permintaan asuransi kesehatan

PERMINTAAN ASURANSI
KESEHATAN
OLEH:
DESTANUL AULIA, PhD
STIKES HELVETIA
LOGIKA

Konsumen membayar asuransi (premium) untuk
menutupi biaya pengobatan pada masa akan
datang


Bagi seorang konsumen, premium dapat menjadi
lebih tinggi atau lebih rendah dibandingkan biaya
pengobatan
Tetapi peserta asuransi dpt di pool atau dibagikan
menurut resikonya diantara semua peserta
 Jumlah
premium dapat melebihi jumlah biaya
pengobatan
Asuransi Kesehatan: Rasional


Tujuan: Perlindungan terhadap risiko dengan
pengumpulan dana
Keuntungan:



Hal ini dapat merubah pengeluaran yang tak terduga di kemudian
hari kedalam pembayaran yang dapat direncanakan sebelumnya
(dapat dipredisksi)
Hal ini juga menggeser pembayaran dari periode waktu
ketersediaan uang tunai yang rendah ke periode waktu dengan
ketersediaan uang tunai yang lebih banyak (Keterjangkauan)
Prinsip Solidaritas:



–
–
Membagi beban antara yang mampu dan tidak mampu
Jika cakupan cukup luas diantara orang kota dan desa
Prinsip Risk-sharing:

–
Membagi beban antara yang sehat dan sakit
Characterizing Risk Aversion

Recall the consumer maximizes utility, with
prices and income given
Utility = U (health, other goods)
 health = h (medical care)



Insurance doesn’t guarantee health, but provides
$ to purchase health care
We assumed diminishing marginal utility of
“health” and “other goods”

In addition, let’s assume diminishing marginal
utility of income
Utility
Income


Assume that we can assign a numerical
“utility value” to each income level
Also, assume that a healthy individual earns
$40,000 per year, but only $20,000 when ill
Income
Utility
Sick
$20,000
70
Healthy
$40,000
90
Utility when
healthy
Utility
90
70
A
B
Utility when
sick
$20,000
$40,000
Income


Individual doesn’t know whether she will be
sick or healthy
But she has a subjective probability of each
event


She has an expected value of her utility in the
coming year
Define: P0 = prob. of being healthy
P1 = prob. of being sick
P0 + P1 = 1

An individual’s subjective probability of
illness (P1) will depend on her health stock,
age, lifestyle, etc.

Then without insurance, the individual’s
expected utility for next year is:

E(U) = P0U($40,000) + P1U($20,000)
= P0•90 + P1•70

For any given values of P0 and P1, E(U) will
be a point on the chord between A and B
Utility
A
90
70
B
$20,000
$40,000
Income


Assume the consumer sets P1=.20
Then if she does not purchase insurance:
E(U) = .80•90 + .20•70 = 86
E(Y) = .80•40,000 + .20•20,000 = $36,000

Without insurance, the consumer has an
expected loss of $4,000
Utility
90
86
70
•
B•
•A
C
$20,000
$40,000
$36,000
Income


The consumer’s expected utility for next year
without insurance = 86 “utils”
Suppose that 86 “utils” also represents utility
from a certain income of $35,000
Then the consumer could pay an insurer $5,000
to insure against the probability of getting sick
next year
 Paying $5,000 to insurer leaves consumer with 86
utils, which equals E(U) without insurance

Utility
90
86
70
D
•
B•
$20,000
$35,000
•
•A
C
$40,000
$36,000
Income

At most, the consumer is willing to pay
$5,000 in insurance premiums to cover $4,000
in expected medical benefits
$1,000  loading fee  price of insurance

Covers
profits
 administrative expenses
 taxes

Determinants of Health
Insurance Demand
1
Price of insurance

2
In the previous example, the consumer will forego
health insurance if the premium is greater than
$5,000
Degree of Risk Aversion

Greater risk aversion increases the demand for
health insurance
The horizontal distance between the utility function
and the chord represents the loading fee that the
consumer is willing to pay
Utility
Income
If there is no risk aversion, utility = expected utility,
and there is no demand for insurance
Utility
A
B
$20,000
$40,000
Income
3
Income

4
Larger income losses due to illness will increase
the demand for health insurance
Probability of ILLNESS
Consumers demand less insurance for events
most likely to occur (e.g. dental visits)
 Consumers demand less insurance for events
least likely to occur
 Consumers more likely to insure against random
events
