A New Formula for the Number of Combinations and Permutations

 !
!
" #
" # $
$ $
%&'()
!
k k $ %&' *+"%'
()* ' $ ! ! ,
- ! ! . /
! ! ! 0,
! k,! n, . . ! . ! 1 2 .
. . . !
3 " 456
)78
9 / ! / ! k,! 0 ,
1 A = {m1 · a1 , m2 · a2, . . . , mn · an } . mi
i = 1, . . . , n / : . ! C(k; m1 , m2 , . . . , mn )
; 456 ! . =
n
p=0
(−1)p
C(k; m1 , m2 , . . . , mn ) =
n+k−mi −mi
−...−mip −p−1
1
2
n+k−mi1 −mi2 −...−mip −p
1≤i1 ≤i2 ≤···≤ip ≤n
. < . . =
. n + k − mi − mi − ... − mi − p > 0
1
=
n
p=0
(−1)p
p
2
C(k; m1 , m2 , . . . , mn ) =
n+k−mi −mi
1≤i1 ≤i2 ≤···≤ip ≤n
1
−...−mip −p−1
2
n−1
!
9 !
0%1 ! n
p 0 ! ! 1
p = 0, 1, . . . , n ! < 2n
! 0%1 n . k n 2 . .
. . . > . n +
M = max{m1 , m2 , . . . , mn } c(i) mp p = 1, . . . , n i =
C(k; m1 , m
. , mn ) =
2 , ..c(i
c(i1 )c(i2 )−λ
s )−λ1 −λ2 −...−λs−1
1
·
·
·
λ1
λ2
λs
λs is M ≥ i1 > i2 > · · · > is ≥ 1
051
k = λ1 i1 + λ2 i2 + · · · +
, - ?! k k = λ i + λ i + · · ·+ λ i 1 1
2 2
s s
. M ≥ i1 > i2 > · · · > is ≥ 1 λp , ip < ip @ $ 0 . .
@ 1 A k,!
. λ1 i1 . ! ! c(i )! λ1 . i1 ! λ
. "
λ2 c(i )−λ ! . , λs ! c(i )−λ −λ −...−λ λ
. ! . ! 051
λ
! < ! k
< M ! 1
1
2
1
2
s
1
2
s
s−1
)77
Q(k, M) ! < "*58)5*
4(6 Q(k, M) ≤ Q(k, k) M A ! 051 ! Q(k, k) . . P (k) , !
k . , P (k) !
< "****&% 4(6 0 = 4&61
B; exp π 2k/3
√
p(k) ∼
4k 3
k → ∞
4%6 . ! 051 $
. n k 051 > 0%1
n
%
5
(
&
+
8
7
)
'
%*
%%
%5
%(
%&
%+
%8
%7
%)
%'
5*
5%
55
k 0m = k 1
k 0m =
k
k 0m =
k
A 0m = k1
5
&
8
5
&
8
)
(
8
)
'
+
)
'
%5
7
%*
%%
%5
'
%5
%(
%+
%%
%&
%+
%)
%&
%7
%)
5*
%8
5*
5*
55
%'
5(
5(
5+
55
58
58
5)
5+
5'
(*
(%
5'
(5
((
(+
(5
(8
(8
()
(8
&*
&*
&5
('
&&
&&
&+
&(
&)
&)
+*
&7
+5
+5
+&
+5
+8
+7
+)
+8
8%
8%
8(
8%
88
88
87
8+
7%
7%
75
7*
9! %C k > 051
2
1
3
1
k
)7)
0%1
051
%
&(+
(*
5
&(*
(+
(
&%8
&'
&
())
77
+
(8)
'7
8
(&%
%5&
7
(*8
%+'
)
585
5*(
'
5%+
5+*
%*
%+)
(*7
%%
')
(87
%5
(&
&(%
≥13
*
&8+
(&+% 05& 7&D1 %*&'' 07+ 58D1
9! 5C $> 0%1 051
n
9! % . ! k , k ! n 051 0%1 m = ! >
k
k
k . k 2 3 m
, ,B A
/ m = k . k
9! 5 . > ! n 1 ≤ n ≤ 30 . = . 1 ≤ k ≤ 30 1 ≤ m ≤ k n = 1 0%1 . &(+ > . 051 . (* , 9 9! % 5 0 %
5 1
)7'
80
70
60
50
k Hardy
k (m=k)
k (m=k/2)
k (m=k/3)
40
30
20
10
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22
%C # 9! % 450
400
350
300
250
Formula (1)
Formula (2)
200
150
100
50
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
5C # 9! 5 " 9 % . ! . k,
0 P (k; m1, m2, . . . , mn) ! k, . mi 1C
+
mp M = max{m1 , m2 , . . . , mn } c(i) p = 1, . . . , n i ))*
=
P (k; m1 , m2 , . . . , mn ) =
c(i1 )c(i2 )−λ1 · · · c(is )−λ1 −λλs2 −...−λs−1 i
λ2
λ1
k!
λ
λ
λ
1 ! 1 i2 ! 2 ···is ! s
k = λ1 i1 + λ2 i2 + · · · +
λs is "!
M ≥ i1 > i2 > · · · > is ≥ 1
, - . 051 . > = . . i1 λ1 i2 λ2 2 =. i ! i !k! ···i ! ! 0(1 0(1 ! 051 ! > / ! k,
: . . ! 0%1
. ! / ! k, ? =.
= ! 1
P (k; m1 , m2 , . . . , mn ) =
λ1
2
λ2
s
λs
k
i1 i2 . . . in
0&1
mp . i1 + i2 + · · · + in = k 0 ≤ ip ≤
p = 1, . . . , n 2 . 0&1 C(k; m1 , m2 , . . . , mn ) E
. . . ! /
C(k; m1 , m2 , . . . , mn ) P (k; m1 , m2 , . . . , mn ) > 9 . C(k; m1, m2 , . . . , mn) > tk A ϕ(n; m1 , m2 , . . . , mn ; t) =
mi
n tj
i=1 j=1
. P (k; m1, m2 , . . . , mn) < tk A ψ(n; m1 , m2 , . . . , mn ; t) =
k!
>
mi j
n t
i=1 j=1
j!
: . 051 0(1 C
% 9 / . ;
; ;;
2 ! ,
. . 051 A ,
= ))%
5 , ,
. = k . , (n−1)(k+1)(k+2)
. ! 2
" . k
( . C A O(k) > k !
? 051 0(1 < A
9 ! . . ! , . = < . 051 0(1 & F ! C , ! . ,
9
,
9 ! 051 0(1 k,
k,! " . . >
4%6 G B " #! ",
3 F %70%'%)1 7+,%%+
456 3 " # 3 , H %C #! 29 3
%'7)
4(6 I " 9 ?,F $ 2 < !
CJJ 5*%*
4&6 $ : : #B# # $ #B# 3 5**(
./' $