, free-surface phenomena,
interface boundary conditions, filling processes, Bingham viscoplastic model, regularized models
(22 pages, 2001)
29. H. Neunzert
»Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann«
Vortrag anlässlich der Verleihung des Akademiepreises des Landes Rheinland-Pfalz am 21.11.2001
Was macht einen guten Hochschullehrer aus? Auf
diese Frage gibt es sicher viele verschiedene, fachbezogene Antworten, aber auch ein paar allgemeine
Gesichtspunkte: es bedarf der »Leidenschaft« für
die Forschung (Max Weber), aus der dann auch die
Begeisterung für die Lehre erwächst. Forschung und
Lehre gehören zusammen, um die Wissenschaft als
lebendiges Tun vermitteln zu können. Der Vortrag gibt
Beispiele dafür, wie in angewandter Mathematik Forschungsaufgaben aus praktischen Alltagsproblemstellungen erwachsen, die in die Lehre auf verschiedenen
Stufen (Gymnasium bis Graduier tenkolleg) einfließen;
er leitet damit auch zu einem aktuellen Forschungsgebiet, der Mehrskalenanalyse mit ihren vielfältigen Anwendungen in Bildverarbeitung, Materialentwicklung und Strömungsmechanik über, was aber nur
kurz gestreift wird. Mathematik erscheint hier als eine
moderne Schlüsseltechnologie, die aber auch enge
Beziehungen zu den Geistes- und Sozialwissenschaf ten
hat.
Keywords: Lehre, Forschung, angewandte Mathematik,
Mehr skalenanalyse, Strömungsmechanik
(18 pages, 2001)
30. J. Kuhnert, S. Tiwari
Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations
A Lagrangian particle scheme is applied to the projection method for the incompressible Navier-Stokes
equations. The approximation of spatial derivatives is
obtained by the weighted least squares method. The
pressure Poisson equation is solved by a local iterative
procedure with the help of the least squares method.
Numerical tests are performed for two dimensional
cases. The Couette flow, Poiseuelle flow, decaying
shear flow and the driven cavity flow are presented.
The numerical solutions are obtained for stationary as
well as instationary cases and are compared with the
analytical solutions for channel flows. Finally, the driven
cavity in a unit square is considered and the stationary
solution obtained from this scheme is compared with
that from the finite element method.
Keywords: Incompressible Navier-Stokes equations,
Meshfree method, Projection method, Particle scheme,
Least squares approximation
AMS subject classification: 76D05, 76M28
(25 pages, 2001)
31. R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption
or Income Streams
We consider some portfolio optimisation problems
where either the investor has a desire for an a priori
specified consumption stream or/and follows a deterministic pay in scheme while also trying to maximize
expected utility from final wealth. We derive explicit
closed form solutions for continuous and discrete monetary streams. The mathematical method used is classical stochastic control theory.
Keywords: Portfolio optimisation, stochastic control,
HJB equation, discretisation of control problems.
(23 pages, 2002)
32. M. Krekel
Optimal portfolios with a loan dependent
credit spread
If an investor borrows money he generally has to pay
higher interest rates than he would have received, if he
had put his funds on a savings account. The classical
model of continuous time portfolio optimisation ignores
this effect. Since there is obviously a connection between
the default probability and the total percentage of wealth,
which the investor is in debt, we study portfolio optimisation with a control dependent interest rate. Assuming a
logarithmic and a power utility function, respectively, we
prove explicit formulae of the optimal control.
Keywords: Portfolio optimisation, stochastic control,
HJB equation, credit spread, log utility, power utility,
non-linear wealth dynamics
(25 pages, 2002)
33. J. Ohser, W. Nagel, K. Schladitz
The Euler number of discretized sets - on
the choice of adjacency in homogeneous
lattices
Two approaches for determining the Euler-Poincaré
charac teristic of a set observed on lattice points are
considered in the context of image analysis { the integral geometric and the polyhedral approach. Information about the set is assumed to be available on lattice
points only. In order to retain properties of the Euler
number and to provide a good approximation of the
true Euler number of the original set in the Euclidean
space, the appropriate choice of adjacency in the lattice for the set and its background is crucial. Adjacencies are defined using tessellations of the whole space
into polyhedrons. In R 3 , two new 14 adjacencies
are introduced additionally to the well known 6 and
26 adjacencies. For the Euler number of a set and its
complement, a consistency relation holds. Each of the
pairs of adjacencies (14:1; 14:1), (14:2; 14:2), (6; 26),
and (26; 6) is shown to be a pair of complementary
adjacencies with respect to this relation. That is, the
approximations of the Euler numbers are consistent if
the set and its background (complement) are equipped
with this pair of adjacencies. Furthermore, sufficient
conditions for the correctness of the approximations
of the Euler number are given. The analysis of selected
microstruc tures and a simulation study illustrate how
the estimated Euler number depends on the chosen
adjacency. It also shows that there is not a uniquely
best pair of adjacencies with respect to the estimation
of the Euler number of a set in Euclidean space.
Keywords: image analysis, Euler number, neighborhod
relationships, cuboidal lattice
(32 pages, 2002)
34. I. Ginzburg, K. Steiner
Lattice Boltzmann Model for Free-Surface
flow and Its Application to Filling Process in
Casting
A generalized lattice Boltzmann model to simulate freesurface is constructed in both two and three dimensions. The proposed model satisfies the interfacial
boundary conditions accurately. A distinctive feature
of the model is that the collision processes is carried
out only on the points occupied partially or fully by the
fluid. To maintain a sharp interfacial front, the method
includes an anti-diffusion algorithm. The unknown
distribution functions at the interfacial region are constructed according to the first order Chapman-Enskog
analysis. The interfacial boundary conditions are satis-
fied exactly by the coef ficients in the Chapman-Enskog
expansion. The distribution functions are naturally
expressed in the local inter facial coordinates. The macroscopic quantities at the inter face are extracted from
the least-square solutions of a locally linearized system
obtained from the known distribution functions. The
proposed method does not require any geometric front
construction and is robust for any interfacial topology.
Simulation results of realistic filling process are presented: rectangular cavity in two dimensions and Hammer box, Campbell box, Shef field box, and Motorblock
in three dimensions. To enhance the stability at high
Reynolds numbers, various upwind-type schemes are
developed. Free-slip and no-slip boundary conditions
are also discussed.
Keywords: Lattice Bolt zmann models; free-surface
phenomena; interface boundary conditions; filling
processes; injection molding; volume of fluid method;
interface boundary conditions; advec tion-schemes;
upwind-schemes
(54 pages, 2002)
35. M. Günther, A. Klar, T. Materne,
R. Wegener
Multivalued fundamental diagrams and
stop and go waves for continuum traffic
equations
In the present paper a kinetic model for vehicular traffic leading to multivalued fundamental diagrams is
developed and investigated in detail. For this model
phase transitions can appear depending on the local
density and velocity of the flow. A derivation of associated macroscopic traffic equations from the kinetic
equation is given. Moreover, numerical experiments
show the appearance of stop and go waves for highway traffic with a bottleneck.
Keywords: traffic flow, macroscopic equations, kinetic
derivation, multivalued fundamental diagram, stop and
go waves, phase transitions
(25 pages, 2002)
36. S. Feldmann, P. Lang, D. Prätzel-Wolters
Parameter influence on the zeros of network determinants
To a network N(q) with determinant D(s;q) depending on a parameter vector q Î Rr via identification of
some of its vertices, a network N^ (q) is assigned. The
paper deals with procedures to find N ^ (q), such that
its determinant D^ (s;q) admits a factorization in the
determinants of appropriate subnetworks, and with
the estimation of the deviation of the zeros of D^ from
the zeros of D. To solve the estimation problem state
space methods are applied.
Keywords: Networks, Equicofactor matrix polynomials,
Realization theory, Matrix perturbation theory
(30 pages, 2002)
37. K. Koch, J. Ohser, K. Schladitz
Spectral theory for random closed sets and
estimating the covariance via frequency
space
A spectral theory for stationary random closed sets
is developed and provided with a sound mathematical basis. Definition and proof of existence of the
Bartlett spec trum of a stationary random closed set as
well as the proof of a Wiener-Khintchine theorem for
the power spectrum are used to two ends: First, well
known second order characteristics like the covariance
can be estimated faster than usual via frequency space.
Second, the Bartlett spectrum and the power spectrum
can be used as second order characteristics in frequency space. Examples show, that in some cases information about the random closed set is easier to obtain
from these charac teristics in frequency space than from
their real world counterparts.
Keywords: Random set, Bartlett spectrum, fast Fourier
transform, power spectrum
(28 pages, 2002)
38. D. d’Humières, I. Ginzburg
Multi-reflection boundary conditions for
lattice Boltzmann models
We present a unified approach of several boundary
conditions for lattice Boltzmann models. Its general
framework is a generalization of previously introduced
schemes such as the bounce-back rule, linear or quadratic interpolations, etc. The objectives are two fold:
first to give theoretical tools to study the existing
boundary conditions and their corresponding accuracy; secondly to design formally third- order accurate
boundary conditions for general flows. Using these
boundary conditions, Couette and Poiseuille flows are
exact solution of the lattice Boltzmann models for a
Reynolds number Re = 0 (Stokes limit).
Numerical comparisons are given for Stokes flows in
periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates and for
Navier-Stokes flows in periodic arrays of cylinders for
Re < 200. These results show a significant improvement of the overall accuracy when using the linear
interpolations instead of the bounce-back reflection
(up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the
new multi-reflection boundary conditions, reaching a
level of accuracy close to the quasi-analytical reference
solutions, even for rather modest grid resolutions and
few points in the narrowest channels. More important,
the pressure and velocity fields in the vicinity of the
obstacles are much smoother with multi-reflection
than with the other boundary conditions.
Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder.
Keywords: lattice Boltzmann equation, boudary condistions, bounce-back rule, Navier-Stokes equation
(72 pages, 2002)
39. R. Korn
Elementare Finanzmathematik
Im Rahmen dieser Arbeit soll eine elementar gehaltene
Einführung in die Aufgabenstellungen und Prinzipien
der modernen Finanzmathematik gegeben werden.
Insbesondere werden die Grundlagen der Modellierung
von Aktienkursen, der Bewertung von Optionen und
der Portfolio-Optimierung vorgestellt. Natürlich können
die verwendeten Methoden und die entwickelte Theorie nicht in voller Allgemeinheit für den Schuluntericht
ver wendet werden, doch sollen einzelne Prinzipien so
heraus gearbeitet werden, dass sie auch an einfachen
Beispielen verstanden werden können.
Keywords: Finanzmathematik, Aktien, Optionen, Portfolio-Optimierung, Börse, Lehrerweiterbildung, Mathe matikunterricht
(98 pages, 2002)
40. J. Kallrath, M. C. Müller, S. Nickel
Batch Presorting Problems:
Models and Complexity Results
In this paper we consider short term storage systems. We analyze presorting strategies to improve the
effiency of these storage systems. The presorting task
is called Batch PreSorting Problem (BPSP). The BPSP is a
variation of an assigment problem, i. e., it has an assigment problem kernel and some additional constraints.
We present different types of these presorting problems, introduce mathematical programming formulations and prove the NP-completeness for one type
of the BPSP. Experiments are carried out in order to
compare the different model formulations and to investigate the behavior of these models.
Keywords: Complexity theory, Integer programming,
Assigment, Logistics
(19 pages, 2002)
Status quo: November 2002