J. Kallrath, M. C. Müller, S. Nickel Batch Presorting Problems: Models and Complexity Results Berichte des Fraunhofer ITWM, Nr. 40 (2002) © Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2002 ISSN 1434-9973 Bericht 40 (2002) Alle Rechte vorbehalten. Ohne ausdrückliche, schriftliche Genehmigung des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, verwendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen Wiedergabe. Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt. Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können bezogen werden über: Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM Gottlieb-Daimler-Straße, Geb. 49 67663 Kaiserslautern Telefon: Telefax: E-Mail: Internet: +49 (0) 6 31/2 05-32 42 +49 (0) 6 31/2 05-41 39 [email protected] www.itwm.fraunhofer.de Vorwort Das Tätigkeitsfeld des Fraunhofer Instituts für Techno- und Wirtschaftsmathematik ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Techno- und Wirtschaftsmathematik bedeutsam sind. In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts kontinuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissenschaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Berichtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Dissertationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden. Darüberhinaus bietet die Reihe ein Forum für die Berichterstattung über die zahlreichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirtschaft. Berichterstattung heißt hier Dokumentation darüber, wie aktuelle Ergebnisse aus mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen und Softwareprodukte transferiert werden, und wie umgekehrt Probleme der Praxis neue interessante mathematische Fragestellungen generieren. Prof. Dr. Dieter Prätzel-Wolters Institutsleiter Kaiserslautern, im Juni 2001 Edwfk Suhvruwlqj Sureohpv1 Prghov dqg Frpsoh{lw| Uhvxowv Mxold Ndooudwk @ / Pduwlq F1 Pÿoohu A / Vwhidq Qlfnho @ > @ LWZP/ Jrwwolhe0Gdlpohu Vwu1 7</ 9:996 Ndlvhuvodxwhuq M Vlhphqv DJ/ FW VH 9/ Rwwr0Kdkq0Ulqj 9/ ;4:6: Pÿqfkhq ,ALMK@BM Lq wklv sdshu zh frqvlghu vkruw whup vwrudjh v|vwhpv1 Zh dqdo|}h suhvruwlqj vwudwh0 jlhv wr lpsuryh wkh h!flhqf| ri wkhvh vwrudjh v|vwhpv1 Wkh suhvruwlqj wdvn lv fdoohg Edwfk SuhVruwlqj Sureohp +ESVS,1 Wkh ESVS lv d yduldwlrq ri dq dvvljqphqw sure0 ohp/ l1h1/ lw kdv dq dvvljqphqw sureohp nhuqho dqg vrph dgglwlrqdo frqvwudlqwv1 Zh suhvhqw glhuhqw w|shv ri wkhvh suhvruwlqj sureohpv/ lqwurgxfh pdwkhpdwl0 fdo surjudpplqj irupxodwlrqv dqg suryh wkh QS 0frpsohwhqhvv iru rqh w|sh ri wkh ESVS1 H{shulphqwv duh fduulhg rxw lq rughu wr frpsduh wkh glhuhqw prgho irupx0 odwlrqv dqg wr lqyhvwljdwh wkh ehkdylru ri wkhvh prghov1 Nh| zrugv= Frpsoh{lw| wkhru|/ Lqwhjhu surjudpplqj/ Dvvljqphqw/ Orjlvwlfv 4 Lqwurgxfwlrq Wkh qhhg iru dsso|lqj rswlpl}dwlrq wrrov dulvhv lq pdq| dvshfwv ri lqgxvwuldo dssolfdwlrqv ^4`1 Hvshfldoo| pdwkhpdwlfdo surjudpplqj lv d yhu| qdwxudo dqg srzhuixo wrro wr vroyh sureohpv lq lqkrxvh orjlvwlfv +f1i1 ^5`/ ^6`/ ^7`, ru frpsdq| zlgh orjlvwlfv +vxsso| fkdlq, ^8`1 Rqh pljkw dujxh wkdw orz vwuxfwxuh v|vwhpv fdq suredeo| eh kdqgohg zhoo zlwkrxw rswlpl}dwlrq/ exw frpsoh{ v|vwhpv zlwk pdq| ghjuhhv ri iuhhgrp dqg uhvwulfwlrqv vwurqjo| uhtxluh rswlpl}dwlrq lq rughu wr lqyhvwljdwh d vlwxdwlrq frpsohwho| +wr dqdo|}h sureohpv zklfk fdq dsshdu/ wr shuirup vroxwlrqv dqg wr pdnh vdih frqfoxvlrqv111,1 Fruuhvsrqglqj dxwkru1 Hpdlo dgguhvvhv= ndooudwkClwzp1ikj1gh +Mxold Ndooudwk,/ pduwlq1f1pxhoohuCpfks1vlhphqv1gh +Pduwlq F1 Pÿoohu,/ qlfnhoClwzp1ikj1gh +Vwhidq Qlfnho,1 Suhsulqw vxeplwwhg wr Hovhylhu Vflhqfh 45 Rfwrehu 5335 Prghuq pdqxidfwxulqj v|vwhpv uhtxluh wkh xvh ri kljk shuirupdqfh/ vkruw whup vwrudjh1 Frqyhqwlrqdo vwdnhu fudqh vroxwlrqv surylglqj wkh qhfhvvdu| rxw0 sxw iuhtxhqf| duh riwhq qrw surwdeoh1 Wkhuh duh dw ohdvw wzr pdlq w|shv ri vwrudjhv ghylfhv lq lqgxvwu|/ vkhoi udfnhv dqg fdurxvho vwrudjh v|vwhpv1 Iru orqj whup vwrudjh/ xvxdoo| rqh xvhv vkhoi udfnhv/ zkhuh rqh fdq jlyh suhflvho| wkh wzr0glphqvlrqdo frruglqdwhv ri zkhuh wr sodfh dqg vwruh remhfwv/ f1i1 ^9`/ ^:`1 Dqrwkhu w|sh lv d vkruw whup vwrudjh v|vwhp zklfk vkrxog doorz vruwlqj1 Pdq| sdshuv duh ghyrwhg wr d zhdowk ri lqwhuhvwlqj frpelqdwruldo sureohpv/ zklfk dulvh lq dxwrpdwhg fdurxvho vwrudjh v|vwhpv/ vhh/ f1i1 ^;`/ ^<`1 Lq wklv sdshu zh dqdo|}h wkh vshfldo fdurxvho edvhg vwrudjh v|vwhp URWD0 VWRUH ^43` zklfk qrw rqo| doorzv vwrulqj exw dovr vruwlqj1 Ehfdxvh vruwlqj riwhq kdv wr eh grqh lq d vkruw wlph shulrg/ wklv sureohp kdv dq rqolqh dvshfw1 Lq rqolqh vlwxdwlrqv remhfwv duh rqo| nqrzq vkruwo| lq dgydqfh1 D jurxs ri remhfwv mxvw duulylqj zh fdoo d edwfk1 Rqfh vxfk d edwfk duulyhv zh qhhg wr ghflgh krz wr glvwulexwh wkh remhfwv ri wklv edwfk ehiruh wkh qh{w edwfk ri remhfwv duulyhv1 D ghflvlrq pdgh fdq qrw eh fkdqjhg odwhu1 Pruh ghwdlov rq rqolqh rswlpl}dwlrq fdq eh irxqg lq ^44`1 Wkh sdshu lv rujdq}hg dv iroorzv= dw uvw zh jlyh d ghwdlohg ghvfulswlrq ri wkh Urwdvwruh1 Wkh Edwfk Suhvruwlqj Sureohpv zklfk dsshdu lq wklv dssolfdwlrq duh ghvfulehg lq Vhfwlrq 61 Wkh frpsoh{lw| vwdwxv ri rqh ri wkh sureohpv lv lqyhvwljdwhg lq Vhfwlrq 7/ Vhfwlrq 8 suhvhqwv qxphulfdo whvwv1 Ilqdoo|/ wkh odvw vhfwlrq sxw uhvxowv lqwr shuvshfwlyh1 5 Wkh Urwdvwruh Lq wkh iroorzlqj zh ghvfuleh wkh vwrudjh v|vwhp Urwdvwruh/ surgxfhg e| sve JpeK/ Slupdvhqv/ Jhupdq| ^43`1 Wklv v|vwhp ryhufrphv wkh srru shuirpdqfh ri vwdfnhu fudqh v|vwhpv e| lpsohphqwlqj d prgxodu pxowl0fdurxvho sulqflsoh1 Wklv sulqflsoh doorzv sdudooho ordglqj dqg xqordglqj e| phdqv ri hohydwruv lq0 whuidflqj wkh yhuwlfdoo| vwdnhg fdurxvho od|huv1 Dv vkrzq lq Ilj1 4/ d w|slfdo frqjxudwlrq frqvlvwv ri wzr hohydwruv dqg d vwdfn ri fdurxvhov hdfk zlwk lghq0 wlfdo qxpehuv ri vorwv1 Lghqwlfdoo| vl}hg wud|v duh wudqvsruwhg wr dqg iurp wkh oliwv e| frqyh|ruv1 Hdfk fdurxvho dqg hdfk hohydwru pd| pryh lqghshqghqwo|1 Dv lqglfdwhg e| wkh duurzv/ wzr frpev ri sxqfkhv sxvk wud|v vlpxowdqhrxvo| rq doo od|huv lq ru rxw ri wkh fdurxvho vwdfn1 Wkh zkroh dvvhpeo| lv frqwuroohg e| d vrsklvwlfdwhg kljk0ohyho surjudppdeoh frpsxwhu v|vwhp zklfk nhhsv wudfn ri rshudwlrqv dqg lqyhqwru|1 Wkh v|vwhp qrupdoo| rshudwhv rxwsxw0gulyhq/ l1h1/ dq lqsxw2rxwsxw0f|foh +L2R0 f|foh, vwduwv zlwk dffhswlqj d vhw ri rughuv zlwk rqh rughuhg wud| rq hdfk od|hu1 Wkh fdurxvhov wkhq sodfh e| urwdwlqj wkh rughuhg wud|v lq iurqw ri wkh rxwsxw 5 Ilj1 41 W|slfdo Urwdvwruh frqjxudwlrq zlwk hohydwruv hohydwru +vhhnlqj,1 Qh{w/ wkh sxqfkhv sxvk rxw doo rughuhg wud|v rqwr wkh rxwsxw hohydwru zklfk lpphgldwho| vwduwv xqordglqj wkhp rqwr wkh ohdylqj frqyh|hu +vwhsslqj,1 Wkh fdurxvhov pryh wkh qrz hpsw| vorwv lq iurqw ri wkh lqsxw hohydwru dqg wkh sxqfk sxvk lq wkh zdlwlqj wud|v1 Zkloh wkh hohydwruv ordg dqg xqordg wkh qh{w L2R0f|foh vwduwv zlwk vhhnlqj wkh qh{w vhw ri rughuv1 Iru wkh shuirupdqfh ri wkh v|vwhp wkh qxpehu ri L2R0f|fohv shu wlph xqlw lv ri frxuvh fulwlfdo1 Wkh h{shfwhg shuirupdqfh ri d Urwdvwruh zlwk 6 vorwv rq hdfk ri ? od|huv zdv lqyhvwljdwhg lq ^45`1 Sudfwlfdo h{shulhqfh vkrzv wkdw dgglwlrqdo phdvxuhv kdyh wr eh wdnhq lqwr dffrxqw wr glvwulexwh wkh wud|v hyhqwxdoo| zlwk uhvshfw wr wkh od|huv lq rughu wr uhdol}h wkh sdudoohol}lqj vshhgxs ri wkh Urwdvwruh1 Zh zloo frqvlghu wkh fdvh ri d glvwulexwlrq fhqwhu ri d pd|ru Jhupdq ghsduwphqw vwruh frpsdq|1 Lq wklv fdvh/ wkh wud|v duh douhdg| sduwlwlrqhg lqwr vhwv ri rughuv zkhq lqsxw lqwr wkh Urwdvwruh dqg wkh Urwdvwruh pd| rxwsxw d frpsohwh vhw ri rughuv dv vrrq dv doo wud|v ri wkh vhw ri rughuv duh suhvhqw1 Wr lpsuryh wkh shuirupdqfh/ wkh lqfrplqj wud|v duh suhvruwhg vxfk wkdw hdfk edwfk vsuhdgv ryhu dv pdq| od|huv dv srvvleoh1 Frqyh|ruv wudqvsruw wkh wud|v Ilj1 51 Wkuhh vwdfnhu iudphv wkurxjkrxw wkh v|vwhp1 Uhrughulqj lv grqh rqolqh e| vwdfnhu iudphv/ vpdoo urerwlf ghylfhv zklfk oliw rqh wud| kljk hqrxjk iurp wkh frqyh|ru wr ohw dq duelwudu| qxpehu ri wud|v sdvv dqg vhw wkh oliwhg wud| grzq djdlq1 Dv Ilj1 5 looxvwudwhv/ xvxdoo| vhyhudo vwdfnhu iudphv duh sodfhg lq d urz dorqj wkh frqyh|hu 6 vr d wud| pd| ryhuwdnh vhyhudo suhfhglqj wud|v hdvlo|1 Wkh dvvhpeo| lv xvxdoo| orfdwhg gluhfwo| lq iurqw ri wkh Urwdvwruh lq wkh plggoh ri vx!flhqw ohqjwk ri dffxpxodwlrq frqyh|ru +h1j1/ uroohu frqyh|hu,1 6 Edwfk Suhvruwlqj Sureohpv Lq wkh iroorzlqj zh frqvlghu wkh sureohp ri qglqj dq vhtxhqfh ri wud|v wr jxdudqwhh dq rswlpdo +hyhq, glvwulexwlrq zlwk uhvshfw wr wkh od|huv/ wkdw fdq eh dfklhyhg zlwk wkh jlyhq kdugzduh +vwdfnhu iudph dvvdpeoh|,1 Wklv sureohp zloo eh fdoohg wkh Edwfk SuhVruwlqj Sureohp +ESVS,/ ehfdxvh wkh remhfwv kdyh wr eh vruwhg zklwklq rqh edwfk ehiruh wkh| hqwhu wkh vwrudjh v|vwhp1 Iru d pruh hohjdqw suhvhqwdwlrq zh suhihu wr vshdn ri froruv lqvwhdg ri rughuv dqg wkxv frqvlghu doo wud|v ri rughu & dv kdylqj wkh vdph froru &1 Zh suhvhqw wkuhh w|shv ri ESVS zlwk glhu lq wkhlu remhfwlyh1 Lq ESVS wkh remhfwlyh lv wr plqlpl}h wkh wrwdo qxpehu ri wud|v ri wkh vdph froru rq rqh od|hu1 Lq ESVS2 wkh remhfwlyh lv wr plqlpl}h wkh pd{lpxp qxpehu ri wud|v ri wkh vdph froru rq wkh vdph od|hu1 Ilqdoo|/ ESVS dlpv wr plqlpl}h wkh vxp ri wkh pd{lpxp qxpehu ri wud|v ri wkh vdph froru ryhu doo od|huv1 Odwhu zh vkrz wkdw ESVS lv sro|qrpldo/ exw ESVS2 lv QS0frpsohwh1 Lq Vxevhfwlrq 614 zh suhvhqw wkh rswlpl}dwlrq prgho ri ESVS1 Lq Vxevhfwlrq 615 zh irupxodwh ESVS2 dqg ESVS dv ghflvlrq sureohpv dqg lqwurgxfh rswlpl}dwlrq prghov1 614 Pdwkhpdwlfdo Irupxodwlrq ri ESVS Dq lqvwdqfh ri wkh ESVS kdv wkh iroorzlqj lqsxw gdwd= D vhtxhqfh ri froruhg wud|v1 Wkhvh wud|v duh lqgh{hg e| ru 1 V& lv wkh vhw ri wud|v ri froru & dqg 5 V& phdqv wkdw wkh wud| dw srvlwlrq lq wkh vhtxhqfh +dovr fdoohg wk wud| ru wud| iru vkruw, kdv froru &1 gu lv wkh qxpehu ri froruv/ lqgh{hg e| &> 7 lv wkh qxpehu ri od|huv/ lqgh{hg e| ,> lv wkh qxpehu ri vwdfnhu iudphv1 D ihdvleoh vroxwlrq wr ESVS/ l1h1/ wkh vhtxhqfh ri wud|v diwhu wkh vwdfnhu iudph dvvhpeo|/ lv jlyhq e| d shupxwdwlrq B ri wkh lqgh{ vhw icc j/ l1h1/ BE ' / li wud| lv sodfhg rqwr srvlwlrq 1 Lq ^45` lw zdv vkrzq wkdw h{dfwo| wkh shupxwdwlrqv B zlwk BE 7 +614, 7 fdq eh dfklhyhg e| wkh jlyhq kdugzduh1 Qrwh ixuwkhu wkdw h{dfwo| wkh wud|v dw wkh shupxwhg srvlwlrqv BE ' zlwk , 4L_ u zloo eh sodfhg rqwr od|hu ,1 Lq dgglwlrq zh lqwurgxfh wkh iroorzlqj qrwdwlrq= ; A ? B ' A= c li BE ' fc rwkhuzlvh ; A u ? ' A= c li od|hu , 4L_ kdv d wud| ri wkh vdph rughu zlwk wud| fc rwkhuzlvh Wkh rswlpdo shupxwdwlrq fdq eh frqvwuxfwhg iurp wkh vroxwlrq ri wkh iroorzlqj olqhdu surjudp= [ [ B 4? ' ' +615, [B ' [B ' c ; ' ic c ' c ; ' ic c ' j +616, j +617, B ' fc B ;iEc 'm 7 j +618, 5 ifc jc ;ic j +619, Wkh remhfwlyh ixqfwlrq +615, plqlpl}hv wkh wrwdo qxpehu ri wud|v ri wkh vdph froru rq rqh od|hu1 Xqihdvleoh shupxwdwlrqv duh h{foxghg +lq ghshqghqfh rq 7 , d sulrul e| +618,1 Lw lv zhoo nqrzq wkdw wklv nlqg ri lqwhjhu surjudp lv wrwdo xqlprgxodu +f1i1 ^46`, dqg pd| eh vroyhg h!flhqwo| e| vrph yhuvlrqv ri wkh vlpsoh{ dojrulwkp1 Pdq| vshfldo pdwfklqj dojrulwkpv vroyh wkh sureohp lq sro|qrpldo wlph +f1i1 ^47`,1 Wkh vlpsolflw| ri wkh irupxodwlrq +615,0+619, ohqgv lwvhoi wr h{whqvlrqv1 Lq dssolfdwlrqv zkhuh wkh Urwdvwruh qhhgv wr rxwsxw doo wud|v ri d vhw ri rughuv frqvhfxwlyho|/ shuirupdqfh ghshqgv rq wkh qxpehu ri L2R f|fohv qhhghg wr frpsohwho| rxwsxw d vhw1 Iru d jlyhq vhw ri rughuv/ wkh qxpehu ri L2R0f|fohv qhhghg iru rxwsxw lv wkh pd{lpxp qxpehu ri wud|v ri wklv vhw ri rughuv irxqg rq d vlqjoh od|hu1 Wklv sureohp lv suhvhqwhg qh{w1 8 615 Pdwkhpdwlfdo Irupxodwlrqv ri ESVS2 dqg ESVS Lq wklv vhfwlrq zh suhvhqw irupxodwlrqv ri wkh ESVS2 dqg ESVS dv ghflvlrq sureohpv1 Zh nhhs prvw ri wkh qrwdwlrqv xvhg lq wkh suhylrxv vhfwlrq1 Exw zh fkdqjh , c zklfk lv wkh qxpehu ri wud|v ri froru & douhdg| suhvhqw rq wr &, od|hu 1 Dgglwlrqdoo| zh ghqh= dq lqwhjhu erxqg ;A? c 7 'A = fc ;A? c 'A = fc frqvwdqwv= & , li c 5V & rwkhuzlvh li , 4L_ u 1 rwkhuzlvh1 Wklv hqdeohv xv wr ghqh ( &, G' 7 & , 1 Qrz zh fdq irupxodwh wkh iroorzlqj ghflvlrq sureohpv= G0ESVS2= Lv wkhuh d shupxwdwlrq BE ' ', & 4@ 4@ grhv qrw h{fhhg G0ESVS= [ & g 4@ &, &, ' ' grhv qrw h{fhhg +61:, B G ic c 3 [[ 4 C n ( B D 7 vxfk wkdw wkh wrwdo frvw u vdwlvi|lqj vxfk wkdw wkh pd{lpdo frvw Lv wkhuh d shupxwdwlrq ' ,'cc j $ ic c jc B BE ' ', 3 [[ 4 C n ( B D 7 'cc g ,'cc u B G ic c &, j $ ic c jc vdwlvi|lqj ' ' & , +61;, B Uhpdunv= Wkh whup ( B ehfrphv h{dfwo| li dq dgglwlrqdo wud| ri froru & , e| uhdol}lqj shupxwdwlrq B Dv ghqrwhvwkh qxpehu ri wud|v ri froru & douhdg| suhvhqw rq wkdw od|hu/ wkh frvw n ' ' ( B &, lv sodfhg rqwr od|hu &, &, 9 S S &, jlyhv wkh qxpehu ri wud|v diwhu wkh shupxwhg wud|v kdyh doo hqwhuhg wkh Ur0 wdvwruh1 Lq rwkhu zrugv/ G0ESVS2 lv wkh sureohp ri qglqj d shupxwdwlrq ri wud|v vxfk wkdw wkh pd{lpxp qxpehu ri wud|v ri wkh vdph froru rq dq| od|hu lv ohvv wkdq ru htxdo wr iru doo froruv1 Wr rxwsxw doo wud|v ri d fhuwdlq froru/ wkh Urwdvwruh qhhgv dw ohdvw dv pdq| L2R0f|fohv dv wkhuh duh wud|v ri wkdw froru rq dq| od|hu/ vr wkh wrwdo frvw whup ri G0ESVS2 fdq eh lqwhusuhwhg dv d zruvw0 fdvh hvwlpdwlrq ri wkh shuirupdqfh1 Wkh wrwdo frvw ri G0ESVS dqdorjrxvo| uhsuhvhqwv wkh dyhudjh shuirupdqfh ryhu doo froruv1 61514 Dq rswlpl}dwlrq yhuvlrq ri ESVS2 Vlqfh wkh remhfwlyh lv wr plqlpl}h wkh pd{lpdo frvw +61:, zh qrz irupxodwh 3 [[ 4 C n ' ' ( B D wkh ghflvlrq sureohp dv dq rswlpl}dwlrq sureohp= 4? '4@ & cc g, 4@ ' cc u plqlpd{ Zh uhsodfh wkh &, &, remhfwlyh ixqfwlrq e| dq htxlydohqw olqhdu irupxod0 wlrq1 Iru wklv uhdvrq qhz yduldeohv duh lqwurgxfhg= ri wud|v ri froru dqg , cc u + ' 't4@ & 3 [[ 4 C n ( B D ' '4@ & & rq dq| od|hu/ l1h1/ cc &, & wkh pd{lpdo qxpehu ' ' & , +61<, i& j1 g Wkdw ohdgv xv wr wkh wudqviruphg remhfwlyh ixqfwlrq 4? +c +6143, dqg wr vrph dgglwlrqdo frqvwudlqwv & +c ;& ' ic c g j &, [[( n [B & , B & c ;i&c ,j ' c ; ' ic c ' c ; ' ic c ' ' ' ' +6145, [B +6144, j +6146, j +6147, : B ' fc B ;iEc m 5 ifc jc ;ic j 7 j +6148, +6149, Ohw xv pdnh d ihz uhpdunv uhodwhg wr wkrvh frqvwudlqwv= i j1 Wkh + ' 't4@ g lqhtxdolwlhv +6145, h{suhvv wkdw wkh qxpehu ri wud|v ri froru & zklfk duh douhdg| rq wkh od|hu , soxv d qxpehu ri wud|v ri froru & dvvljqhg rqwr wklv od|hu fdqqrw eh pruh wkdq wkh pd{lpdo qxpehu ri wud|v ri froru & rq dq| od|hu1 Wkh Qrwh wkdw +6143, dqg +6144, hvwdeolvk wkh lghqwlw| & cc & & dvvljqphqw frqvwudlqwv +6146,0+6147, dffrxqw iru wkh shupxwdwlrq ri wud|v/ l1h1/ hdfk wud| fdq wdnh rqo| rqh srvlwlrq lq d qhz rughu ri wud|v dqg hdfk qhz srvlwlrq fdq eh oohg rqo| e| rqh wud|1 Fhuwdlq shupxwdwlrqv +lq ghshqghqfh rq 7 , fdq eh h{foxghg d sulrul e| +6148,1 Lq vrph vlwxdwlrqv zkhq wkh glhuhqfh ehwzhhq wkh qxpehu ri wud|v ri glhuhqw rughuv lv yhu| elj lw pd| qrw eh dgylvdeoh wr plqlpl}h mxvw wkh pd{lpxp qxpehu ri wud|v ri wklv vhw ri rughuv irxqg rq d vlqjoh od|hu1 Lqvwhdg lw lv pruh h!flhqw wr plqlpl}h wkh wrwdo dprxqw ri rxwsxw f|fohv1 Zh wuhdw wklv dssurdfk lq wkh rswlpl}dwlrq sureohp ESVS lqwurgxfhg ehorz1 61515 Dq rswlpl}dwlrq yhuvlrq ri ESVS Wkh remhfwlyh ixqfwlrq zlfk fruuhvsrqgv wr +61;, lv= [ 4? & g 4@ ' ,'cc 3 [[ 4 C n ' ' ( B D u [ 4? & &, Xvlqj wkh qhz yduldeohv &, & +61<,/ zh jhw= g ' +614:, & vxemhfw wr +6145,0+6149,1 Dv rqh fdq vhh/ ESVS2 dqg ESVS kdyh ESVS dv d nhuqho1 Xqiruwxqdwho| wkh sro|khgurq ri ESVS2 lv qrw lqwhjudo1 Wkh iroorzlqj vhfwlrq lv ghyrwhg wr wkh frpsoh{lw| ri ESVS2 1 ; Ilj1 61 Wkh frqwhqw ri wkh Urwdvwruh ehiruh glvwulexwlrq wud|v iurp vht1 7 Frpsoh{lw| Uhvxowv Uhjduglqj wkh frpsoh{lw| ri ESVS2 zh fdq suryh wkh iroorzlqj wkhruhp1 Wkhruhp 4 Sureohp ESVS2 lv QS0frpsohwh1 Surri1 Zh surfhhg e| vkrzlqj wkdw ESVS2 fdq eh uhgxfhg wr wkh zhoo0nqrzq QS 0frpsohwh 60VDW +60Vdwlvdelolw|, sureohp1 Frqfhuqlqj wkh frpsoh{lw| lv0 vxhv ri wkh 60VDW sureohp zh uhihu wkh uhdghu wr ^48`1 Ehorz zh jlyh wkh ghqlwlrq ri wkh Vdwlvdelolw| sureohp +^49`,1 Ghqlwlrq 4 Ohw f ' i%c %2c c % j eh d vhw ri ? Errohdq yduldeohv1 D olwhudo ? lv hlwkhu d yduldeoh % ru lwv qhjdwlrq %7 D fodxvh 8 lv d glvmxqfwlrq ri olwhudov1 Ohw irupxod 8 ' 8 a 82 a a 86 eh d frqmxqfwlrq ri 6 fodxvhv1 Wkh irupxod 8 lv vdwlvdeoh li dqg rqo| li wkhuh lv d wuxwk dvvljqphqw | G f $ ifc j/ zklfk vlpxowdqhrxvo| vdwlvhv doo fodxvhv 8 lq 8 1 Wkh Vdwlvdelolw| sureohp lv wkh sureohp wr ghflgh zkhwkhu iru d jlyhq lqvwdqfh Efc 8 wkhuh lv d wuxwk dvvljqphqw iru f wkdw vdwlvhv 8 1 Wkh 60VDW sureohp lv d uhvwulfwlrq ri wkh Vdwlvdelolw| sureohp zkhuh hdfk fodxvh frqwdlqv h{dfwo| 6 olwhudov1 Wkh 60VDW sureohp lv vwloo QS0frpsohwh1 + Iru dq duelwudu| lqvwdqfh Efc 8 ri 60VDW zh ghqh dq lqvwdqfh ri wkh vh0 txhqflqj sureohp ESVS2 / vxfk wkdw wkhuh h{lvwv d ihdvleoh shupxwdwlrq ri wkh < wud|v & B G ic c 4@ j $ ic c jc vdwlvi|lqj BE ' ', 7 3 C E&c , n [ [ ( 4@ 'cc g ,'cc u ' ' li dqg rqo| li wkhuh lv d wuxwk dvvljqphqw Zh fkrrvh &, B &, 4 D zlwk | G f $ ifc j vdwlvi|lqj 8 ' dqg ' +wklv phdqv wkdw d wud| fdq pryh iruzdug dw 7 prvw rqh srvlwlrq,1 Wkh qxpehu ri od|huv lv G' 2E6 n / u +714, wkh qxpehu ri wud|v lv G' 2? u / +715, dqg wkh qxpehu ri vhwv V& lv G' 2? n 6 n 26?1 g +716, Vshflfdoo|/ zh kdyh 2? froruv & / & f 8 / u / rqh iru hdfk yduldeoh 6 froruv & rqh iru hdfk fodxvh 8 / 6? dgglwlrqdo froruv & dqg 6? dgglwlrqdo froruv & 7 1 %/ f8 f8 re^ frqvlvwv ri 2? vxevhtxhqw sduwv re^ ri wud|v hdfk/ l1h1/ re^ G' Ere^c re^2c c re^ c re^ nc re^ n2c c re^2 Hdfk re^ kdv 2E6 n wud|v/ l1h1/ re^ G' E^ c ^ 2c c ^ 2 n2 Qrz zh ghqh wkh vhwv V c l1h1/ wkh froru iru hdfk wud| ri wkh vhtxhqfh re^ G Wkh vhtxhqfh ? c ? c ? ? c 6 u & wkh uvw dqg odvw wud|v ri % / l1h1/ re^2 3 dqg re^2 dozd|v kdyh wkh froruv ri wkh yduldeoh ^2 3 c ^2 c 5 V&f ^2 3 u c^2 c +717, c c u 5 V&u 1 +718, 43 Wkh froruv ri wkh ri yduldeoh % 26 wud|v lq ehwzhhq duh ghqhg ghshqglqj rq wkh rffxuuhqfh lq wkh fodxvhv 5 8 ', % 8 dv iroorzv= ^2 ^2 2 5 V&8 c % 2 n 5 V&f8 +719, c ^2 3 2 c^2 3 2 n 5 V f8 %7 5 8 ', c 5 V&8 c c & c & +71:, ^2 3 2 c ^2 3 2 n 5 V f8 % ^2 2 c^2 2 n 5 V f8 c c Wkh ydoxhv ri wkh frvw ixqfwlrq ;A? 2c ' A= c ;A? c ' A= fc & ^2 3 2 n 5 V f8 % ^2 2 c^2 2 n 5 V f8 % c %7 5* 8 ', c ^2 3 2 c c & c & +71;, E&c , G' i&c ,j dvG &, +zklfk uh hfwv wkh frqwhqw ri wkh Urwdvwruh, duh ghqhg iru dq| f & 8 & c, c, li , 5 ic u j hovh li , ' 2 hovh c ; 5 ic c ?j +71<, c ; 5 ic c 6j +7143, % f8 c f8 c u ' fc ;ic c ,j & c, & c, & +7144, c, Ilj1 6 looxvwudwhv wkhvh frh!flhqwv iru h{dpsoh zlwk ? ' dqg 6 ' 21 Lq wkh uhpdlqlqj sduw ri wkh surri zh vkrz wkdw d ihdvleoh shupxwdwlrq ri wkh wud|v iurp re^ zlwk & 4@ 4@ 'cc g ,'cc u h{lvwv li dqg rqo| li 3 C E&c , n [' [' ( 8 lv vdwlvdeoh/ l1h1/ ifc j wkdw vdwlvhv hdfk fodxvh lq 8 1 Iluvw/ zh dvvxph wkdw 8 &, B &, 4 D wkhuh lv d wuxwk dvvljqphqw |Gf$ lv vdwlvdeoh1 Zh vkrz wkdw wkhuh h{lvwv d ihdvleoh shupxwdwlrq ri wud|v zlwk qr pruh wkdq 6 wud|v ri wkh vdph froru rq dq| 44 od|hu1 Uhfdoo wkdw= iru hdfk froru & f zh kdyh douhdg| h{dfwo| wkuhh wud|v rq wkh od|huv 2c c wzr wud|v rq wkh od|huv c u re^2 > iru hdfk froru lq re^> & 8 u / rqh wud| lq re^23 zh kdyh rqh wud| rq od|hu 2c c 2 dqg h{dfwo| wkuhh wud|v f8 f8 u Lw kdv wr eh vhqw wr od|hu u re^2 31 Wklv wud| kdv wkh froru & u douhdg| frqwdlq wzr wud|v ri froru & f dqg dqg fdq dffrpprgdwh rqo| rqh dgglwlrqdo wud| hdfk1 Wkhuhiruh/ wkh vhfrqg wud| ri froru re^2 f 1 ru kdv wr uhpdlq rq wkh uvw od|hu/ ehfdxvh doo rwkhu od|huv duh douhdg| rffxslhg e| wkuhh wud|v ri wklv froru1 Od|huv ri dqg rqh wud| lq & c & 7 zh kdyh dw prvw wzr wud|v lq re^> iru hdfk froru & rqo| wzr wud|v h{lvw lq re^1 iru hdfk froru Qrz frqvlghu wkh uvw wud| ri vxevhtxhqfh u & f wkh uvw wud| kdv wr eh vhqw wr wkh od|hu qrw xvhg e| wkh uvw wud|1 Wklv zloo eh grqh e| prylqj wkh wud|v wkh plqlpdo glvwdqfh +l1h1/ wr wkh uvw srvvleoh od|hu,/ vxfk wkdw BEre^ ' re^ Wkdw phdqv zh fdq glvfxvv hdfk vxevhtxhqfh lqghshqghqwo|1 Zh zloo xvh wklv dowhuqdwlrq wr pds wkh wuxwk dvvljqphqw rqwr B= ;A ^ :$ ^ AAA 2 2 ? ^ :$ ^2 c % :$ ', A 2 AAA ^2 :$ ^2 = ^2 :$ ^2 c ;A ^ :$ ^ AAA 2 2 ? ^ :$ ^2 c % :$ f ', A 2 AA ^2 :$ ^2 A= ^2 :$ ^2 c wkh shupxwdwlrq | 3 c B 3 c B 3 c 3 c 3 3 c u c c c | c B +7145, u c B u 3 c u B B u3 u3 u c 3 c u B c u 3 c B 3 c +7146, u | dvvljqv wr % / wkhq iurp +7145, wkh uvw wud| ri re^2 3 pryhv dqg doo rwkhu wud|v lq re^2 3 pryh rqh od|hu xs +h{fhsw iru wkh odvw rqh zklfk vwd|v rq wkh odvw od|hu,1 Doo wud|v ri re^2 nhhs wkhlu srvlwlrq1 Rwkhuzlvh/ lw iroorzv iurp +7146, wkdw li | dvvljqv f wr % wkhq doo wud|v iurp re^2 3 nhhs wkhlu srvlwlrqv dqg wkh uvw wud| ri re^2 pryhv wr wkh od|hu 1 Doo rwkhu wud|v lq re^2 pryh rqh od|hu xs +h{fhsw iru wkh odvw Lq wklv zd|/ li wr od|hu u / u rqh zklfk vwd|v rq wkh odvw od|hu,1 , zlwk 7 ru pruh wud|v7 ri wkh vdph froru1 Ohw xv uvw glvfxvv wkh froru1 Lw fdqqrw eh rqh ri & c & c & vlqfh wkhuh duh dw Dvvxph wkhuh zrxog eh d od|hu f8 45 f8 u prvw wzr ri wkrvh dqg &, lv }hur iru wkhp1 Zlwkrxw orvv ri jhqhudolw| zh , mV ,8 m ' / 8 pxvw eh dqg ehfdxvh ri +7143, lw iroorzv wkdw , ' 2 1 Qrz frqvlghu rqh ri wkh 6 wud|v1 Iurp +719, dqg +71:, zh nqrz wkdw V 8 i^2 2 c ^2 3 2 j1 Zh , & dvvxph wkdw wkhuh duh 7 wud|v ri froru 8 rq od|hu 1 Vlqfh & c & & c, c glvwlqjxlvk wzr fdvhv= Fdvh 4= EeS % 5 8 a ^ B 2 5 V&,8 ', 2c2 :$ ^2c2 3 Ee % :$| f vlqfh , ' 2 ', ^2 +7147, c +7148, Fdvh 5= 5 V&,8 ',EeS %7 5 8 a ^23c2 :$B ^23c2 3 Ee2 %7 :$| f vlqfh , ' 2 ', ^2 3 2 +7149, c Wkhuhiruh/ lq erwk fdvhv wkh wuxwk ydoxh ri wkh olwhudo ri +714:, % lq 8 lv idovh/ vr 8 frqwdlqv rqh idovh olwhudo1 Wkh vdph uhdvrqlqj krogv iru wkh rwkhu wzr wud|v1 Wkxv/ 8 frqwdlqv wkuhh idovh olwhudov dqg lv wkhuhiruh idovh lwvhoi1 Wklv lv d frqwudglfwlrq wr wkh suhfrqglwlrq wkdw | vdwlvhv Efc 8 1 Efc 8 lv xqvdwlvdeoh1 B wkhuh h{lvwv dw ohdvw rqh froru Iru wkh plvvlqj gluhfwlrq ri wkh surri/ zh dvvxph wkdw Rxu jrdo lv wr suryh wkdw iru dq| shupxwdwlrq iru zklfk 7 wud|v duh orfdwhg rq wkh vdph od|hu1 Eduulqj wulyldo fdvhv/ wkdw zloo eh froru & 8 1 Frqvlghu wkh shupxwdwlrqv/ zkhuh BE^2 , 4L_ c u zlwk 2, u , ' c l1h1/ zkhq wkh uvw wud| ri d vxevhtxhqfh 2 lv qrw pryhg wr wkh uvw ru odvw0exw0rqh od|hu1 Ehfdxvh ri +71<, f ' / od|hu , krogv irxu wud|v ri wkh froru & 1 Wkhuhiruh zh mxvw qhhg wr frqvlghu wkh uhpdlqlqj fdvhv/ l1h1/ ru u & c, f wkh uvw wud| pryhg wr wkh uvw ru wr wkh odvw0exw0rqh od|hu1 Zlwk wkh vdph uhdvrqlqj zh fdq dvvxph wkdw rqo| ghdo zlwk fdvhv zkhuh BE^2 4L_ c u dqg BE^2 3 4L_ c u 1 Vr zh BE^2 3 4L_ u +714;, BE^2 3 4L_ u +714<, c ru BE^2 4L_ c u dqg c 46 ;A? A= f | Ohw xv ghqh d wuxwk dvvljqphqw % |B :$ B e| BE^2 4L_ li BE^2 4L_ li u c c BE Ixuwkhupruh/ +614, whoov xv wkdw +7153, u dv ' 7 e| frqvwuxfwlrq1 Efc 8 lv xqvdwlvdeoh e| dvvxpswlrq/ wkhuh pxvw eh vrph fodxvh 8 Vlqfh |1 zklfk lv qrw vdwlvhg e| Fdvh 4= 8 B %1 frqwdlqv d qrq0qhjdwhg olwhudo BE^2 4L_ dqg iurp +714;, wkdw B E^2 3 4L_ 1 Ehfdxvh ri BE^2 ^2 f 4L_ / vr BE^2 ^2 n 2 vlqfh BE& : & 2/ l1h1/ wkh vwdfnhu iudph oliwhg wkh wud| ^2 dw ohdvw iru 2 srvlwlrqv1 Wkhuhiruh/ B E^2 ' ^2 iru 2 & / hvshfldoo| iru & ' 2 1 Iurp +719, zh nqrz wkdw ^2 2 5 V 8 / khqfh wkhuh lv rqh dgglwlrqdo wud| ri froru & lq od|hu 2 1 % Wkhq :$|B f/ vr iurp +7153, zh nqrz wkdw u u c c u c c c u c u c c& u c& c & 8 Fdvh 5= 8 frqwdlqv d qhjdwhg olwhudo %7 1 % :$ B / vr iurp +7153, zh nqrz wkdw BE^2 4L_ dqg iurp +714<, wkdw B E^2 3 4L_ 1 Dv lq wkh uvw fdvh zh frqfoxgh wkdw BE^2 3 ^2 3 n 2 dqg wkhuhiruh/ lw iroorzv wkdw BE^2 3 2 ' ^2 3 2 2 4L_ 1 Vlqfh +71:, ^2 3 2 5 V 8 wkhuh lv dq dgglwlrqdo wud| ri froru & rq od|hu 2 1 Wkhq | c c u u c 2 dqg 2 3 c& 8 frqwdlqv irxu wud|v ri froru ' & 8 c c c 8 & 8 Khqfh/ iru hdfk ri wkh wkuhh olwhudov ri od|hu u c u & rq od|hu 2 8 wkhuh lv rqh wud| ri froru dffruglqj wr +7143,1 Wkhuhiruh/ wrwdo dqg wkh surri lv frpsohwh1 Zh looxvwudwh Wkhruhp 4 zlwk wkh iroorzlqj h{dpsoh1 H{dpsoh 4 Vxssrvh zh kdyh wkh iroorzlqj lqvwdqfh ri 60VDW sureohp= 8 ' E% b %2 b %E7% b %2 b %7c l1h1/ ? ' dqg 6 ' 2 Qrz zh ghqh doo gdwd qhhghg iru frqvwuxfwlqj wkh vhtxhqfh re^1 E| +714,0+716, zh rewdlq ' Sc ' S/ dqg wkh qxpehu ri vhwv V lv ' 2fc l1h1/ & / & / ' c 2c > & / ' c 2( & / & 7 / ' c 2c / ' c 2> u g f 8 f8 & g u f8 Ilj1 6 vkrzv wkh frqwhqw ri wkh Urwdvwruh zlwk uhvshfw wr irupxodv +71<, dqg +7143, ehiruh wkh wud|v iurp re^ duh glvwulexwhg lq1 Ilj1 7 glvsod|v wkh vhtxhqfh re^ ' Ere^c re^2c c re^S1 Lq dgglwlrq/ wklv slfwxuh looxvwudwhv wkh glhuhqw 47 dvvljqphqwv/ h1j1/ iru % / ghvfulehg e| irupxodv +7145, dqg +7146, dqg wkh vxevhtxhqw glvwulexwlrq rq wkh od|huv ri wkh Urwdvwruh1 Vlplodu wudqvirupdwlrq zloo dsso| wr wkh vhtxhqfhv re^ c re^e c re^D c re^S +wkh uvw wzr fruuhvsrqg wr %2/ wkh rwkhuv wr %,1 8 Qxphulfdo Whvwv Wr lqyhvwljdwh wkh ehkdylru ri wkh prghov ESVS2 dqg ESVS vhyhudo qxphulfdo h{shulphqwv kdyh ehhq fduulhg rxw1 Dw uvw/ zh zhuh lqwhuhvwhg lq nqrzlqj zklfk prgho surgxfhv d vroxwlrq zlwk plqlpdo qxpehu ri rxwsxw f|fohv iru wkh Urwdvwruh1 Lq erwk prghov/ & duh wkh yduldeohv frqqhfwhg wr rxwsxw f|fohv1 Ilj1 71 Fkdqjhv lq wkh vhtxhqfh diwhu dvvljqlqj d ydoxh wr { 48 S ' Wkh wrwdo qxpehu ri rxwsxw f|fohv lv fdofxodwhg dv wkh vxp ryhu doo wkhvh yduldeohv= & g &1 Wkh vhfrqg srlqw zh duh lqwhuhvwhg lq lv wkh dyhudjh FSX wlph qhhghg1 Frpsxwdwlrqdo h{shulphqwv zlwk udqgrpo| jhqhudwhg h{dpsohv ri wkh vhwv V& zhuh fduulhg rxw xvlqj LORJ*v RSO0vwxglr ^4:` zlwk wkh iroorzlqj lqsxw gdwd= ' bff lv wrwdo qxpehu ri wud|v> ' Sf lv d qxpehu ri nqrzq wud|v> ' D> ' 2D> ' dc o wlphv wr vroyh d sureohp lq rughu wr glvwulexwh doo wud|v Lw qhhgv * dprqj wkh od|huv ri wkh Urwdvwruh +hdfk wlph rqo| wud|v duh dydlodeoh/ qh{w wud|v ehfrph nqrzq rqo| diwhu glvwulexwlrq ri wkh uvw wud|v,1 Wkhq vhwv V zhuh jhqhudwhg1 Iru h{dpsoh/ li ' ec ' ./ wkhq u g o 7 u p g g & wkh jhqhudwhg vhwv frxog eh= V ' ic ejc V2 ' i>jc V ' i2c Dc Sc .jc Ve ' ij Ilj1 81 Wkh uxqqlqj wlph yhuvxv qxpehu ri vwdfnhu iudphv1 c whq uxqv zhuh pdgh +hdfk rqh vwduwlqj zlwk dq hpsw| l1h1/ ' f ;i&c ,j, iru glhuhqw lqsxwv V 1 Iljxuhv 8 dqg 9 Iru hdfk ydoxh Urwdvwruh/ 7 &, & vkrz wkh dyhudjh ydoxhv ri FSX wlph +lq vhfrqgv, dqg wkh qxpehu ri rxwsxw f|fohv/ uhvshfwlyho|1 49 Ilj1 91 Wkh qxpehu ri rxwsxw f|fohv yhuvxv wkh qxpehu ri vwdfnhu iudphv1 Ilj1 :1 Wkh lqwhjudolw| jds yhuvxv wkh oolqj ri wkh Urwdvwruh iru glhuhqw qxpehu ri vwdnhu iudphv +VI,1 Lw lv reylrxv wkdw ESVS jlyhv xv d ehwwhu ydoxh iru wkh qxpehu ri rxwsxw f|fohv +zklfk zdv h{shfwhg/ ehfdxvh wkh remhfwlyh +614:, ri ESVS lv wr plqlpl}h wkh qxpehu ri rxwsxw f|fohv,1 Exw dw wkh vdph wlph/ iru vrph h{dpsohv/ wkh dyhudjh uxqqlqj wlph lv yhu| odujh1 Dqdorjrxv uhvxowv zhuh rewdlqhg iru ydulrxv c c dqg Wkh prgho vkrzv wkh zruvw uxqqlqj wlph zkhq ' dc o Zkdw frxog eh wkh uhdvrq iru wklvB Wr dqvzhu wkdw zh lqyhvwljdwhg ydoxhv ri u g 7 7 4: krz wkh lqwhjudolw| jds { ' 5 5 5 U u U { +lq shufhqwv, ffI ghshqghg rq wkh ghjuhh ri oolqj ri wkh Urwdvwruh +vhh Ilj1 :, zlwk ydulrxv 7 iru ESVS 1 Rq dyhudjh/ rqh revhuyhv wkdw oov + &, { ghfuhdvhv zkhq wkh Urwdvwruh ehfrphv odujhu,1 Wklv lv h{sodlqhg e| wkh idfw wkdw wkh ihdvleoh uhjlrq ehfrphv vpdoohu/ dqg wkhuhiruh/ wkhuh duh ohvv srvvleoh frpelqdwlrqv ri wkh elqdu| yduldeohv B 1 Dv d frqvhtxhqfh ri wklv/ wkh qxpehu ri dfwlyh qrghv lq wkh Eudqfk0dqg0Erxqg dojrulwkp ehfrphv vpdoohu/ zklfk lq wxuq ghfuhdvhv wkh uxqqlqj wlph1 Vr/ zh frqfoxgh wkdw ESVS lv ehwwhu lq xvh zkhq wkh Urwdvwruh lv qrw hpsw|1 Krzhyhu/ lq sudfwlfdo vlwxdwlrqv wklv kdsshqv yhu| vhogrp1 Lq vrph uduh fdvhv/ zkhq wkh Urwdvwruh lv hpsw|/ zh fdq oo lw xvlqj ESVS2 / dqg frqwlqxh zlwk ESVS 1 Lq dgglwlrq/ zh revhuyh wkdw lw lv qrw xvhixo wr kdyh pruh wkdq 8 vwdfnhu iudphv ehfdxvh wklv grhv qrw ohdg wr d vpdoohu qxpehu ri rxwsxw f|fohv1 Wklv idfw zdv dovr frquphg iru glhuhqw lqsxw vhtxhqfhv1 9 Vxppdu| ) Frqfoxvlrqv Lq wklv sdshu zh kdyh frqvlghuhg wkh ESVS zklfk dsshduv lq pdq| dssol0 fdwlrqv ri vwrudjh v|vwhpv1 Zh lqwurgxfhg wkuhh glhuhqw w|shv ri wkh ESVS dqg suhvhqwhg wkhlu rswlpl}dwlrq prghov1 ESVS lv sro|qrpldo/ ehfdxvh lw lv dsshduv dv dq dvvljqphqw sureohp1 Dowkrxjk ESVS2 dqg ESVS kdyh dq dv0 vljqphqw sureohp nhuqhov/ ESVS2 lv vkrzq wr eh QS0kdug1 Wkh frpsoh{lw| vwdwxv ri ESVS lv xqnqrzq1 Lq vrph fdvhv zkhq zh kdyh dq dgglwlrqdo nqrzo0 hgjh rq wkh lqsxw vhtxhqfh/ wkh sureohp vhhpv wr ehfrph hdvlhu wr vroyh1 Wkh gluhfwlrq iru wkh ixwxuh zrun lv wr uhirupxodwh wkh sureohp lq fdvh zh kdyh ixoo nqrzohgjh rq gdwd dqg wr lqyhvwljdwh lwv frpsoh{lw| vwdwxv iru vrph sduwlfxodu fdvhv1 Uhihuhqfhv ^4` W1 D1 Fluldql/ V1 Jolr}}l/ H1 O1 Mrkqvrq/ U1 Wdghl/ Rshudwlrqdo Uhvhdufk lq Lqgxvwu|/ Pdfploodq/ Krxqgploov/ Edvlqjvwrnh/ XN/ 4<<<1 ^5` V1 F1 Judyhv/ D1 K1 J1 Ulqqrr| Ndq/ S1 K1 ]lsnlq/ Orjlvwlfv ri Surgxfwlrq dqg Lqyhqwru|/ Hovhylhu/ Dpvwhugdp/ Wkh Qhwkhuodqgv/ 4<<61 4; ^6` F1 I1 Gdjdq}r/ Orjlvwlfv V|vwhp Dqdo|vlv/ 5qg Hglwlrq/ Vsulqjhu/ Ehuolq/ Khlghoehuj/ Jhupdq|/ 4<<91 ^7` M1 Eudpho/ G1 Vlpfkl0Ohyl/ Wkh Orjlf ri Orjlvwlfv/ Vsulqjhu/ Qhz \run/ XVD/ 4<<:1 ^8` K1 Vwdgwohu/ Olqhdu dqg Pl{hg Lqwhjhu Surjudpplqj/ lq= K1 Vwdgwohu/ F1 Nlojhu +Hgv1,/ Vxsso| Fkdlq Pdqdjhphqw dqg Dgydqfhg Sodqqlqj/ Vsulqjhu/ Ehuolq/ Ghxwvfkodqg/ 5333/ ss1 6686771 ^9` K1 I1 Ohh/ Shuirpdqfh dqdo|vlv iru dxwrpdwhg vwrudjh dqg uhwulhydo v|vwhpv/ LLH Wudqvdfwlrqv 5< +4<<:, 485;1 ^:` K1 I1 Ohh/ V1 N1 Vfkdhihu/ Vhtxhqflqj phwkrgv iru dxwrpdwhg vwrudjh dqg uhwulhydo v|vwhpv zlwk ghglfdwhg vwrudjh/ Frpsxwhuv dqg Lqgxvwuldo Hqjlqhhulqj 65 +4<<:, 6846951 ^;` M1 Uhwkpdqq/ H1 Zdqnh/ Vwrudjh frqwuroohg sloh0xs v|vwhp/ wkhruhwlfdo irxqgdwlrqv/ Hxurshdq Mrxuqdo ri Rshudwlrqdo Uhvhdufk 436 +4<<:, 8488631 ^<` G1 S1 Mdfrev/ M1 F1 Shfn/ M1 V1 Gdylv/ D vlpsoh khxulvwlf iru pd{lpl}lqj vhuylfh ri fdurxvho vwrudjh/ Frpsxwhuv dqg Rshudwlrqv Uhvhdufk 5: +5333, 468446891 ^43` URWDVWRUH/ sve1 JpeK/ Slupdvhqv/ kwws=22zzz1sve0jpek1gh2vfulswv2hq2lqgh{1sks1 Jhupdq|/ ^44` D1 Erurglq/ U1 Ho0\dqly/ Rqolqh Frpsxwdwlrq dqg Frpshwlwlyh Dqdo|vlv/ Fdpeulgjh Xqlyhuvlw| Suhvv/ Qhz \run/ XVD/ 4<<;1 ^45` K1 Z1 Kdpdfkhu/ P1 F1 Pÿoohu/ V1 Qlfnho/ Prghoolqj Urwdvwruh 0 d kljko| sdudooho/ vkruw whup vwrudjh v|vwhp/ lq= Rshudwlrqv Uhvhdufk Surfhhglqjv/ Vsulqjhu Yhuodj/ Ehuolq/ 4<<;/ ss1 8468541 ^46` J1 O1 Qhpkdxvhu/ O1 D1 Zrovh|/ Lqwhjhu dqg Frpelqdwruldo Rswlpl}dwlrq/ Zloh|/ Qhz \run/ XVD/ 4<;;1 ^47` N1 K1 Urvhq/ Kdqgerrn ri Glvfuhwh dqg Frpelqdwruldo Pdwkhpdwlfv/ FUF Suhvv/ Erfd Udwrq/ XVD/ 53331 ^48` P1 U1 Jduh|/ G1 V1 Mrkqvrq/ Frpsxwhuv dqg Lqwudfwdelolw| 0 D Jxlgh wr wkh Wkhru| ri QS Frpsohwhqhvv/ 55qg Hglwlrq/ Iuhhpdq/ Qhz \run/ XVD/ 53331 ^49` F1 K1 Sdsdglplwulrx/ N1 Vwhljolw}/ Frpelqdwruldo Rswlpl}dwlrq= Dojrulwkpv dqg Frpsoh{lw|/ GRYHU/ Plqhrod/ XVD/ 4<<;1 ^4:` LORJ Rswlpl}dwlrq Vxlwh/ LORJ/ Lqf1/ Lqfolqh Yloodjh/ Qhydgd/ kwws=22zzz1lorj1frp2surgxfwv2rswlpl}dwlrq +5333,1 4< Published reports of the Fraunhofer ITWM The PDF-files of the following reports are available under: www.itwm.fraunhofer.de/zentral/ berichte.html 1. D. Hietel, K. Steiner, J. Struckmeier A Finite - Volume Particle Method for Compressible Flows We derive a new class of particle methods for conser vation laws, which are based on numerical flux functions to model the interac tions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of par ticles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem. (19 pages, 1998) 2. M. Feldmann, S. Seibold Damage Diagnosis of Rotors: Application of Hilbert Transform and Multi-Hypothesis Testing In this paper, a combined approach to damage diagnosis of rotors is proposed. The intention is to employ signal-based as well as model-based procedures for an improved detection of size and location of the damage. In a first step, Hilbert transform signal processing techniques allow for a computation of the signal envelope and the instantaneous frequency, so that various types of non-linearities due to a damage may be identified and classified based on measured response data. In a second step, a multi-hypothesis bank of Kalman Filters is employed for the detection of the size and location of the damage based on the information of the type of damage provided by the results of the Hilbert transform. Keywords: Hilbert transform, damage diagnosis, Kalman filtering, non-linear dynamics (23 pages, 1998) 3. Y. Ben-Haim, S. Seibold Robust Reliability of Diagnostic MultiHypothesis Algorithms: Application to Rotating Machinery Damage diagnosis based on a bank of Kalman filters, each one conditioned on a specific hypothesized system condition, is a well recognized and powerful diagnostic tool. This multi-hypothesis approach can be applied to a wide range of damage conditions. In this paper, we will focus on the diagnosis of cracks in rotating machinery. The question we address is: how to optimize the multi-hypothesis algorithm with respect to the uncertainty of the spatial form and location of cracks and their resulting dynamic effects. First, we formulate a measure of the reliability of the diagnostic algorithm, and then we discuss modifications of the diagnostic algorithm for the maximization of the reliability. The reliability of a diagnostic algorithm is measured by the amount of uncer tainty consistent with no-failure of the diagnosis. Uncer tainty is quantitatively represented with convex models. Keywords: Robust reliability, convex models, Kalman filtering, multi-hypothesis diagnosis, rotating machinery, crack diagnosis (24 pages, 1998) 4. F.-Th. Lentes, N. Siedow Three-dimensional Radiative Heat Transfer in Glass Cooling Processes For the numerical simulation of 3D radiative heat transfer in glasses and glass melts, practically applicable mathematical methods are needed to handle such problems optimal using workstation class computers. Since the exact solution would require super-computer capabilities we concentrate on approximate solutions with a high degree of accuracy. The following approaches are studied: 3D diffusion approximations and 3D ray-tracing methods. (23 pages, 1998) 5. A. Klar, R. Wegener A hierarchy of models for multilane vehicular traffic Part I: Modeling In the present paper multilane models for vehicular traffic are considered. A microscopic multilane model based on reaction thresholds is developed. Based on this model an Enskog like kinetic model is developed. In particular, care is taken to incorporate the correlations between the vehicles. From the kinetic model a fluid dynamic model is derived. The macroscopic coefficients are deduced from the underlying kinetic model. Numerical simulations are presented for all three levels of description in [10]. Moreover, a comparison of the results is given there. (23 pages, 1998) Part II: Numerical and stochastic investigations In this paper the work presented in [6] is continued. The present paper contains detailed numerical investigations of the models developed there. A numerical method to treat the kinetic equations obtained in [6] are presented and results of the simulations are shown. Moreover, the stochastic correlation model used in [6] is described and investigated in more detail. (17 pages, 1998) 6. A. Klar, N. Siedow Boundary Layers and Domain Decomposition for Radiative Heat Transfer and Dif fusion Equations: Applications to Glass Manufac turing Processes In this paper domain decomposition methods for radiative transfer problems including conductive heat transfer are treated. The paper focuses on semi-transparent materials, like glass, and the associated conditions at the interface between the materials. Using asymptotic analysis we derive conditions for the coupling of the radiative transfer equations and a diffusion approximation. Several test cases are treated and a problem appearing in glass manufacturing processes is computed. The results clearly show the advantages of a domain decomposition approach. Accuracy equivalent to the solution of the global radiative transfer solution is achieved, whereas computation time is strongly reduced. (24 pages, 1998) 7. I. Choquet Heterogeneous catalysis modelling and numerical simulation in rarified gas flows Part I: Coverage locally at equilibrium A new approach is proposed to model and simulate numerically heterogeneous catalysis in rarefied gas flows. It is developed to satisfy all together the following points: 1) describe the gas phase at the microscopic scale, as required in rarefied flows, 2) describe the wall at the macroscopic scale, to avoid prohibitive computational costs and consider not only crystalline but also amorphous surfaces, 3) reproduce on average macroscopic laws correlated with experimental results and 4) derive analytic models in a systematic and exact way. The problem is stated in the general framework of a non static flow in the vicinity of a catalytic and non porous surface (without aging). It is shown that the exact and systematic resolution method based on the Laplace transform, introduced previously by the author to model collisions in the gas phase, can be extended to the present problem. The proposed approach is applied to the modelling of the EleyRideal and LangmuirHinshelwood recombinations, assuming that the coverage is locally at equilibrium. The models are developed considering one atomic species and extended to the general case of several atomic species. Numerical calculations show that the models derived in this way reproduce with accuracy behaviors observed experimentally. (24 pages, 1998) 8. J. Ohser, B. Steinbach, C. Lang Efficient Texture Analysis of Binary Images A new method of determining some characteristics of binary images is proposed based on a special linear filtering. This technique enables the estimation of the area fraction, the specific line length, and the specific integral of curvature. Furthermore, the specific length of the total projection is obtained, which gives detailed information about the texture of the image. The influence of lateral and directional resolution depending on the size of the applied filter mask is discussed in detail. The technique includes a method of increasing direc tional resolution for texture analysis while keeping lateral resolution as high as possible. (17 pages, 1998) 9. J. Orlik Homogenization for viscoelasticity of the integral type with aging and shrinkage A multiphase composite with periodic distributed inclusions with a smooth boundary is considered in this contribution. The composite component materials are supposed to be linear viscoelastic and aging (of the nonconvolution integral type, for which the Laplace transform with respect to time is not effectively applicable) and are subjected to isotropic shrinkage. The free shrinkage deformation can be considered as a fictitious temperature deformation in the behavior law. The procedure presented in this paper proposes a way to determine average (effective homogenized) viscoelastic and shrinkage (temperature) composite properties and the homogenized stress field from known properties of the components. This is done by the extension of the as ymptotic homogenization technique known for pure elastic nonhomogeneous bodies to the nonhomogeneous thermoviscoelasticity of the integral noncon- volution type. Up to now, the homogenization theory has not covered viscoelasticity of the integral type. SanchezPalencia (1980), Francfort & Suquet (1987) (see [2], [9]) have considered homogenization for viscoelasticity of the differential form and only up to the first derivative order. The integralmodeled viscoelasticity is more general then the differential one and includes almost all known differential models. The homogenization procedure is based on the construction of an asymptotic solution with respect to a period of the composite struc ture. This reduces the original problem to some auxiliary boundary value problems of elasticity and viscoelasticity on the unit periodic cell, of the same type as the original non-homogeneous problem. The existence and uniqueness results for such problems were obtained for kernels satisfying some constrain conditions. This is done by the extension of the Volterra integral operator theory to the Volterra operators with respect to the time, whose 1 kernels are space linear operators for any fixed time variables. Some ideas of such approach were proposed in [11] and [12], where the Volterra operators with kernels depending additionally on parameter were considered. This manuscript delivers results of the same nature for the case of the spaceoperator kernels. (20 pages, 1998) 10. J. Mohring Helmholtz Resonators with Large Aperture The lowest resonant frequency of a cavity resonator is usually approximated by the classical Helmholtz formula. However, if the opening is rather large and the front wall is narrow this formula is no longer valid. Here we present a correction which is of third order in the ratio of the diameters of aperture and cavity. In addition to the high accuracy it allows to estimate the damping due to radiation. The result is found by applying the method of matched asymptotic expansions. The correction contains form factors describing the shapes of opening and cavity. They are computed for a number of standard geometries. Results are compared with numerical computations. (21 pages, 1998) 11. H. W. Hamacher, A. Schöbel On Center Cycles in Grid Graphs Finding “good” cycles in graphs is a problem of great interest in graph theory as well as in locational analysis. We show that the center and median problems are NP hard in general graphs. This result holds both for the variable cardinality case (i.e. all cycles of the graph are considered) and the fixed cardinality case (i.e. only cycles with a given cardinality p are feasible). Hence it is of interest to investigate special cases where the problem is solvable in polynomial time. In grid graphs, the variable cardinality case is, for instance, trivially solvable if the shape of the cycle can be chosen freely. If the shape is fixed to be a rectangle one can analyze rectangles in grid graphs with, in sequence, fixed dimension, fixed cardinality, and variable cardinality. In all cases a complete charac terization of the optimal cycles and closed form expressions of the optimal objec tive values are given, yielding polynomial time algorithms for all cases of center rectangle problems. Finally, it is shown that center cycles can be chosen as rectangles for small cardinalities such that the center cycle problem in grid graphs is in these cases completely solved. (15 pages, 1998) 12. H. W. Hamacher, K.-H. Küfer Inverse radiation therapy planning a multiple objective optimisation approach 15. M. Junk, S. V. Raghurame Rao A new discrete velocity method for NavierStokes equations For some decades radiation therapy has been proved successful in cancer treatment. It is the major task of clinical radiation treatment planning to realize on the one hand a high level dose of radiation in the cancer tissue in order to obtain maximum tumor control. On the other hand it is obvious that it is absolutely necessary to keep in the tissue outside the tumor, particularly in organs at risk, the unavoidable radiation as low as possible. No doubt, these two objectives of treatment planning - high level dose in the tumor, low radiation outside the tumor - have a basically contradictory nature. Therefore, it is no surprise that inverse mathematical models with dose distribution bounds tend to be infeasible in most cases. Thus, there is need for approximations compromising between overdosing the organs at risk and underdosing the target volume. Differing from the currently used time consuming iterative approach, which measures deviation from an ideal (non-achievable) treatment plan using recursively trial-and-error weights for the organs of interest, we go a new way trying to avoid a priori weight choices and consider the treatment planning problem as a multiple objec tive linear programming problem: with each organ of interest, target tissue as well as organs at risk, we associate an objective function measuring the maximal deviation from the prescribed doses. We build up a data base of relatively few efficient solutions representing and approximating the variety of Pareto solutions of the multiple objective linear programming problem. This data base can be easily scanned by physicians looking for an adequate treatment plan with the aid of an appropriate online tool. (14 pages, 1999) The relation between the Lattice Boltzmann Method, which has recently become popular, and the Kinetic Schemes, which are routinely used in Computational Fluid Dynamics, is explored. A new discrete velocity model for the numerical solution of Navier-Stokes equations for incompressible fluid flow is presented by combining both the approaches. The new scheme can be interpreted as a pseudo-compressibility method and, for a particular choice of parameters, this interpretation carries over to the Lattice Boltzmann Method. (20 pages, 1999) 13. C. Lang, J. Ohser, R. Hilfer On the Analysis of Spatial Binary Images This paper deals with the characterization of micro scopically heterogeneous, but macroscopically homogeneous spatial structures. A new method is presented which is strictly based on integral-geometric formulae such as Crofton’s intersection formulae and Hadwiger’s recursive definition of the Euler number. The corresponding algorithms have clear advantages over other techniques. As an example of application we consider the analysis of spatial digital images produced by means of Computer Assisted Tomography. (20 pages, 1999) 14. M. Junk On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes A general approach to the construction of discrete equilibrium distributions is presented. Such distribution func tions can be used to set up Kinetic Schemes as well as Lattice Boltzmann methods. The general principles are also applied to the construction of Chapman Enskog distributions which are used in Kinetic Schemes for compressible Navier-Stokes equations. (24 pages, 1999) 16. H. Neunzert Mathematics as a Key to Key Technologies The main part of this paper will consist of examples, how mathematics really helps to solve industrial problems; these examples are taken from our Institute for Industrial Mathematics, from research in the Technomathematics group at my university, but also from ECMI groups and a company called TecMath, which originated 10 years ago from my university group and has already a very successful history. (39 pages (4 PDF-Files), 1999) 17. J. Ohser, K. Sandau Considerations about the Estimation of the Size Distribution in Wicksell’s Corpuscle Problem Wicksell’s corpuscle problem deals with the estimation of the size distribution of a population of particles, all having the same shape, using a lower dimensional sampling probe. This problem was originary formulated for particle systems occurring in life sciences but its solution is of actual and increasing interest in materials science. From a mathematical point of view, Wicksell’s problem is an inverse problem where the interesting size distribution is the unknown part of a Volterra equation. The problem is often regarded ill-posed, because the structure of the integrand implies unstable numerical solutions. The accuracy of the numerical solutions is considered here using the condition number, which allows to compare different numerical methods with different (equidistant) class sizes and which indicates, as one result, that a finite section thickness of the probe reduces the numerical problems. Furthermore, the relative error of estimation is computed which can be split into two parts. One part consists of the relative discretization error that increases for increasing class size, and the second part is related to the relative statistical error which increases with decreasing class size. For both parts, upper bounds can be given and the sum of them indicates an optimal class width depending on some specific constants. (18 pages, 1999) 18. E. Carrizosa, H. W. Hamacher, R. Klein, S. Nickel Solving nonconvex planar location problems by finite dominating sets It is well-known that some of the classical location problems with polyhedral gauges can be solved in polynomial time by finding a finite dominating set, i. e. a finite set of candidates guaranteed to contain at least one optimal location. In this paper it is first established that this result holds for a much larger class of problems than currently considered in the literature. The model for which this result can be proven includes, for instance, location problems with attraction and repulsion, and location-allocation problems. Next, it is shown that the approximation of general gauges by polyhedral ones in the objective function of our general model can be analyzed with regard to the subsequent error in the optimal objec tive value. For the approximation problem two different approaches are described, the sandwich procedure and the greedy algorithm. Both of these approaches lead - for fixed epsilon - to polynomial approximation algorithms with accuracy epsilon for solving the general model considered in this paper. Keywords: Continuous Location, Polyhedral Gauges, Finite Dominating Sets, Approximation, Sandwich Algo rithm, Greedy Algorithm (19 pages, 2000) 19. A. Becker A Review on Image Distortion Measures Within this paper we review image distortion measures. A distortion measure is a criterion that assigns a “quality number” to an image. We distinguish between mathematical distortion measures and those distortion measures in-cooperating a priori knowledge about the imaging devices ( e. g. satellite images), image processing algorithms or the human physiology. We will consider representative examples of different kinds of distortion measures and are going to discuss them. Keywords: Distortion measure, human visual system (26 pages, 2000) 20. H. W. Hamacher, M. Labbé, S. Nickel, T. Sonneborn Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem We examine the feasibility polyhedron of the unca pacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet–defining. We show its superior computational per formance by benchmarking it on a well known data set. Keywords: integer programming, hub location, facility location, valid inequalities, facets, branch and cut (21 pages, 2000) 21. H. W. Hamacher, A. Schöbel Design of Zone Tariff Systems in Public Transpor tation Given a public transportation system represented by its stops and direct connections between stops, we consider two problems dealing with the prices for the customers: The fare problem in which subsets of stops are already aggregated to zones and “good” tariffs have to be found in the existing zone system. Closed form solutions for the fare problem are presented for three objective functions. In the zone problem the design of the zones is part of the problem. This problem is NP hard and we therefore propose three heuristics which prove to be very successful in the redesign of one of Germany’s transpor tation systems. (30 pages, 2001) 22. D. Hietel, M. Junk, R. Keck, D. Teleaga: The Finite-Volume-Particle Method for Conservation Laws In the Finite-Volume-Particle Method (FVPM), the weak formulation of a hyperbolic conservation law is discretized by restricting it to a discrete set of test functions. In contrast to the usual Finite-Volume approach, the test functions are not taken as characteristic functions of the control volumes in a spatial grid, but are chosen from a partition of unity with smooth and overlapping partition functions (the particles), which can even move along pre- scribed velocity fields. The information exchange between particles is based on standard numerical flux func tions. Geometrical information, similar to the surface area of the cell faces in the Finite-Volume Method and the corresponding normal directions are given as integral quantities of the partition functions. After a brief derivation of the Finite-Volume-Particle Method, this work focuses on the role of the geometric coeffi cients in the scheme. (16 pages, 2001) 23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, S. Nickel Location Software and Interface with GIS and Supply Chain Management The objective of this paper is to bridge the gap between location theory and practice. To meet this objective focus is given to the development of software capable of addressing the different needs of a wide group of users. There is a very active community on location theory encompassing many research fields such as operations research, computer science, mathematics, engineering, geography, economics and marketing. As a result, people working on facility location problems have a very diverse background and also different needs regarding the soft ware to solve these problems. For those interested in non-commercial applications (e. g. students and researchers), the library of location algorithms (LoLA can be of considerable assistance. LoLA contains a collection of efficient algorithms for solving planar, network and discrete facility location problems. In this paper, a detailed description of the func tionality of LoLA is presented. In the fields of geography and marketing, for instance, solving facility location problems requires using large amounts of demographic data. Hence, members of these groups (e. g. urban planners and sales managers) often work with geographical information too s. To address the specific needs of these users, LoLA was inked to a geographical information system (GIS) and the details of the combined functionality are described in the paper. Finally, there is a wide group of prac titioners who need to solve large problems and require special purpose soft ware with a good data inter face. Many of such users can be found, for example, in the area of supply chain management (SCM). Logistics activities involved in strategic SCM include, among others, facility location planning. In this paper, the development of a commercial location soft ware tool is also described. The too is embedded in the Advanced Planner and Optimizer SCM software developed by SAP AG, Walldorf, Germany. The paper ends with some conclusions and an outlook to future ac tivities. Keywords: facility location, software development, geographical information systems, supply chain management. (48 pages, 2001) 24. H. W. Hamacher, S. A. Tjandra Mathematical Modelling of Evacuation Problems: A State of Art This paper details models and algorithms which can be applied to evacuation problems. While it concentrates on building evacuation many of the results are applicable also to regional evacuation. All models consider the time as main parameter, where the travel time between components of the building is part of the input and the overall evacuation time is the output. The paper distinguishes between macroscopic and microscopic evacuation models both of which are able to capture the evacuees’ movement over time. Macroscopic models are mainly used to produce good lower bounds for the evacuation time and do not consider any individual behavior during the emergency situation. These bounds can be used to analyze existing buildings or help in the design phase of planning a building. Macroscopic approaches which are based on dynamic network flow models (minimum cost dynamic flow, maximum dynamic flow, universal maximum flow, quickest path and quickest flow) are described. A special feature of the presented approach is the fact, that travel times of evacuees are not restricted to be constant, but may be density dependent. Using multicriteria optimization priority regions and blockage due to fire or smoke may be considered. It is shown how the modelling can be done using time parameter either as discrete or continuous parameter. Microscopic models are able to model the individual evacuee’s charac teristics and the interaction among evacuees which influence their movement. Due to the corresponding huge amount of data one uses simulation approaches. Some probabilistic laws for individual evacuee’s movement are presented. Moreover ideas to model the evacuee’s movement using cellular automata (CA) and resulting software are presented. In this paper we will focus on macroscopic models and only summarize some of the results of the microscopic approach. While most of the results are applicable to general evacuation situations, we concentrate on building evacuation. (44 pages, 2001) 25. J. Kuhnert, S. Tiwari Grid free method for solving the Poisson equation A Grid free method for solving the Poisson equation is presented. This is an iterative method. The method is based on the weighted least squares approximation in which the Poisson equation is enforced to be satisfied in every iterations. The boundary conditions can also be enforced in the iteration process. This is a local approximation procedure. The Dirichlet, Neumann and mixed boundary value problems on a unit square are presented and the analytical solutions are compared with the exact solutions. Both solutions matched perfectly. Keywords: Poisson equation, Least squares method, Grid free method (19 pages, 2001) 26. T. Götz, H. Rave, D. Reinel-Bitzer, K. Steiner, H. Tiemeier Simulation of the fiber spinning process To simulate the influence of process parameters to the melt spinning process a fiber model is used and coupled with CFD calculations of the quench air flow. In the fiber model energy, momentum and mass balance are solved for the polymer mass flow. To calculate the quench air the Lattice Boltzmann method is used. Simulations and experiments for different process parameters and hole configurations are compared and show a good agreement. Keywords: Melt spinning, fiber model, Lattice Bolt zmann, CFD (19 pages, 2001) 27. A. Zemitis On interaction of a liquid film with an obstacle In this paper mathematical models for liquid films generated by impinging jets are discussed. Attention is stressed to the interaction of the liquid film with some obstacle. S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)] found that the liquid film generated by impinging jets is very sensitive to properties of the wire which was used as an obstacle. The aim of this presentation is to propose a modification of the Taylor’s model, which allows to simulate the film shape in cases, when the angle between jets is different from 180°. Numerical results obtained by discussed models give two different shapes of the liquid film similar as in Taylors experiments. These two shapes depend on the regime: either droplets are produced close to the obstacle or not. The difference between two regimes becomes larger if the angle between jets decreases. Existence of such two regimes can be very essential for some applications of impinging jets, if the generated liquid film can have a contact with obstacles. Keywords: impinging jets, liquid film, models, numerical solution, shape (22 pages, 2001) 28. I. Ginzburg, K. Steiner Free surface lattice-Boltzmann method to model the filling of expanding cavities by Bingham Fluids The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Bolt zmann method in two and three dimensions. These models combine the regularized Bingham model for viscoplastic with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is considered as vacuum. The boundary conditions at the curved liquid-vacuum interface are met without any geometrical front reconstruc tion from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with available theoretical and numerical analysis. Keywords: Generalized LBE, free-surface phenomena, interface boundary conditions, filling processes, Bingham viscoplastic model, regularized models (22 pages, 2001) 29. H. Neunzert »Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann« Vortrag anlässlich der Verleihung des Akademiepreises des Landes Rheinland-Pfalz am 21.11.2001 Was macht einen guten Hochschullehrer aus? Auf diese Frage gibt es sicher viele verschiedene, fachbezogene Antworten, aber auch ein paar allgemeine Gesichtspunkte: es bedarf der »Leidenschaft« für die Forschung (Max Weber), aus der dann auch die Begeisterung für die Lehre erwächst. Forschung und Lehre gehören zusammen, um die Wissenschaft als lebendiges Tun vermitteln zu können. Der Vortrag gibt Beispiele dafür, wie in angewandter Mathematik Forschungsaufgaben aus praktischen Alltagsproblemstellungen erwachsen, die in die Lehre auf verschiedenen Stufen (Gymnasium bis Graduier tenkolleg) einfließen; er leitet damit auch zu einem aktuellen Forschungsgebiet, der Mehrskalenanalyse mit ihren vielfältigen Anwendungen in Bildverarbeitung, Materialentwicklung und Strömungsmechanik über, was aber nur kurz gestreift wird. Mathematik erscheint hier als eine moderne Schlüsseltechnologie, die aber auch enge Beziehungen zu den Geistes- und Sozialwissenschaf ten hat. Keywords: Lehre, Forschung, angewandte Mathematik, Mehr skalenanalyse, Strömungsmechanik (18 pages, 2001) 30. J. Kuhnert, S. Tiwari Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations A Lagrangian particle scheme is applied to the projection method for the incompressible Navier-Stokes equations. The approximation of spatial derivatives is obtained by the weighted least squares method. The pressure Poisson equation is solved by a local iterative procedure with the help of the least squares method. Numerical tests are performed for two dimensional cases. The Couette flow, Poiseuelle flow, decaying shear flow and the driven cavity flow are presented. The numerical solutions are obtained for stationary as well as instationary cases and are compared with the analytical solutions for channel flows. Finally, the driven cavity in a unit square is considered and the stationary solution obtained from this scheme is compared with that from the finite element method. Keywords: Incompressible Navier-Stokes equations, Meshfree method, Projection method, Particle scheme, Least squares approximation AMS subject classification: 76D05, 76M28 (25 pages, 2001) 31. R. Korn, M. Krekel Optimal Portfolios with Fixed Consumption or Income Streams We consider some portfolio optimisation problems where either the investor has a desire for an a priori specified consumption stream or/and follows a deterministic pay in scheme while also trying to maximize expected utility from final wealth. We derive explicit closed form solutions for continuous and discrete monetary streams. The mathematical method used is classical stochastic control theory. Keywords: Portfolio optimisation, stochastic control, HJB equation, discretisation of control problems. (23 pages, 2002) 32. M. Krekel Optimal portfolios with a loan dependent credit spread If an investor borrows money he generally has to pay higher interest rates than he would have received, if he had put his funds on a savings account. The classical model of continuous time portfolio optimisation ignores this effect. Since there is obviously a connection between the default probability and the total percentage of wealth, which the investor is in debt, we study portfolio optimisation with a control dependent interest rate. Assuming a logarithmic and a power utility function, respectively, we prove explicit formulae of the optimal control. Keywords: Portfolio optimisation, stochastic control, HJB equation, credit spread, log utility, power utility, non-linear wealth dynamics (25 pages, 2002) 33. J. Ohser, W. Nagel, K. Schladitz The Euler number of discretized sets - on the choice of adjacency in homogeneous lattices Two approaches for determining the Euler-Poincaré charac teristic of a set observed on lattice points are considered in the context of image analysis { the integral geometric and the polyhedral approach. Information about the set is assumed to be available on lattice points only. In order to retain properties of the Euler number and to provide a good approximation of the true Euler number of the original set in the Euclidean space, the appropriate choice of adjacency in the lattice for the set and its background is crucial. Adjacencies are defined using tessellations of the whole space into polyhedrons. In R 3 , two new 14 adjacencies are introduced additionally to the well known 6 and 26 adjacencies. For the Euler number of a set and its complement, a consistency relation holds. Each of the pairs of adjacencies (14:1; 14:1), (14:2; 14:2), (6; 26), and (26; 6) is shown to be a pair of complementary adjacencies with respect to this relation. That is, the approximations of the Euler numbers are consistent if the set and its background (complement) are equipped with this pair of adjacencies. Furthermore, sufficient conditions for the correctness of the approximations of the Euler number are given. The analysis of selected microstruc tures and a simulation study illustrate how the estimated Euler number depends on the chosen adjacency. It also shows that there is not a uniquely best pair of adjacencies with respect to the estimation of the Euler number of a set in Euclidean space. Keywords: image analysis, Euler number, neighborhod relationships, cuboidal lattice (32 pages, 2002) 34. I. Ginzburg, K. Steiner Lattice Boltzmann Model for Free-Surface flow and Its Application to Filling Process in Casting A generalized lattice Boltzmann model to simulate freesurface is constructed in both two and three dimensions. The proposed model satisfies the interfacial boundary conditions accurately. A distinctive feature of the model is that the collision processes is carried out only on the points occupied partially or fully by the fluid. To maintain a sharp interfacial front, the method includes an anti-diffusion algorithm. The unknown distribution functions at the interfacial region are constructed according to the first order Chapman-Enskog analysis. The interfacial boundary conditions are satis- fied exactly by the coef ficients in the Chapman-Enskog expansion. The distribution functions are naturally expressed in the local inter facial coordinates. The macroscopic quantities at the inter face are extracted from the least-square solutions of a locally linearized system obtained from the known distribution functions. The proposed method does not require any geometric front construction and is robust for any interfacial topology. Simulation results of realistic filling process are presented: rectangular cavity in two dimensions and Hammer box, Campbell box, Shef field box, and Motorblock in three dimensions. To enhance the stability at high Reynolds numbers, various upwind-type schemes are developed. Free-slip and no-slip boundary conditions are also discussed. Keywords: Lattice Bolt zmann models; free-surface phenomena; interface boundary conditions; filling processes; injection molding; volume of fluid method; interface boundary conditions; advec tion-schemes; upwind-schemes (54 pages, 2002) 35. M. Günther, A. Klar, T. Materne, R. Wegener Multivalued fundamental diagrams and stop and go waves for continuum traffic equations In the present paper a kinetic model for vehicular traffic leading to multivalued fundamental diagrams is developed and investigated in detail. For this model phase transitions can appear depending on the local density and velocity of the flow. A derivation of associated macroscopic traffic equations from the kinetic equation is given. Moreover, numerical experiments show the appearance of stop and go waves for highway traffic with a bottleneck. Keywords: traffic flow, macroscopic equations, kinetic derivation, multivalued fundamental diagram, stop and go waves, phase transitions (25 pages, 2002) 36. S. Feldmann, P. Lang, D. Prätzel-Wolters Parameter influence on the zeros of network determinants To a network N(q) with determinant D(s;q) depending on a parameter vector q Î Rr via identification of some of its vertices, a network N^ (q) is assigned. The paper deals with procedures to find N ^ (q), such that its determinant D^ (s;q) admits a factorization in the determinants of appropriate subnetworks, and with the estimation of the deviation of the zeros of D^ from the zeros of D. To solve the estimation problem state space methods are applied. Keywords: Networks, Equicofactor matrix polynomials, Realization theory, Matrix perturbation theory (30 pages, 2002) 37. K. Koch, J. Ohser, K. Schladitz Spectral theory for random closed sets and estimating the covariance via frequency space A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. Definition and proof of existence of the Bartlett spec trum of a stationary random closed set as well as the proof of a Wiener-Khintchine theorem for the power spectrum are used to two ends: First, well known second order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second order characteristics in frequency space. Examples show, that in some cases information about the random closed set is easier to obtain from these charac teristics in frequency space than from their real world counterparts. Keywords: Random set, Bartlett spectrum, fast Fourier transform, power spectrum (28 pages, 2002) 38. D. d’Humières, I. Ginzburg Multi-reflection boundary conditions for lattice Boltzmann models We present a unified approach of several boundary conditions for lattice Boltzmann models. Its general framework is a generalization of previously introduced schemes such as the bounce-back rule, linear or quadratic interpolations, etc. The objectives are two fold: first to give theoretical tools to study the existing boundary conditions and their corresponding accuracy; secondly to design formally third- order accurate boundary conditions for general flows. Using these boundary conditions, Couette and Poiseuille flows are exact solution of the lattice Boltzmann models for a Reynolds number Re = 0 (Stokes limit). Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates and for Navier-Stokes flows in periodic arrays of cylinders for Re < 200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multi-reflection boundary conditions, reaching a level of accuracy close to the quasi-analytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multi-reflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder. Keywords: lattice Boltzmann equation, boudary condistions, bounce-back rule, Navier-Stokes equation (72 pages, 2002) 39. R. Korn Elementare Finanzmathematik Im Rahmen dieser Arbeit soll eine elementar gehaltene Einführung in die Aufgabenstellungen und Prinzipien der modernen Finanzmathematik gegeben werden. Insbesondere werden die Grundlagen der Modellierung von Aktienkursen, der Bewertung von Optionen und der Portfolio-Optimierung vorgestellt. Natürlich können die verwendeten Methoden und die entwickelte Theorie nicht in voller Allgemeinheit für den Schuluntericht ver wendet werden, doch sollen einzelne Prinzipien so heraus gearbeitet werden, dass sie auch an einfachen Beispielen verstanden werden können. Keywords: Finanzmathematik, Aktien, Optionen, Portfolio-Optimierung, Börse, Lehrerweiterbildung, Mathe matikunterricht (98 pages, 2002) 40. J. Kallrath, M. C. Müller, S. Nickel Batch Presorting Problems: Models and Complexity Results In this paper we consider short term storage systems. We analyze presorting strategies to improve the effiency of these storage systems. The presorting task is called Batch PreSorting Problem (BPSP). The BPSP is a variation of an assigment problem, i. e., it has an assigment problem kernel and some additional constraints. We present different types of these presorting problems, introduce mathematical programming formulations and prove the NP-completeness for one type of the BPSP. Experiments are carried out in order to compare the different model formulations and to investigate the behavior of these models. Keywords: Complexity theory, Integer programming, Assigment, Logistics (19 pages, 2002) Status quo: November 2002
© Copyright 2026 Paperzz