CALCULUS 2 Name: _____________________________ WORKSHEET 0.1 1. find y if y 2. find 1 4 5 x 3x 3 x 2 5x 6 6 2 dy 8x if y 2 dx 7x 8 3. find f x if f x 3x 4 tan x 5 4. find dy if y sin 7 x cos3 x dx 5. find dy if 4xy 3y5 5x 7 9y dx 6. find the x-coordinate of any local max and min of f x 6x 3 12x 2 64x 6 7. find the intervals of concavity of y x 3 3x 2 4 CALCULUS 2 Name: _____________________________ WORKSHEET 0.2 Evaluate. 1. sin 5 6 2. cos 5. sec 4 6. cot 11 6 10 3 3 2 3. tan 4 3 4. csc 7. sec 7 2 8. tan 7 3 Draw one period of the following curves. Label both axes. 9. y 4 sin x 10. y 3 cos x 11. y 2 tan x Verify the following identities. 2 2 2 12. sec x sin x sec x 1 15. 1 2 csc x tan x 2 sec x cot x 13. cos x sec x 1 sin 2 x 16. 14. csc x sin x cot x cos x csc x cos 2 x sin x csc x CALCULUS 2 Name: _____________________________ WORKSHEET 3.2/3.3 Use the definition of the derivative, f ' x lim h 0 f (x h) f (x ) , to find f ' x for each function. h 1. f x x 2 x 3 2. f x 3 x 1 Find the derivative of each of the following. 3. y = −3x6 + 2x4 6. y = 1 1 2 3 2 3 x x x 9. y = 3x2 + 2 3 x4 4 4. y = 9 x 3 5. y = 2x−4 7. y = 3 8. y = 83 x 2 10. y = 24 x 7 64 3 x 5 10 x5 11. y = 1 x x 1 1 x x 12. Find the equation of the tangent to y = 2x2 + 3 at the point where x = 1. 13. Find the equation of the horizontal tangent to y = x2 + 2x – 3. 14. At which point(s) does the graph of the equation y 13 x 3 32 x 2 2x have a horizontal tangent line? 2 15. Find the equation of the tangent to y = 2 x 3 4x 12 at (1, −2). 16. Find the equation of the tangent to y 34 x 2 2 x at x = 4. CALCULUS 2 Name: _____________________________ WORKSHEET 3.4 Find f (x) for each of the following. 1. f(x) = 2 cos x – 3 sin x 2. f(x) = sec x − 3. f(x) = x – 4 csc x + 2 cot x 4. f(x) = cos 2 x sin 2 x 5. f(x) = 4 cos x sin x cos x 6. f(x) = 2 tan x cos x 1 sin 2 x 7. f(x) = x 2 csc 2 x x 2 cot 2 x 8. f(x) = csc xsin x cos x 9. f(x) = sec x tan x sec x tan x 10. f(x) = 7 3 sin x 11. f(x) = 2 cos x 5 cos 2 x 5 sin 2 x 12. f(x) = sec x 1 cot x Find the equation of the line tangent to the graph of y = sin x at the given x-coordinate. 13. x = 0 14. x = 15. x = π 2 CALCULUS 2 Name: _____________________________ WORKSHEET 3.3/3.4 Find the derivative of each of the following. 1. y = (3x2 + 6)(2x – 1) 2. y = (2 – x – 3x3)(7 + x5) 1 1 4. y = 2 3x 3 27 x x 5. y = 1 7. y = 5x 3 3. x2 1 3x y = (x3 + 7x2 – 8)(2x−3 + x−4) 6. y = x3 2 8. y = 6 9. y = 2x 1 x3 4x 1 x2 5 11. y = (x – 2)−1(2x3 – 1) x 1 12. y = (2 x 7 x 2 ) x 1 14. y = x tan x 15. y = 17. y = sin 2 x 18. y = x2 cos x 19. y = x3 sin x – 5 cos x 20. y = (x2 + 1) sec x 21. y = sec x tan x 22. y = csc x cot x 23. y = 10. y = 1 (2x 3)( x 1) 13. y = sin x cos x 16. y = sin x 1 cos x sin x sec x 1 x tan x 24. y = d2y Find for each of the following. dx 2 26. y = x2 sin x - 4 cos x 25. y = x cos x 27. Find the equation of the tangent to y = 28. At which point(s) does the graph of y = x at x = π cos x x have a horizontal tangent line? x 9 2 sin x x sin x cos x x x cos 2 x CALCULUS 2 Name: _____________________________ WORKSHEET 3.5-1 Find the derivative of each of the following. 1. y = (5x 2 2x 4) 4 3. y = 2. y = 2x 3 3x 2 4. y = 5. y = sin 3x + cos 5x 4x 1 3 5x 2 6 3 25 3x 7 4 6. y = 4 sec 5x 7. y = cos x 3 8. y = 1 cos 2 x 6 9. y = tan x 2 tan 2 x 10. y = sin 3 x cos 3 x 11. y = cot5(4x) 12. y = 3 cos2(2x) 13. y = sin(2x + 4)4 14. y = sin cossin x 15. y = cos 2 cos 4x 16. y sec 3 (2x 2 x 1) 17. Find the equation of the tangent to y = 3 x 2 4 at x = 2. 18. At which point(s) does the graph of y = 2x 3 x 2 4 have a horizontal tangent line? CALCULUS 2 Name: _____________________________ WORKSHEET 3.5-2 Find the derivative of each of the following. 1. y = 3x 2 4x 1 5 3. y = 5x 34 3x 53 8 7x 3 1 2. y = 2 2x 5 4. y = 4 2x 3 4x 2 9 5. y = tan4x sec2x 6. y = cot(2x - 1) csc(3x 1) 1 7. y = cos x 2 x 8. y = sin 2 x 1 cos 4x 9. y = 1 sin 4x sin x 10. y 1 cos x 2 CALCULUS 2 Name: _____________________________ WORKSHEET 3.6 Find dy for each of the following (by using implicit differentiation). dx 1. y3 2x 4 4. 2x y 3x 2x 2 7. y 2 x x 1 10. y 2 y 3 4x 13. x y3 x2 y x2 3. 4x 3 2y3 x 2. 2x 4 3y3 14 5 5. 2 3 2 3 6. x y 4 x y 100 8. x sin xy 9. sin y 3x 2 11. x y x y 1 12. y x 2 y3 x 3y2 14. y sin 3x 4y 15. cos 2 x cos 2 y cos2x 2y 2 16. Find the equation of the line tangent to the curve x 2 y2 1 at the point where x=1. 17. Find an equation of the line tangent to the graph of x 2 y2 8x 2 y2 at the point (−1, 1) . 3 CALCULUS 2 Name: _____________________________ WORKSHEET 4.2-4.6 -1 Identify the intervals where f is increasing, decreasing, concave upward and concave downward. Find the coordinates of any local extreme points and points of inflection. Then, graph. 1. f(x) = x3 – 3x + 2 2. f(x) = (x – 5)3 + 2 3. f(x) = x3 – 4. f(x) = 3x4 – 4x3 3 2 x2 – 6x + 2 CALCULUS 2 Name: _____________________________ WORKSHEET 4.2-4.6 -2 Identify the intervals where f is increasing, decreasing, concave upward and concave downward. Find the coordinates of any local extreme points and points of inflection. Then, graph. 6 1. f(x) = x 7 1 2. f(x) = 3x 3 x 2 3. f(x) = x 3 (x 5) CALCULUS 2 Name: _____________________________ CHAPTERS 3&4 PRACTICE TEST Find the derivative of each of the following. 1. y = 4x 5 6x 9 x5 x 2. y = 4π 3 3x 3. y = x 2 x 4. y = 7x 5 2x 3 x6 2x 1 x2 1 6. y = 3 ( x 5)(3x 1) 7. y = 2 sin x 6 cot x 8. y = 3 sec 2 x 3 tan 2 x csc x sinx cos 2 x 9. y = cos x 10. y = cosx 1 cosx 11. y = 3x x csc x 12. y = (1 x2 ) 5 13. y = sin 3 x 6x 4 14. y = cot( 4x ) 15. y = (2x 5) 3 ( x 2 5x ) 6 3x 2 16. y = x 1 17. y = cos 5 (4x 2 1) 18. sec y x 19. 5x 2 xy y 2x 20. cos( x 2 y) 2y x 21. Find the equation of the tangent to y2 2y 2x 1 at (7, 3). 22. Find the equation(s) of the horizontal tangent(s) to y = x 5 15x 3 2 . 5. y = 3 Identify the intervals on which the graph of f is increasing and decreasing and concave upward and concave downward, and find the coordinates of any local extreme points and points of inflection. Then graph the general shape of the function. 23. f(x) = –3x4 – 8x3 – 6 test: f ( x ) = _____________________ f ( x ) = ________________________ critical points: _______________ critical points: __________________ increasing: _______________ concave up: _______________ decreasing: _______________ concave down: _______________ local max(s): _______________ f f f pt(s) of inflection: _______________ local min(s): _______________ 24. f(x) = 5x 5 2x 2 test: f ( x ) = _____________________ f ( x ) = ________________________ critical points: _______________ critical points: __________________ f f f increasing: _______________ concave up: _______________ decreasing: _______________ concave down: _______________ local max(s): _______________ local min(s): _______________ pt(s) of inflection: _______________
© Copyright 2026 Paperzz