Proposition. Suppose X1 ∼ N (µ1 , σ12 ) and X2 ∼ N (µ2 , σ22 ) are independent, then X1 + X2 ∼ N (µ1 + µ2 , σ12 + σ22 ). Proof. Let us write Z = X1 + X2 . Then, as shown previously, Z ∞ fX1 (z − y)fX2 (y) dy fZ (z) = −∞ Z ∞ 1 (z − y − µ1 )2 (y − µ2 )2 = dy exp − − 2πσ1 σ2 −∞ 2σ12 2σ22 To proceed, we must complete the square in the exponent. In general we have b 2 b2 ay 2 + by + c = a y + 2a + c − 4a . In our particular case, (z − y − µ1 )2 (y − µ2 )2 + σ12 σ2 2 1 1 z − µ1 µ2 (z − µ1 )2 (µ2 )2 2 = 2 + 2 y −2 + 2 y+ + 2 σ1 σ1 σ12 σ2 σ12 σ2 2 2 2 2 2 σ1 + σ2 σ1 σ2 z − µ1 µ2 (z − µ1 )2 (µ2 )2 2 = 2 2 (y − y0 ) − 2 + 2 + + 2 σ1 σ2 σ1 + σ22 σ12 σ2 σ12 σ2 where σ12 σ22 z − µ1 µ2 y0 = 2 + 2 σ1 + σ22 σ12 σ2 As we will see, there is no advantage to simplifying the formula for y0 ; however we do need to simplify the last two terms. After some effort, we find σ12 + σ22 (z − µ1 − µ2 )2 (z − y − µ1 )2 (y − µ2 )2 2 + = (y − y ) + . 0 σ12 σ22 σ12 σ22 σ12 + σ22 Consequently, 2 Z ∞ σ1 + σ22 (z − µ1 − µ2 )2 1 2 exp − (y − y0 ) − fZ (z) = dy 2πσ1 σ2 −∞ 2σ12 σ22 2(σ12 + σ22 ) Now, recalling the general result Z ∞ √ (y − y0 )2 exp − dy = 2πσ 2 , 2 2σ −∞ which was shown in class, we deduce that s σ12 σ22 1 (z − µ1 − µ2 )2 fZ (z) = exp − 2π 2πσ1 σ2 2(σ12 + σ22 ) σ12 + σ22 1 (z − µ1 − µ2 )2 =p exp − . 2(σ12 + σ22 ) 2π(σ12 + σ22 ) This then shows that Z ∼ N (µ1 + µ2 , σ12 + σ22 ). 1
© Copyright 2025 Paperzz