Line Integrals } In 2 dimensions: Let C be a smooth curve given by r : R Ñ R2 (from 1D to 2D) . rptq “ p xptq , yptq q } In 3 dimensions: Let C be a smooth curve given by r : R Ñ R3 (from 1D to 3D) rptq “ p xptq , yptq , zptq q Line integral Scalar function f returns a number Notation ª f ds Formula ª C Vector field F returns a vector ª C F ¨ dr (work done by F along C) } Special case: F “ rf (conservative field) C ª C ª f prptqq|r1 ptq| dt F ¨ T ds “ C ª C F prptqq ¨ r1 ptq dt ` ˘ ` ˘ rf ¨ dr “ f rpbq ´ f rpaq = f (end) - f (start) Surface Integrals } Let S be a surface with vector equation r : R2 Ñ R3 (from 2D to 3D) rpu, vq “ p xpu, vq , ypu, vq , zpu, vq q . Surface integral Scalar function f : R3 Ñ R f returns a number Vector field F : R3 Ñ R3 F “ pP, Q, Rq returns a vector Notation º º f px, y, zqdS S f prpu, vqq|ru ˆ rv | dA D º F ¨ dS S (flux of F across S) If S given by z “ gpx, yq Formula º D F ¨ n dS “ º D F ¨ pru ˆ rv q dA º c f px, y, gpx, yqq 1 ` D ´ ¯2 Bz Bx ` ´ ¯2 Bz By ˙ º ˆ Bg Bg ´P ´ Q ` R dA Bx By D dA Important Theorems . Green’s Theorem ˙ º ˆ BQ BP F ¨ dr “ P dx ` Qdy “ ´ dA Bx By C C ª ª D Recall: F “ pP, Qq is a vector field ª C Stokes’ Theorem º F ¨ dr “ curlF ¨ dS S C = boundary of S (+ orientation) Remember curlF “ ˆ F divF “ ¨ F º S Divergence Theorem ¡ F ¨ dS “ divF dV E . . Regular Integrals . Double Integrals Green's Theorem Parametrize the curve C, i.e. find r(t) " rectangular polar Parametrize the surface S, i.e. find r(u,v) Line Integrals } Scalar function f : } Vector field F : Special cases: ˚ F is conservative ˚ C is a closed path Fund. Thm. of line integrals ≥ $ & rectangular Triple Integrals cylindrical % spherical Surface Integrals ≥ C f dr C F ¨ dr } Scalar function f : } Vector field F : Stokes' Theorem Special cases: ¥ ˚ curlF ¨ dS ¥ S ¥ f dS S F ¨ dS S ˚ S is a “closed” surface Divergence Theorem
© Copyright 2026 Paperzz