Electroproduction of soft pions at high Q2 Axial Form Factor Physics at CLAS May. 29, 2008 Kijun Park Univ. of South Carolina Perspective of soft pion in terms of Q2 at threshold 2 Q ~ 0GeV 2 Kroll-Ruderman 1954 Low-Energy Theorem (LET) for Q2=0 Restriction to the charged pion χral symmetry + current algebra for electroproduction Q / m GeV (~ 1GeV ) 2 2 Re-derived LETs Current algebra + PCAC χral perturbation theory 1960s Nambu, Laurie, Schrauner 2 1970s Vainshtein, Zakharov Q / m 1990s Scherer, Koch 2 pQCD factorization methods Brodsky, Lepage, Efremov, Radyunshkin, Pobylitsa, Polyakov, Strikman, et al Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Perspective of soft pion in terms of Q2 at threshold Q ~ 1 10GeV 2 2 Light Corn Sum Rule Reproduce LET for Q2 ~ 1GeV2 Reproduce pQCD for Q2→∞ Extended for near pion threshold regions Axial Vector & Tensor Form Factor May. 29, 2008 V. Braun 2007 K. Park Correlation Function Axial Vector & Tensor Form Factor May. 29, 2008 K. Park LCSR- based model for the Q2 dependence of the electric, longitudinal Partial Waves at threshold [GeV-1] GD (Q 2 ) 1/(1 Q 2 / 02 )2 02 0.71GeV 2 Light Cone Sum Rule V. M. Braun, arXiv:0709.2319v1 Axial Vector & Tensor Form Factor May. 29, 2008 K. Park LCSR- based model for the Q2 dependence of the electric, longitudinal Partial Waves at threshold [GeV-1] GD (Q 2 ) 1/(1 Q 2 / 02 )2 02 0.71GeV 2 Light Cone Sum Rule V. M. Braun, arXiv:0709.2319v1 Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Differential Cross section em k f d 2 d * | | 2 2 8 W W mN | | T L TT cos(2 ) 2 (1 ) LT cos( ) 2 2 (1 ) LT ' sin( ) Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Partial Wave Series with Legendre Polynomials from S.F. Structure Functions vs. Legendre moments E0 Sensitive ! E0 Insensitive ! l 1 E0 Sensitive ! Legendre moments vs. Multipoles Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Legendre moments vs. Form Factors N 1 G G N 2 GM G E A0 D0T L T L 1 A1 D 1 2 f 2 2 2 4k 2Q 2 N 2 c2 g A2 k f 2 2 2 2 4 c g k 2 A f 2 N 4 2 i Q mN GM L ki G2 2 mN GE 2 G1 2 2 2 W mN W mN mN 1 4c g A ki k f 2 N 2 N 2 Q G Re G m G Re G 1 L N E 2 M f W 2 mN2 C0 C0TT 0 D0 D LT 0 1 c g A ki k f N N 2 Qm G Re G 4 G Re G 2 E 1 N M f W 2 mN2 Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Legendre moments vs. Form Factors N 1 G G N 2 GM G E A0 D0T L T L 1 A1 D 1 2 f 2 2 2 4k 2Q 2 N 2 c2 g A2 k f 2 2 2 2 4 c g k 2 A f 2 N 4 2 i Q mN GM L ki G2 2 mN GE 2 G1 2 2 2 W mN W mN mN 1 4c g A ki k f 2 N 2 N 2 Q G Re G m G Re G 1 L N E 2 M f W 2 mN2 C0 C0TT 0 D0 D LT 0 1 c g A ki k f N N 2 Qm G Re G 4 G Re G 2 E 1 N M f W 2 mN2 Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Kinematical Coverage * E=5.754GeV, LH2 target(unpol.) * Oct. 2001-Jan. 2002 Variable Unit Range # Bin Width Q2 GeV2 2.05 ~ 4.16 5 various W GeV 1.11 ~ 1.13 3 0.02 -1.0~ 1.0 10 0.2 0. ~ 360. 12 30 cosθ*π φ *π Deg. Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Analysis -detail Cross check Acceptance calculation - Based on phase space event generator - GENEV Re-calculation of Rad. Corr. - Based on new binning (12φ) from ExcluRad Study of ExcluRad model dependence - MAID2003 vs. Sato-Lee 2004 Apply more tight physics cuts - electron, pion fiducial cuts Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Analysis -detail Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Cross section (φ*) • φ* – dependent cross section in term of W, Q2, cosθ* • Various physics models Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Cross section (φ*) • φ* – dependent cross section in term of W, Q2, cosθ* • Various physics models Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Cross section (φ*) • φ* – dependent cross section in term of W, Q2, cosθ* • Various physics models Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Cross section (φ*) • φ* – dependent cross section in term of W, Q2, cosθ* • Various physics models Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Cross section (φ*) • φ* – dependent cross section in term of W, Q2, cosθ* • Various physics models Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Structure Function T L E0 Sensitive ! Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Structure Function TT E0 Sensitive ! Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Preliminary Structure Function LT E0 Insensitive ! Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Legendre Moments (T+L) Preliminary Preliminary Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Legendre Moments (TT) Preliminary Preliminary Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Preliminary results Legendre Moments (LT) Preliminary Preliminary Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Legendre moments vs. Form Factors for nπ+channel n 1 n N 1 N G G G2 G2 GM G GE G 0 n M n E P.E. Bosted Phys. Rev. C 51 (1995) Due to low-energy theorem(LET) relates the S-wave multipoles or equivalently, the form factor G1, G2 @ threshold m 0 Q2 n g A Q2 1 n G1 GM GA 2 2 2 mN 2 2 Q 2mN n 2 G 2 N 2 N 2 2 g Am n 2 GE 0? Q 2m Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Legendre moments vs. Form Factors for nπ+channel n 1 n N 1 N G G G2 G2 GM G GE G 0 Assumption in LCSR V.Braun arXiv:0710.3265 n M n E Due to low-energy theorem(LET) relates the S-wave multipoles or equivalently, the form factor G1, G2 @ threshold m 0 Q2 n g A Q2 1 n G1 GM GA 2 2 2 mN 2 2 Q 2mN n 2 G 2 N 2 N 2 2 g Am n 2 GE 0? Q 2m Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Legendre moments vs. Form Factors n 1 G A0 D0T L T L 1 A1 D 1 2 f n 2 G GMn G En 2 2 2 4k 2Q 2 N 2 c2 g A2 k f 2 2 2 2 4 c g k 2 A f 2 N 4 2 i Q mN GM L ki G2 2 mN GE 2 G1 2 2 2 W mN W mN mN 1 4c g A ki k f 2 N 2 N 2 Q G Re G m G Re G 1 L N E 2 M f W 2 mN2 C0 C0TT 0 D0 D LT 0 1 c g A ki k f N N 2 Qm G Re G 4 G Re G 2 E 1 N M f W 2 mN2 Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Legendre moments vs. Form Factors n 1 G 1 2 f A0 D0T L T L 1 A1 D C0 C TT 0 n 2 G GMn G En 4k 2Q 2 n 2 c2 g A2 k f 2 2 2 n 2 2 Q m pGM i 2 G1 2 W mp m p g A 1.267 1 4c g A ki k f 2 n n 2 Q GM Re G1 2 2 f W m p c 2 f 93MeV 0 D0 D0LT 0 Axial Vector & Tensor Form Factor n x1 iy1 n x2 iy2 G1 G2 May. 29, 2008 K. Park Legendre moments vs. Form Factors n 1 G n 0 E n 0 L n 2 G 4 em Q 2 8 4 em Q 32 Q 4m 2 2 p 3 p m f 2 Q 4m 2 3 p m f 2 p n 1 G n 2 G GD Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Very Preliminary results Q2 dependence of the Normalized E0+ Multipole by dipole Lines : MAID07 Bold : Real Thin : Imaginary MAID03 SLee04 Axial Vector & Tensor Form Factor May. 29, 2008 K. Park Summary and Future plans Complete Cross check Acceptance calculation based on different simulation Re-calculation of Rad. Corr. - based on new binning Extract new cross sections based on above Extract very preliminary E0+/GD for channel Still ….. Double check out the cross section more careful work to get form factor after more frequent communication with theory group Calculate the systematic errors Axial Vector & Tensor Form Factor May. 29, 2008 K. Park MAID2007 Bold –Real part Thin – Imaginary part Axial Vector & Tensor Form Factor May. 29, 2008 K. Park MAID2007 Bold –Real part Thin – Imaginary part Axial Vector & Tensor Form Factor May. 29, 2008 K. Park
© Copyright 2026 Paperzz