๐๐๐๐ญ๐จ๐ซ ๐๐ฅ๐ ๐๐๐ซ๐:
๐
ฬ)
โ๐ฎโ = โ(๐ฑ๐ขฬ)๐ + (๐ฒ๐ฃฬ)๐ + (๐ณ๐ค
๐ฎ โ ๐ฏ = โ๐ฎโโ๐ฏโ cos ฮธ
โ๐ฎโ = โ๐ฎ โ ๐ฎ
๐ฎ
Unit vector: ๐ฎ
ฬ=
โ๐ฎโ
๐ฎโ๐ฏ= ๐ฏโ๐ฎ
(๐๐ฎ) โ ๐ฏ = ๐(๐ฎ โ ๐ฏ)
(๐ฎ + ๐ฏ) โ ๐ฐ = ๐ฎ โ ๐ฐ + ๐ฏ โ ๐ฐ
ฬ โ๐ค
ฬ =๐
๐ขฬ โ ๐ขฬ = ๐ฃฬ โ ๐ฃฬ = ๐ค
ฬ = ๐ขฬ โ ๐ค
ฬ =๐
๐ขฬ โ ๐ฃฬ = ๐ฃฬ โ ๐ค
(ฮฑ๐ฎ + ฮฒ๐ฏ) โ ๐ฐ = ฮฑ(๐ฎ โ ๐ฐ) + ฮฒ(๐ฏ โ ๐ฐ)
Magnitude of ๐ฎ × ๐ฏ = โ๐ฎโโ๐ฏโ sin ฮธ๐ฬ
๐ฎ × ๐ฏ = โ(๐ฏ × ๐ฎ)
ฬ , ๐ฃฬ × ๐ขฬ = โ๐ค
ฬ
๐ขฬ × ๐ฃฬ = ๐ค
(๐๐ฎ) × ๐ฏ = ๐(๐ฎ × ๐ฏ)
(๐ฎ + ๐ฏ) × ๐ฐ = ๐ฎ × ๐ฐ + ๐ฏ × ๐ฐ
โ๐ฎ × ๐ฏโ = area of ๐ฎ, ๐ฏ parallelogram
๐ โก ๐ × ๐
, Moment ๐ of ๐
about ๐
๐
โ๐ฎ × ๐ฏโ๐ = โ๐ฎโ๐ โ๐ฏโ๐ โ (๐ฎ โ ๐ฏ)
ฬ ×๐ค
ฬ =๐
๐ขฬ × ๐ขฬ = ๐ฃฬ × ๐ฃฬ = ๐ค
ฬ
๐ขฬ
๐ฃฬ
๐ค
ฬ
๐ฎ × ๐ฏ = |๐ข๐ฅ ๐ข๐ฆ ๐ข๐ง | = (๐ข2 ๐ฃ3 โ ๐ข3 ๐ฃ2 )๐ขฬ + (๐ข3 ๐ฃ1 โ ๐ข1 ๐ฃ3 )๐ฃฬ + (๐ข2 ๐ฃ1 โ ๐ข2 ๐ฃ1 )๐ค
๐ฃ๐ฅ ๐ฃ๐ง ๐ฃ๐ง
๐ฎ × ๐ฏ = ๐ข๐ข ๐ฃ๐ฃ ๐๐ข๐ฃ๐ค ๐๐ค ๐๐ข๐ฃ๐ค is the permutation tensor
๐๐ข × ๐๐ฃ = ๐๐ข๐ฃ๐ค ๐๐ค
ฬ = โ๐ ๐ โ,
๐ โ๐ง
R is any point plane, โ๐ ๐ โ is shortest distance to plane
Plane: ๐๐ฅ + ๐๐ฆ + ๐๐ง = ๐, (๐๐ฬ + ๐๐ฬ + ๐๐ฬ ) is normal vector (not unit normal)
|d|
Shortest distance D =
โ๐2 + ๐2 + ๐ 2
|๐ฎ โ ๐ฏ × ๐ฐ| = volume of ๐ฎ, ๐ฏ, ๐ฐ parallelepiped
๐ข1 ๐ข2 ๐ข3
๐ฎ โ ๐ฏ × ๐ฐ = | ๐ฃ1 ๐ฃ2 ๐ฃ3 |
๐ค1 ๐ค2 ๐ค3
๐ฎ โ ๐ฏ × ๐ฐ = ๐ฎ × ๐ฏ โ ๐ฐ (if = 0, ๐ฎ, ๐ฏ, ๐ฐ are LD, in plane)
๐ฎ × (๐ฏ × ๐ฐ) = (๐ฎ โ ๐ฐ)๐ฏ โ (๐ฎ โ ๐ฏ) × ๐ฐ
(๐ฎ โ ๐ฏ × ๐ฐ)โฒ = ๐ฎโฒ โ ๐ฏ × ๐ฐ + ๐ฎ โ ๐ฏโฒ × ๐ฐ + ๐ฎ โ ๐ฏ × ๐ฐโฒ
[(๐ฎ × (๐ฏ × ๐ฐ)]โฒ = (๐ฎโฒ × (๐ฏ × ๐ฐ) + (๐ฎ × (๐ฏ โฒ × ๐ฐ) + (๐ฎ × (๐ฏ × ๐ฐโฒ)
๐ฎ โ ๐ฎโฒ
โ๐ฎโ =
โ๐ฎโ
๐ฎ๐ข ๐
๐ข๐ฃ = ๐ฎ๐ฃ
๐ฎ โ ๐ฏ = ๐ฎ๐ข ๐๐ข โ ๐ฏ๐ฃ ๐๐ฃ = ๐ฎ๐ข ๐ฏ๐ฃ ๐๐ข โ ๐๐ฃ = ๐ฎ๐ข ๐ฏ๐ฃ ๐
๐ข๐ฃ
๐ฎ โ ๐ฏ = ๐ฎ๐ ๐ฏ
๐๐๐ซ๐ญ๐๐ฌ๐ข๐จ๐ง:
ฬ
๐ = ๐ฅ๐ขฬ + ๐ฆ๐ฃฬ + ๐ง๐ค
ฬ
๐ฏ(๐ก) = ๐ฅโฒ๐ขฬ + ๐ฆโฒ๐ฃฬ + ๐งโฒ๐ค
ฬ
๐(๐ก) = ๐ฅโฒโฒ๐ขฬ + ๐ฆโฒโฒ๐ฃฬ + ๐งโฒโฒ๐ค
๐๐ฆ ๐๐ง (๐๐๐๐ ๐ก๐๐๐ก ๐ฅ ๐ ๐ข๐๐๐๐๐)
๐๐ด = { ๐๐ฅ ๐๐ง (๐๐๐๐ ๐ก๐๐๐ก ๐ฆ ๐ ๐ข๐๐๐๐๐)
๐๐ฆ ๐๐ฅ (๐๐๐๐ ๐ก๐๐๐ก ๐ง ๐ ๐ข๐๐๐๐๐)
โ
โ
โ
ฬ
Vector differential operator (Gradient): ๐ โก ๐ขฬ
+ ๐ฃฬ
+๐ค
โ๐ฅ
โ๐ฆ
โ๐ง
โ๐ฃ๐ฅ โ๐ฃ๐ฆ โ๐ฃ๐ง
Div ๐ฏ = ๐ โ ๐ฏ =
+
+
โ๐ฅ
โ๐ฆ
โ๐ง
โ
โ
โ
๐ฏ โ ๐ = ๐ฃ๐ฅ
+ ๐ฃ๐ฆ
+ ๐ฃ๐ง
โ๐ฅ
โ๐ฆ
โ๐ง
โ๐ข
โ๐ข
โ๐ข
ฬ,
Grad ๐ข โก ๐๐ข =
๐ขฬ +
๐ฃฬ +
๐ค
scalar field ๐ข to vector field
โ๐ฅ
โ๐ฆ
โ๐ง
ฬ
๐ขฬ
๐ฃฬ
๐ค
โ
โ
โ
Curl ๐ฏ โก ๐ × ๐ฏ = ||
||
โ๐ฅ โ๐ฆ โ๐ง
๐ฃ๐ฅ ๐ฃ๐ฆ ๐ฃ๐ง
๐๐ฃ๐ง ๐๐ฃ๐ฆ
๐๐ฃ๐ง ๐๐ฃ๐ฅ
=(
โ
โ
) ๐ฃฬ
) ๐ขฬ โ (
๐๐ฆ
๐๐ง
๐๐ฅ
๐๐ง
๐๐ฃ๐ฆ ๐๐ฃ๐ฅ
ฬ , vector field ๐ฏ to vector field
+(
โ
)๐ค
๐๐ฅ
๐๐ฆ
๐๐จ๐ฅ๐๐ซ: ๐ฬ๐ซ (ฮธ), ๐ฬ๐ (ฮธ)
๐ = ๐๐ฬ๐
๐ฏ(t) = ๐ โฒ ๐ฬ๐ซ + ๐ฮธโฒ ๐ฬ๐
๐(๐ก) = (๐ โฒโฒ โ ๐ฮธโฒ2 )๐ฬ๐ซ + (๐๐ โฒโฒ + 2๐ โฒ ๐ โฒ ) ๐ฬ๐
๐๐ฬ๐ซ
๐ ๐ฬ๐
= ๐ฬ๐ ,
= โ๐ฬ๐ซ
๐๐
๐๐
๐ขฬ = cos ๐๐ฬ๐ซ โ sin ๐ ๐ฬ๐ ,
๐ฃฬ = sin ๐๐ฬ๐ซ + cos ๐ ๐ฬ๐
๐ฅ = ๐ cos ๐ , ๐ฆ = ๐ sin ๐
ฬ
๐๐ฒ๐ฅ๐ข๐ง๐๐ซ๐ข๐๐๐ฅ: ๐ฬ๐ซ (ฮธ), ๐ฬ๐ (ฮธ), ๐ฬ๐ณ = ๐ค
๐ = ๐๐ฬ๐ซ + ๐ง๐ฬ๐ณ ,
๐๐ = ๐๐๐ฬ๐ซ + ๐๐๐๐ฬ๐ + ๐๐ง๐ฬ๐ณ
๐ฏ(๐ก) = ๐ โฒ ๐ฬ๐ซ + ๐๐ โฒ ๐ฬ๐ + ๐ง โฒ ๐ฬ๐ณ
๐(๐ก) = (๐ โฒโฒ โ ๐๐ โฒ2 )๐ฬ๐ซ + (๐๐ โฒโฒ + 2๐ โฒ ๐ โฒ )๐ฬ๐ + ๐ง โฒโฒ ๐ฬ๐ณ
๐๐ฬ๐ซ
๐ ๐ฬ๐
= ๐ฬ๐ ,
= โ๐ฬ๐ซ
๐๐
๐๐
๐ขฬ = cos ๐๐ฬ๐ซ โ sin ๐ ๐ฬ๐ ,
๐ฃฬ = sin ๐๐ฬ๐ซ + cos ๐ ๐ฬ๐
๐ฬ๐ซ × ๐ฬ๐ณ = โ๐ฬ๐ ,
๐ฬ๐ × ๐ฬ๐ณ = ๐ฬ๐ซ ,
๐ฬ๐ซ × ๐ฬ๐ = ๐ฬ๐ณ
If taking the cross product, set it up as ๐ฬ๐ซ โ ๐ฬ๐ โ ๐ฬ๐ณ , L to R
๐ฅ = ๐ cos ๐ , ๐ฆ = ๐ sin ๐ , ๐ง = ๐ง
E.g. for a cone ๐, ๐, and ๐ง are not
๐ ๐๐๐๐ง (๐๐๐๐ ๐ก๐๐๐ก ๐ ๐ ๐ข๐๐๐๐๐)
๐๐ด = { ๐๐ ๐๐ง (๐๐๐๐ ๐ก๐๐๐ก ๐ ๐ ๐ข๐๐๐๐๐) constant. For a cylinder, r is constant.
๐ ๐๐ ๐๐ (๐๐๐๐ ๐ก๐๐๐ก ๐ง ๐ ๐ข๐๐๐๐๐)
๐๐ = ๐ ๐๐ ๐๐ ๐๐ง
๐๐ข
1 ๐๐ข
๐๐ข
๐๐ข =
๐ฬ +
๐ฬ +
๐ฬ
๐๐ ๐ซ ๐ ๐๐ ๐ ๐๐ง ๐ณ
2
2
๐ ๐ข 1 ๐๐ข 1 ๐ ๐ข ๐ 2 ๐ข
๐๐ ๐ข = 2 +
+
+
๐๐
๐ ๐๐ ๐ 2 ๐๐ 2 ๐๐ง 2
1 ๐
1 ๐
๐
๐ โ๐ฏ =
(๐ ๐ฃ๐ ) +
๐ฃ +
๐ฃ
๐ ๐๐
๐ ๐๐ ๐ ๐๐ง ๐ง
1 ๐๐ฃ๐ง ๐๐ฃ๐
๐๐ฃ๐ ๐๐ฃ๐ง
1 ๐(๐๐ฃ๐ ) ๐๐ฃ๐
๐×๐ฏ =(
โ
) ๐ฬ๐ซ + (
โ
) ๐ฬ + (
โ
) ๐ฬ
๐ ๐๐
๐๐ง
๐๐ง
๐๐ ๐ ๐
๐๐
๐๐ ๐ณ
๐๐ฉ๐ก๐๐ซ๐ข๐๐๐ฅ: ๐ฬ๐ (๐, ๐),
๐ฬ๐ (๐, ๐),
๐ฬ๐ (๐)
๐๐ฬ๐
๐๐ฬ๐
๐๐ฬ๐
= 0,
= ๐ฬ๐ ,
= sin ๐ ๐ฬ๐
๐๐
๐๐
๐๐
๐๐ฬ๐
๐๐ฬ๐
๐๐ฬ๐
= 0,
= โ๐ฬ๐,
= cos ๐ ๐ฬ๐
๐๐
๐๐
๐๐
ฬ
ฬ
ฬ
๐๐๐
๐๐๐
๐๐๐
= 0,
= 0,
= โ sin ฯ ๐ฬ๐ โ cos ๐ ๐ฬ๐
๐๐
๐๐
๐๐
๐ = ๐๐ฬ๐ ,
๐๐ = ๐๐๐ฬ๐ + ๐๐๐๐ฬ๐ + ๐ sin ๐ ๐๐๐ฬ๐
๐ฏ(๐ก) = ๐ โฒ ๐ฬ๐ + ๐๐ โฒ ๐ฬ๐ + ๐๐ โฒ sin ๐ ๐ฬ๐
๐(๐ก) = (๐ โฒโฒ โ ๐๐ โฒ2 โ ๐๐ โฒ2 sin2 ๐)๐ฬ๐ + (๐๐ โฒโฒ + 2๐ โฒ ๐ โฒ
โ ๐๐ โฒ2 sin ๐ cos ๐)๐ฬ๐ + (๐๐ โฒโฒ sin ๐ + 2๐ โฒ ๐โฒ sin ๐
+ 2๐๐ โฒ ๐ โฒ cos ๐) ๐ฬ๐
2 |sin
๐
๐|๐๐ ๐๐ (๐๐๐๐ ๐ก๐๐๐ก ๐ ๐ ๐ข๐๐๐๐๐)
๐๐ด = { ๐|sin ๐|๐๐ ๐๐ (๐๐๐๐ ๐ก๐๐๐ก ๐ ๐ ๐ข๐๐๐๐๐)
(๐๐๐๐ ๐ก๐๐๐ก ๐ ๐ ๐ข๐๐๐๐๐)
๐ ๐๐ ๐๐
๐๐ = ๐ 2 |sin ๐|๐๐ ๐๐ ๐๐
๐ฬ๐ × ๐ฬ๐ซ = ๐ฬ๐ ,
๐ฬ๐ × ๐ฬ๐ซ = โ๐ฬ๐ ,
๐ฬ๐ × ๐ฬ๐ = ๐ฬ๐ซ
ฬ
๐ฬ๐ = sin ๐ (cos ๐ ๐ขฬ + sin ๐ ๐ฃฬ) + cos ๐ ๐ค
ฬ
๐ฬ๐ = cos ๐ (cos ๐ ๐ขฬ + sin ๐ ๐ฃฬ) โ sin ๐ ๐ค
๐ฬ๐ = โ sin ๐ ๐ขฬ + cos ๐ ๐ฃฬ
๐ขฬ = sin ๐ cos ๐ ๐ฬ๐ + cos ๐ cos ๐ ๐ฬ๐ โ sin ๐ ๐ฬ๐
๐ฃฬ = sin ๐ sin ๐ ๐ฬ๐ + cos ๐ sin ๐ ๐ฬ๐ + cos ๐ ๐ฬ๐
ฬ = cos ๐ ๐ฬ๐ โ sin ๐ ๐ฬ๐
๐ค
๐ฅ = ๐ sin ๐ cos ๐
๐ฆ = ๐ sin ๐ sin ๐
๐ง = ๐ cos ๐
๐๐ข
1 ๐๐ข
1 ๐๐ข
๐๐ข =
๐ฬ +
๐ฬ +
๐ฬ
๐๐ ๐ ฯ ๐๐ ๐ ฯ sin ฯ ๐๐ ๐
1 ๐
๐๐ข
1 ๐
๐๐ข
1 ๐2๐ข
๐๐ ๐ข = 2 [ (๐ 2 ) +
(sin ๐ ) + 2
]
๐ ๐๐
๐๐
sin ๐ ๐๐
๐๐
sin ๐ ๐๐ 2
1 ๐
1
๐
1 ๐ ๐ฃ๐
๐ โ ๐ฏ = 2 (๐ 2 ๐ฃ๐ ) +
(๐ฃ sin ๐) +
๐ ๐๐
๐sin ๐ ๐๐ ๐
๐sin ๐ ๐๐
๐๐ฃ๐
1
๐
1
1 ๐๐ฃ๐ ๐(๐๐ฃ๐ )
๐ ×๐ฏ =
โ
( (๐ฃ sin ๐) โ
) ๐ฬ๐ + (
) ๐ฬ๐
๐ sin ๐ ๐๐ ๐
๐๐
๐ sin ๐ ๐๐
๐๐
1 ๐(๐๐ฃ๐ ) ๐๐ฃ๐
+ (
โ
) ๐ฬ
๐
๐๐
๐๐ ๐
Curves and line integrals
๐
Arc legth ๐ (๐) = โซ โ๐โฒ (๐ก) โ ๐โฒ (๐ก)๐๐ก
๐0
๐
Line Integral: โซ ๐(๐ฅ, ๐ฆ, ๐ง)๐๐ = โซ ๐(๐ฅ(๐), ๐ฆ(๐), ๐ง(๐))โ๐โฒ(๐) โ ๐โฒ (๐)๐๐
๐ถ
๐
Note: R is the vector that traces out the curve. For example, if the curve is a
semicircle in the quadrant I and II, then ๐(๐) = ๐๐ฬ๐ซ = cos ฮธ ๐ขฬ + sin ฮธ ๐ฃฬ, where
0โคฮธโค ๐
. And in this case, ฯ =ฮธ.
๐๐๐ซ๐๐ฆ๐๐ญ๐๐ซ๐ข๐ณ๐๐ญ๐ข๐จ๐ง ๐จ๐ ๐ ๐ฌ๐ญ๐ซ๐๐ข๐ ๐ก๐ญ ๐ฅ๐ข๐ง๐:
x = x1 + (x2 โ x1 )ฯ,
y = y1 + (y2 โ y1 )ฯ,
z = z1 + (z2 โ z1 )ฯ,
(0 โค ฯ < 1)
Parameterization: The goal is to solve for your curve or surface in terms of a
variable that suits your preferred coordinate system. If your curve is an intersection
of two surfaces, then solve for the intersection just like you would a system of
equations (Gauss elimination, etc.), but before you solve, chose a parameterization
that makes sense for the surfaces in question. I.e. if you have a plane intersecting a
cylinder, chose ฮธ as the parameter (from 0 to 2ฯ), make the appropriate substitutions
๐ฅ = ๐ cos ๐ , ๐ฆ = ๐ sin ๐ for the cylinder and then solve for x,y, and z in terms of
the new parameter.
๐๐๐ญ ๐ฐ๐จ๐ซ๐ค ๐๐จ๐ง๐ ๐ญ๐ซ๐๐ฏ๐๐ซ๐ฌ๐ข๐ง๐ ๐๐ฎ๐ซ๐ฏ๐ ๐: โซ ๐ฏ โ ๐๐ = โซ ๐๐๐,
๐ถ
๐ถ
Where v is a force vector field and R is the position vector to some reference point.
โซ ๐ฏ โ ๐๐ = โซ (๐ฃ๐ฅ (๐ฅ, ๐ฆ, ๐ง)๐๐ฅ + ๐ฃ๐ฆ (๐ฅ, ๐ฆ, ๐ง)๐๐ฆ + ๐ฃ๐ง (๐ฅ, ๐ฆ, ๐ง)๐๐ง),
๐ถ
๐ถ
Note 1: The dot turns this from two vectors to a scalar.
Note 2: If the curve is not continuous, need to break up the integral.
ฬ โ ๐ × ๐ฏ๐๐ด,
๐๐ญ๐จ๐ค๐โฒ ๐ฌ ๐๐ก๐๐จ๐ซ๐๐ฆ: โฎ ๐ฏ โ ๐๐ = โฎ ๐ง
๐
๐ถ
ฬ follows the right hand rule.
Note 1: If the surface is not closed, the ๐ง
Note 2: The line integral must be closed.
โQ โP
๐๐ซ๐๐๐ง๐โฒ ๐ฌ๐๐ก๐๐จ๐ซ๐๐ฆ: โซ
โ
๐๐ด = โฎ ๐๐๐ฅ + ๐๐๐ฆ
โy
๐ โx
๐ถ
Note 1: Vector field: ๐ฏ = ๐(๐ฅ, ๐ฆ)๐ขฬ + ๐(๐ฅ, ๐ฆ)๐ฃฬ
Note 2: Edge of S must be piecewise, smooth, simple, closed, oriented CC.
๐๐ฃ
๐๐ซ๐๐๐ง๐โฒ ๐ฌ ๐๐ฌ๐ญ ๐ข๐๐๐ง๐ญ๐ข๐ญ๐ฒ: โซ (๐๐ข โ ๐๐ฃ + ๐ข๐2 ๐ฃ)๐๐ = โซ ๐ข
๐๐ด
๐๐
๐
๐
๐๐ฃ
๐๐ข
๐๐ซ๐๐๐ง๐โฒ ๐ฌ ๐๐ง๐ ๐ข๐๐๐ง๐ญ๐ข๐ญ๐ฒ: โซ (๐ข๐๐ ๐ฃ โ ๐๐ฃ โ ๐ฃ๐2 ๐ข)๐๐ = โซ (๐ข
โ ๐ฃ ) ๐๐ด
๐๐
๐๐
๐
๐
๐๐ฃ
ฬ โ ๐๐ฃ
๐๐จ๐ญ๐ ๐: ๐ข
= ๐ข๐ง
๐๐
๐๐จ๐ญ๐ ๐: ๐ข and ๐ฃ are scalar fields
ฬ โ ๐ฏ ๐๐ด
๐๐ข๐ฏ๐๐ซ๐ ๐๐ง๐๐ ๐๐ก๐๐จ๐ซ๐๐ฆ: โซ โ โ ๐ฏ ๐๐ = โซ ๐ง
๐
๐
ฬ๐ข๐๐ด = โซ ๐๐ข๐๐ , โซ ๐ง
ฬ × ๐ฏ๐
๐จ = โซ ๐ × ๐ฏ๐๐
โซ๐ง
๐
๐
๐
๐
ฬ is the unit normal vector to the surface.
Where: ๐ฏ is a vector field, and ๐ง
If you have several discontinuous surfaces forming one piecewise smooth
surface, you need to integrate each one seperately, and then add them.
The unit normal vectors always point outward from the surface.
โ๐
ฬ=±
๐ง
, Where ๐ = ๐(๐ฅ, ๐ฆ, ๐ง), or ๐(๐, ๐, ๐), ๐๐ก๐. = a surface
โโ๐โ
Example: We have the equation for a paraboloid: ๐ฅ 2 + ๐ฆ 2 = ๐ง. First, get all the
variables to one side, so: ๐ฅ 2 + ๐ฆ 2 โ ๐ง = 0. This is now ๐(๐ฅ, ๐ฆ, ๐ง). The gradient of g
is now the normal to the surface. This is a โlevel surfaceโ. If we want to find the
normal to a โlevel curveโ, then we set x,y,or z to a constant and the take the
gradient, e.g.: 12 + ๐ฆ 2 โ ๐ง = 0. This is now our ๐(๐ฅ, ๐ฆ, ๐ง).
Div curl ๐ฏ = ๐ โ ๐ × ๐ฏ = 0
curl grad ๐ข = ๐ × ๐๐ข = 0
๐ โ ๐ = ๐๐
โ2
โ2
โ2
๐๐ โก 2 + 2 + 2
โ๐ฅ
โ๐ฆ
โ๐ง
๐๐ฑ = ๐ขฬ, ๐๐ฒ = ๐ฃฬ
๐ โ (๐ผ๐ฎ + ๐ฝ๐ฏ) = ๐ผ๐ โ ๐ฎ + ๐ฝ๐ โ ๐ฏ
๐(๐ผ๐ข + ๐ฝ๐ฃ) = ๐ผ๐๐ข + ๐ฝ๐๐ฃ
๐ × (๐ผ๐ฎ + ๐ฝ๐) = ๐ผ๐ × ๐ฎ + ๐ฝ๐ × ๐ฏ
๐ โ (๐ข๐ฏ) = ๐๐ข โ ๐ฏ + ๐ข๐ โ ๐ฏ
๐ × (๐ข๐ฏ) = ๐๐ข × ๐ฏ + ๐ข๐ × ๐ฏ
๐ โ (๐ข๐๐ฃ) = ๐๐ข โ ๐๐ฃ + ๐ข๐ โ ๐๐ฃ
๐ โ (๐ฎ × ๐ฏ) = ๐ฏ โ ๐ × ๐ฎ โ ๐ฎ โ ๐ × ๐ฏ
๐ × (๐ฎ × ๐ฏ) = ๐ฎ๐ โ ๐ฏ โ ๐ฏ๐ โ ๐ฎ + (๐ฏ โ ๐)๐ฎ โ (๐ฎ โ ๐)๐ฏ
๐(๐ฎ โ ๐ฏ) = (๐ฎ โ ๐)๐ฏ + (๐ฏ โ ๐)๐ฎ + ๐ฎ × (๐ × ๐ฏ) + ๐ฏ × ๐ × ๐ฎ)
๐๐ฃ
ฬ โ ๐๐ฃ = ๐ข
๐ข๐ง
๐๐
ฬ)
(๐ฎ โ ๐)๐ฏ = (๐ฎ โ ๐)(๐ฃ๐ฅ ๐ขฬ + ๐ฃ๐ฆ ๐ฃฬ + ๐ฃ๐ง ๐ค
๐๐ฃ๐ฆ
๐๐ฃ๐ฅ
๐๐ฃ๐ง
ฬ
= (๐ข๐ฅ
+ ๐ข๐ฆ
+ ๐ข๐ง
) ๐ฬ + (๐๐ก๐. )๐ฬ + (๐๐ก๐. )๐
๐
๐
๐
Laplace equation: ๐๐ ๐ = ๐ โ ๐๐ = 0
Poisson equation: ๐๐ ๐ = ๐น
โ๐
Diffusion equation: ๐๐ ๐ =
โt
โ2 ๐
2 ๐
Wave equation: c ๐ ๐ = 2
โt
Level Curve: The function parameters that yield a specified โzโ.
ฬ โ ๐ฏ๐๐ด
โซ๐ง
div ๐ฏ(๐) โก lim ( ๐
)
๐ตโ0
๐
Trig Identities:
1 = cos2 ๐ + sin2 ๐
1
csc ๐ =
sin ๐
1
sec ๐ =
cos ๐
sin 2๐ = 2 sin ๐ cos ๐
cos 2๐ = cos2 ๐ โ sin2 ๐
sin ฮธ
tan ฮธ =
cos ฮธ
cos ฮธ
cot ๐ =
sin ฮธ
๐
๐
๐
=
=
= 2๐
sin ๐ฝ
sin ๐ผ sin ๐
where ๐
is the radius of the triangleโฒs circumference.
We can derive all the others from these
sin(๐ผ ± ๐ฝ) = sin ๐ผ cos ๐ฝ ± cos ๐ผ sin ๐ฝ
cos(๐ผ ± ๐ฝ) = cos ๐ผ cos ๐ฝ โ sin ๐ผ sin ๐ฝ two and sin2 ๐ + cos 2 ๐ = 1
Law of cosines: ๐ 2 = ๐2 + ๐2 โ 2๐๐ cos ๐พ
Length of any one side of a triangle cannot exceed the sum of the lengths of the
other two sides.
๐+๐+๐
A of triangle a, b, c = โ๐(๐ โ ๐)(๐ โ ๐)(๐ โ ๐), where ๐ =
๐
Distance between ๐ฑ and ๐ฑ โฒ : d(๐ฑ, ๐ฑ โฒ ) = โ(๐ฅ1 โ ๐ฅ1โฒ )2 + โฏ
๐ ๐๐
( )
๐๐ฆ ๐๐ฅ
๐๐น ๐๐ ๐๐ ๐๐ฅ ๐๐ ๐๐ฆ
Chain rule:
=
+
+
; ๐น = ๐(๐ฅ(๐ก), ๐ฆ(๐ก))
๐๐ก ๐๐ฅ ๐๐ฅ ๐๐ก ๐๐ฆ ๐๐ก
๐ ๐(๐ก)
Leibniz rule:
โซ ๐(๐ฅ, ๐ก)๐๐ฅ
๐๐ก ๐(๐ก)
๐๐ฅ ๐ฆ =
๐(๐ก)
๐
๐(๐ฅ, ๐ก)๐๐ฅ + ๐โฒ (๐ก)๐(๐(๐ก), ๐ก) โ ๐โฒ (๐ก)๐(๐(๐ก), ๐ก)
๐๐ก
๐(๐ก)
๐๐ฆ1
๐๐ฆ1
โฏ
๐๐ฅ
๐๐ฅ
1
๐
โ(๐ฆ1 , โฆ , ๐ฆ๐ )
Jacobian Matrix:
= โฎ
โฑ
โฎ
๐(๐ฅ1 , โฆ , ๐ฅ๐ ) ๐๐ฆ
๐๐ฆ๐
๐
โฏ
๐๐ฅ1
๐๐ฅ๐
Div ๐ฏ โก ๐ โ ๐ฏ,
vector field ๐ฏ to scalar field
Physical significance of curl: if ๐ฏ is a fluid velocity field, then ๐
× ๐ฏ at any point P is twice the angular velocity of the fluid at P.
If Curl ๐ฏ = 0, we have irrotation field
=โซ
Change of Variables Example:
Geometry:
Plane General Equation: ๐๐ฅ + ๐๐ฆ + ๐๐ง
= ๐, where ๐, ๐, ๐ makes a unit normal vector.
๐
Distance from origin: ๐ท =
โ๐2 + ๐2 + ๐ 2
Given 3 points: (๐ฅ1, ๐ฆ1, ๐ง1), (๐ฅ2, ๐ฆ2, ๐ง2), (๐ฅ3, ๐ฆ3, ๐ง3)
๐ฅ1 ๐ฆ1 ๐ง1
1 ๐ฆ1 ๐ง1
๐ฅ1 ๐ฆ1 1
๐ฅ1 1 ๐ง1
๐ = |1 ๐ฆ2 ๐ง2 | , ๐ = |๐ฅ2 1 ๐ง2 | ๐ = |๐ฅ2 ๐ฆ2 1| ๐ = โ |๐ฅ2 ๐ฆ2 ๐ง2 |
๐ฅ3 ๐ฆ3 ๐ง3
๐ฅ3 1 ๐ง3
1 ๐ฆ3 ๐ง3
๐ฅ3 ๐ฆ3 1
๐๐ฉ๐ก๐๐ซ๐: Equation for a sphere, centered at ๐ฅ0 , ๐ฆ0 , ๐ง0 , radius ๐: (๐ฅ โ ๐ฅ0 )2
+ (๐ฆ โ ๐ฆ0 )2 + (๐ง โ ๐ง0 )2 = ๐ 2
Surface area of sphere: ๐ด = 4๐๐ 2
4
Volume of a sphere: ๐ = ๐๐ 3
3
๐๐ฒ๐ฅ๐ข๐ง๐๐๐ซ: ๐๐ฅ 2 + ๐๐ฆ 2 = ๐, where ๐ is the radius.
If a and b are 1, then it is a circular cylinder.
๐ฅ 2 ๐ฆ2
๐๐ฅ๐ฅ๐ข๐ฉ๐ฌ๐: 2 + 2 = 1, where a is semiminor axis, b is semimajor axis
๐
๐
๐๐๐ซ๐๐๐จ๐ฅ๐จ๐ข๐: ๐ง = ๐ฅ 2 + ๐ฆ 2 (elliptic),
๐ง = ๐ฅ 2 โ ๐ฆ 2 (hyperbolic)
2
๐๐๐ซ๐๐๐จ๐ฅ๐ (๐๐ฑ๐๐ฆ๐ฉ๐ฅ๐): ๐ง = ๐ฆ + 1, note that y
= r ir we revolve the parabola about z.
๐๐ง๐จ๐ญ๐ก๐๐ซ ๐ฉ๐๐ซ๐๐๐จ๐ฅ๐: ๐ฅ 2 โ ๐ฆ 2 = 1
๐๐ข๐ซ๐๐ฅ๐: ๐ฅ 2 + ๐ฆ 2 = ๐ 2
Parameterization of curves, surfaces, and volumes:
ฬ
๐(๐) = ๐ฅ(๐)๐ขฬ + ๐ฆ(๐)๐ฃฬ + ๐ง(๐)๐ค
ฬ
๐(๐ข, ๐ฃ) = ๐ฅ(๐ข, ๐ฃ)๐ขฬ + ๐ฆ(๐ข, ๐ฃ)๐ฃฬ + ๐ง(๐ข, ๐ฃ)๐ค
ฬ
๐(๐ข, ๐ฃ, ๐ค) = ๐ฅ(๐ข, ๐ฃ, ๐ค)๐ขฬ + ๐ฆ(๐ข, ๐ฃ, ๐ค)๐ฃฬ + ๐ง(๐ข, ๐ฃ, ๐ค)๐ค
๐๐ = โ๐โฒ(๐) โ ๐โฒ (๐)๐๐
๐๐ด = โ๐ u × ๐ v โ๐๐ข๐๐ฃ
๐๐ = |๐ u โ ๐ v × ๐ w |๐๐ข๐๐ฃ๐๐ค
๐๐ข × ๐๐ฃ
โ๐
ฬ=
๐ง
, ๐(๐ข, ๐ฃ)is parameterized surface, ๐ ๐ข =
โ๐ ๐ข × ๐ ๐ฏ โ
โu
Computationally, we can express these in terms of the components x,y,z of R:
๐๐ = โ๐ฅ โฒ2 + ๐ฆ โฒ2 + ๐ง โฒ2 ๐๐
๐๐ด = โ๐ธ๐บ โ ๐น 2 ๐๐ข ๐๐ฃ, where: ๐ธ = ๐ฅ๐ข2 + ๐ฆ๐ข2 + ๐ง๐ข2 ,
๐บ = ๐ฅ๐ฃ2 + ๐ฆ๐ฃ2 + ๐ง๐ฃ2 ,
๐น = ๐ฅ๐ข ๐ฅ๐ฃ + ๐ฆ๐ข ๐ฆ๐ฃ + ๐ง๐ข ๐ง๐ฃ
Notes: Find x,y, and z in terms of the two parameters u and v. z will be in terms of u
and v, e.g. ๐(๐ฅ, ๐ฆ). Then take the appropriate derivatives. The limits of integration
are over the new parameters u and v.
โ(๐ฅ, ๐ฆ, ๐ง)
๐๐ =
๐๐ข๐๐ฃ๐๐ค,
note the Jacobian.
๐(๐ข, ๐ฃ, ๐ค)
Special cases of the above:
โ(๐ฅ, ๐ฆ)
Case 1: surface is flat and in the xy plane: ๐๐ด =
๐๐ข๐๐ฃ
๐(๐ข, ๐ฃ)
Case 2: surface is known of the form ๐ง = ๐(๐ฅ, ๐ฆ): ๐๐ด = โ1 + ๐๐ฅ2 + ๐๐ฆ2 ๐๐ฅ๐๐ฆ
When we integrate Case 2, the limits of integration are defined by the region in the
xy plane under the surface.
๐๐๐ง๐ ๐๐ง๐ญ ๐ฉ๐ฅ๐๐ง๐ at ๐ฅ๐ , ๐ฆ๐ , ๐ง๐ on a surface: ๐๐ฅ (๐ฅ๐ , ๐ฆ๐ , ๐ง๐ )(๐ฅ โ ๐ฅ๐ )
+ ๐๐ฆ (๐ฅ๐ , ๐ฆ๐ , ๐ง๐ )(๐ฆ โ ๐ฆ๐ ) + ๐๐ง (๐ฅ๐ , ๐ฆ๐ , ๐ง๐ )(๐ง โ ๐ง๐ ) = 0
Note: ๐(๐ฅ, ๐ฆ, ๐ง) is the function, e.g. if our equation is ๐ฅ 2 + ๐ฆ 2 = ๐ง, then
๐(๐ฅ, ๐ฆ, ๐ง) = x 2 + y 2 โ z. And ๐๐ฅ is
ฬ)
(๐๐ฅ ๐ขฬ+๐๐ฆ ๐ฃฬ+๐๐ง ๐ค
โ๐๐ฅ2 +๐๐ฆ2 +๐๐ง2
๐๐
๐๐ฅ
. ๐งฬ =
, where ๐๐ฅ , ๐๐ฆ , ๐๐ง are evaluated at the point (๐ฅ๐ , ๐ฆ๐ , ๐ง๐ )on ๐.
โ
๐ด = โฌ โ1 + ๐๐ฅ2 + ๐๐ฆ2 ๐๐ฅ๐๐ฆ , where ๐ด is the area of the surface and
โ
โ is the region in the x, y plane under ๐. We only use this equation if we can
write the surface as z=f(x,y).
y2 x2(y)
๐ด = โฌ ๐(๐ฅ, ๐ฆ)๐๐ด = โซ
โซ ๐(๐ฅ, ๐ฆ)๐๐ฅ๐๐ฆ
๐ฆ1 ๐ฅ1(๐ฆ)
๐ง2 y2(z) x2(y,z)
๐ = โญ ๐(๐ฅ, ๐ฆ, ๐ง)๐๐ = โซ โซ
โ
๐=1
Note sizes of ๐๐๐: ๐ × ๐ times ๐ × ๐ = ๐ × ๐
๐๐ โ ๐๐
๐๐ โฆ ๐ โก ๐๐ฉ , ๐๐ฉ ๐๐ช = ๐๐ฉ+๐ช , (๐๐ฉ )๐ช = ๐๐ฉ๐ช
If ๐๐ = ๐๐, does ๐ง๐จ๐ญ imply that ๐ = ๐
(๐๐)๐ โ ๐๐ ๐๐ : (๐๐)๐ = ๐๐๐๐, ๐๐ ๐๐ = ๐๐๐๐
Transpose: switch rows for columns: (๐๐)๐ = ๐
(๐ + ๐)๐ = ๐๐ + ๐ ๐
(ฮฑ๐)๐ = ฮฑ๐๐
(๐๐)๐ = ๐ ๐ ๐๐, (๐๐๐๐)๐ = ๐๐ ๐๐ ๐ ๐ ๐๐
x and y are column vectors:
๐ฑ โ ๐ฒ = ๐ฑ๐๐ฒ
If ๐๐ = ๐, then ๐ is symmetric.
If ๐๐ = โ๐, then ๐ is antisymmetric.
1
1
Decompose: ๐ = (๐ + ๐๐ ) + (๐ โ ๐๐ )
2
2
= ๐๐ + ๐๐ , where ๐ is square, ๐๐ is symmetric, and ๐๐ is antisymmetric.
๐๐ ๐ does not imply that ๐ = ±๐
๐๐ฑ = ๐,
๐ฑ = ๐โ๐ ๐
๐โ๐ ๐ = ๐ ๐โ๐ = ๐
๐๐ = ๐[๐๐ โฆ ๐๐ง ] = [๐๐๐ โฆ ๐๐๐ง ] If ๐ is paritioned into n columns.
n
โซ
๐ง1 ๐ฆ1(๐ง) ๐ฅ1(๐ฆ,๐ง)
๐๐๐ญ๐ซ๐ข๐๐๐ฌ
๐ + ๐ = ๐ + ๐, ฮฑ(ฮฒ๐) = (ฮฑฮฒ)๐
where ๐jk = (โ1)j+k ๐jk
det๐ = โ ๐๐๐ ๐๐๐ ,
k=1
Notes: Fix j, Find the Mโs (little determinants), carry out the summation.
Properties of determinants:
1) If a row or column is modified by adding ๐ผ times another row, then detA does
not change.
2) If any two rows are changed then detA=-detB.
3) If A is triangular, then detA is the product of the diagonal.
4) If a row or column is 0 then the det is 0.
5) If a row or a column is a linear combo of other rows or columns then the det =
0
6) det(ฮฑ๐) = ฮฑdet๐
7) det(๐T ) = det๐
8) det(๐ + ๐) โ det(๐) + det(๐)
9) det(๐๐) = det(๐) det(๐)
10) If any two rows are equal, det=0.
11) If det โ 0, then Ax=c has a unique solution.
12) If det=0 then A is singular.
13) If m < ๐ then system is underdetermined.
14) If m > ๐ then system is overdetermined.
15) Underdetermined and 2 unknowns๏ 2 parameter family of solutions and
solutions lie in a plane. 1 parameter family and solutions like on a line, etc.
16) Inconsistent system: 0= -15 for a solution (for example).
17) Scaling a row or column scales the determinant.
๐๐ โฏ
0
A=[ โฎ
โฑ
โฎ ] , det๐ = (det ๐๐ )(โฆ )(det ๐๐ฆ )
0
โฏ ๐๐ฆ
๐
๐
โ
โ
๐=1
๐
๐๐๐ = โ
๐=1
๐
(โ
๐=1
๐๐๐ )
๐=1
โฏ ๐ด๐1
โฑ
โฎ ],
โฏ ๐ด๐๐
1๐
adj๐ is the ๐ญ๐ซ๐๐ง๐ฌ๐ฉ๐จ๐ฌ๐ of the cofactor matrix.
Recall that the cofactor is: ๐jk = (โ1)j+k ๐jk. Remember to take the Transpose of
Ajk to get the adjA
Another way to find ๐โ๐ : Augment A|I, then use elementary ops to get ๐|๐โ๐
๐
(๐๐ )โ๐ = (๐โ๐ )๐ ,
๐๐ง๐ฏ๐๐ซ๐ฌ๐๐ฌ: (๐๐)โ๐ = ๐ โ๐ ๐โ๐ ,
det(๐โ๐ ) =
det ๐
(๐ โ ๐)โ๐ = ๐ + ๐ + ๐๐ + โฏ + ๐๐ฉโ๐ ,
where p is the power that yields ๐๐ฉ = 0 (Nilpotent).
If A is invertible, then AB=AC implies that B=C, BA=CA implies that B=C, AB=0
implies that B=0.
๐โ๐ =
๐ด = โฌโ๐ u × ๐ v โ๐๐ข๐๐ฃ, ๐๐ด = โ๐ u × ๐ v โ๐๐ข๐๐ฃ
โ
๐
๐๐ = ๐ = {๐๐๐ } = {โ ๐๐๐ ๐๐๐ } ; (1 โค ๐ โค ๐, 1 โค ๐ โค ๐)
๐(๐ฅ, ๐ฆ, ๐ง)๐๐ฅ๐๐ฆ๐๐ง
โ๐
๐จ
1
1 ๐ด11
adj ๐ =
[ โฎ
det ๐
det ๐ ๐ด
๐โ๐ ๐
=[ โฎ
0
โฏ
โฑ
โฏ
0
โฎ
]
๐โ๐ ๐ฆ
Theorem: If A is ๐ × ๐ and det ๐ โ 0, then ๐๐ฑ =
๐ admits the unique solution ๐ฑ = ๐โ๐ ๐.
1
๐ ๐ โ1
๐ โ๐
] =[
]
๐ ๐
โ๐ ๐ ๐๐ โ ๐๐
Cramerโs Rule: If Ax=c where A is invertible, then each component ๐ฅ๐ of x may
be computed as the ratio of two determinants; the denominator is det A, and the
numerator is det A but with the ith column replaced by c.
1
0 0 ๐ข11 ๐ข12 ๐ข13
๐ = ๐๐ = [๐21 1 0] [ 0 ๐ข22 ๐ข23 ]
0 ๐ข33
๐31 ๐32 1 0
Notes: Decompose A into LU (e.g. start with u11 = a11, then u11 l21=a21, etc.), then
solve Ly=c for y, then solve Ux=y for x.
Ill conditioned: Small changes in matrix elements yield large changes in det,
๐โ1 = [
det ๐
inverse, etc. To test if ๐ ๐
โ๐ โ๐ ๐๐๐
โช 1 then the matrix is ill conditioned.
Vector Spaces:
N โ space: โ๐ = (๐1 , ๐2 , โฆ , ๐๐ ) This means we have a vector with โnโ dimesions.
Subspace: If a subset T of a vector space is itself a vector space (with the same
definitions as S for vector addition u+v, scalar multiplication au, zero vector 0, and
negative vector โu), then T is a subspace of S.
Dot product, norm, and angle for n-space
๐
๐ฎ โ ๐ฏ โก ๐ข1 ๐ฃ1 + โฏ + ๐ข๐ ๐ฃ๐ = โ ๐ข๐ ๐ฃ๐
๐=1
We can โweightโ each component:
๐
๐ฎ โ ๐ฏ โก ๐ค1 ๐ข1 ๐ฃ1 + โฏ + ๐ค๐ ๐ข๐ ๐ฃ๐ = โ ๐ค๐ ๐ข๐ ๐ฃ๐
๐=1
๐ฎโ๐ฏ
๐ = cos โ1 (
)
โ๐ฎโโ๐ฏโ
|๐ฎ โ ๐ฏ| โค โ๐ฎโโ๐ฏโ
Orthonormal: a set of vectors where each vector is normalized and each vector in
one set is orthogonal to every other vector in the other set. This can be described as
1, ๐ = ๐
the Kronecker delta = ๐ฎ๐ข โ ๐ฏ๐ฃ = ๐ฟ๐ ๐ = {
0, ๐ โ ๐
Norms:
๐
๏ท ๐ฎ = ๐ผ1 ๐๐ + โฏ + ๐ผ๐ ๐๐ค . A set of eโs is a basis for u
iff it is LI and span S.
๏ท Orthogonal basis are preferred. Given orthog. basis
vectors: {๐๐ , โฆ ๐๐ค }, suppose we wish to expand a
given u in terms of these, then
๐ฎโ๐
๐ฎ = ๐ผ1 ๐๐ + โฏ + ๐ผ๐ ๐๐ค , where ๐ผ1 = ( ๐ ) ๐๐ ,
u
e1
๐๐ โ๐๐
e2
Orthogonalization process: Given k LI vectors ๐ฏ๐ , โฆ , ๐ฏ๐ค we can get k ON vectors
๐ฬ๐ , โฆ , ๐ฬ๐ค in span{๐ฏ๐ , โฆ ๐ฏ๐ค }by:
๐ฬ๐ =
๐ฏ๐
,
โ๐ฏ๐ โ
๐ฬ๐ =
๐ฏ๐ โ (๐ฏ๐ โ ๐ฬ๐ )๐ฬ๐
โ๐ฏ๐ โ (๐ฏ๐ โ ๐ฬ๐ )๐ฬ๐ โ
๐ฃโ๐
,
๐ฬ๐ =
๐ฏ๐ฃ โ โ๐ข=๐(๐ฏ๐ฃ โ ๐ฬ๐ข )๐ฬ๐ข
๐ฃโ๐
โ๐ฏ๐ฃ โ โ๐ข=๐(๐ฏ๐ฃ โ ๐ฬ๐ข )๐ฬ๐ข โ
Dimensions: The dimension of a vector space is the greatest number of LI vectors
in that vector space. If a vector space contains only a zero vector, the dimension is
0. Dimension relates to bases: The number of basis vectors equals the dimension
(because the bases are LI). The dim of a space will be no greater than n (โ๐ ).
Linear Independence: A set of vectors is LD if at least one of them can be
expressed as a linear combination of the others. Example: (1,0), (1,1), and (5,4)are
LD (๐ฎ๐ = ๐ฎ๐ + ๐๐ฎ๐ ).
A set of vectors is LD iff there exist scalars, not all zero, such that ๐ผ1 ๐ฎ๐ + โฏ +
๐ผ๐ ๐ฎ๐ค = 0. To solve for the scalars: 1) Set up a system of equations: ๐๐ = ๐. Where
A is the matrix of the vectors. 2) Use elementary row operations to reduce to โrow
echelon formโ or as close to it. The non-zero rows are LI.
๏ท
A set containing the zero vector is LD.
๏ท
Every orthogonal set of nonzero vectors is LI.
Best Approximations:
If u is any vector with โ๐ฎโ = โ๐ฎ โ ๐ฎ
๐
๐ฎ โ โ(๐ฎ โ ๐ฬ๐ฃ )๐ฬ๐ฃ
๐=1
Where we are given u and an orthonormal basis set {๐ฬ๐ , โฆ , ๐ฬ๐ }. The more basis
vectors we use, the closer our approximation will be (up to the number of bases
equal to the dimension of u.) The error of our approximation is:
๐
โ๐โ2 = โ๐ฎโ2 โ โ ๐ผ๐2
Taxicab norm: โ๐ฎโ = โ|๐ข๐ |
๐=1
๐=1
โ๐ฎโ โก โโ๐๐=1 ๐ค๐ ๐ข๐2, if we are using weights.
๐
โ๐ฎโ โก โโ ๐ข๐2
๐=1
If vector space consists of functions, say, ๐ข(๐ฅ), ๐ฃ(๐ฅ) then the inner product is: ๐ฎ โ
๐
๐ฏ = โฉ๐ข(๐ฅ), ๐ฃ(๐ฅ)โช โก โซ๐ ๐ข(๐ฅ)๐ฃ(๐ฅ)๐๐ฅ, where a and b are the bounds of the function.
1
Note that the norm can be found for a vector โ๐ฎโ = โ๐ข(๐ฅ)โ = โโซ0 ๐ข2 (๐ฅ)๐๐ฅ
Span: The set of all linear combinations of the vectors in a vector space is called
the span. E.g. for a vector space u1 , โฆ , uk , the span is ฮฑ1 u1 , โฆ , ฮฑk uk and is denoted
as span{u1 , โฆ , uk }. The span is a subspace of S. The span has to include the origin.
The above example shows a few linear combinations of the vectors u and v; the
span of this vector space would include all the linear combinations (a plane).
๏ท To discover if two spans are equal, say span1 {๐ฎ๐ , ๐ฎ๐ }and span2 {๐ฏ๐ , ๐ฏ๐ }, write
the equation (๐ผ1 ๐ฎ๐ + ฮฑ2 ๐ฎ๐ ) = ๐ฐ, and (๐ผ1 ๐ฏ๐ + ๐ผ2 ๐ฏ๐ ) = ๐ฐ and solve for
๐ผ1 and ๐ผ2 in terms of w. Compare the w vectors. E.g. (for a โ3 vectors):
๐ข11 ๐ข21
๐ค1
๐ผ1
[๐ข12 ๐ข22 ] [๐ผ ] = [๐ค2 ]. In this case we have a non-square matrix, so reduce using
2
๐ข13 ๐ข23
๐ค3
elementary operations so that the last row of A is zero (keeping track of the
operations on w). This gives us an equation only in terms of w, e.g. 0 = ๐๐ค1 +
๐๐ค2 + ๐๐ค3
Bases:
Where: ๐ผ๐ = ๐ฎ โ ๐ฬ๐ฃ
Row-echelon form:
1) In each row not made up entirely of zeros, the first nonzero element is a 1.
2) In any two consecutive rows not made up entirely of zeros, the leading 1 in the
lower row is to the right of the leading 1 in the upper row.
3) If a column contains a leading 1, every other element in that column is a zero.
4) All rows made up entirely of zeros are grouped together at the bottom of the
matrix.
Rank:
1) A matrix (maybe not square) is of rank r if it contains at least one r × r
submatrix with nonzero determinant but no square submatrix larger than r × r
with nonzero determinant. You can swap rows and columns to find these
submatrices. The zero matrix is of rank 0.
2) Elementary row operations do not alter the rank.
3) # of LI row vectors = # of LI column vectors = rank.
Elementary operations:
1) Operate on the augmented matrix (glue c onto A).
2) Addition of a multiple of one row to another.
3) Multiplication of a row by a nonzero constant.
4) Interchange of two rows.
Terminology
1) Consistent: one or more solutions
2) Unique: only one solution
3) Non-unique: more than one solution
4) Inconsistent: No solutions.
5) If m<n: Consistent or inconsistent. If consistent no unique solution exists (p
parameter family, where ๐ โ ๐ โค ๐ โค ๐.
6) If m>n: Consistent or inconsistent. Can have unique or non-unique solution. (p
parameter family, where 1 โค ๐ โค ๐).
Eigenvalue Problem
Decompose any function into its even and odd parts:
๐(๐ฅ) =
๐(๐ฅ)+๐(โ๐ฅ)
2
+
๐(๐ฅ)โ๐(โ๐ฅ)
โ
FS ๐ = ๐0 + โ (๐๐ cos
๐=1
2
๐๐๐ฅ
๐๐๐ฅ
+ ๐๐ sin
)
๐
๐
๐
If v is an eigenvector of A, then v lies on the vector Av. In other words, if v is an
eigenvector of A, then Av is the same as some constant times A, e.g. ๐๐ฃ.
(๐ โ ฮป๐)๐ฑ = ๐, Characteristic equation: det(๐ โ ฮป๐) = 0
To find eigenvalues, solve the characteristic equation for ๐. To find the eigenspaces,
1) find the eigenvalues ๐, 2) for each ๐, plug back into (๐ โ ฮป๐)๐ฑ = ๐, and solve for
x. This will give us an eigenvector for each eigenvalue. 3) We should end up with
at least one arbitrary solution (0=0) for each eigenvector. This will give us our
arbitrary constants (๐ผ, ๐ฝ, ๐พ, ๐๐ก๐. ) that when multiplied by the eigenvector gives us
our eigenspace.
1
๐0 = โซ ๐(๐ฅ)๐๐ฅ ,
2๐
โ๐
๐
๐ด
๐ด
Even function: ๐๐ = 0, ๐(โ๐ฅ) = ๐(๐ฅ), โซโ๐ด ๐(๐ฅ)๐๐ฅ = 2 โซ0 ๐(๐ฅ)๐๐ฅ
Odd function: ๐๐ = ๐๐ = 0, ๐(โ๐ฅ) = โ๐(๐ฅ),
๐ด
โซโ๐ด ๐(๐ฅ)๐๐ฅ
=0
๐
๐๐ =
1
๐๐๐ฅ
โซ ๐(๐ฅ) cos
๐๐ฅ
๐
๐
โ๐
1
๐๐๐ฅ
๐๐ = โซ ๐(๐ฅ) sin
๐๐ฅ
๐
๐
โ๐
๐ is 2๐ periodic, e. g. if the period is 2ฯ, ๐ = ๐.
Elementary integral formulas:
๐
0, ๐ โ ๐
๐๐๐ฅ
๐๐๐ฅ
โซ cos
cos
๐๐ฅ { ๐, ๐ = ๐ โ 0
๐
๐
2๐, ๐ = ๐ = 0
โ๐
๐
โซ sin
Symmetric Matrices:
๏ท If A is symmetric, then all of its eigenvalues are real.
๏ท If an ๐ of a symmetric matrix A is of multiplicity k, then the eigenspace
corresponding to ๐ is of dimension k.
๏ท If A is symmetric, then eigenvectors corresponding to distinct eigenvalues are
orthogonal.
๏ท If an ๐ × ๐ matrix A is symmetric, then its eigenvectors provide an orthogonal
basis for n-space.
๏ท If A is symmetric, then
๐T ๐๐
๐= ๐
๐ ๐
Where e is an eigenvector of A.
Diagonalization: ๐โ๐ ๐๐ = ๐
Especially useful when solving a system of differential equations. Given a system
๐๐ฑ = ๐ฑโฒ, our goal is to solve for x by 1) Find the Q and D matrices. Q has the
eigenvectors for rows, D has the eigenvalues in the diagonal (the order of the
eigenvalues matches the order of the eigenvectors in Q). 2) Write ๐ฑฬโฒ = ๐๐ฑฬ. 3) This
gives you uncoupled equations, so you can do things like: ๐ฅฬโฒ = ๐๐ฅฬ โ ๐ฅฬ = ๐ถe๐๐ก . 4)
Now that you have ๐ฑฬ, you can solve for x, by ๐ฑ = ๐๐ฑฬ.
๏ท Every symmetric matrix is diagonalizable.
๏ท If an ๐ × ๐ matrix has n distinct eigenvalues, then it is diagonalizable. (It may be
diagonalizable anywayโdoes not read iff).
๏ท If an ๐ × ๐ matrix has eigenvalues, then the corresponding eigenvectors are LI.
๏ท A is diagonalizable iff it has n LI eigenvectors.
๏ท ๐๐ฆ = ๐๐๐ฆ ๐โ๐
Quadratic Form/Cononical Form: A quadratic form is said to be canonical if all
mixed terms (such as ๐ฅ1 ๐ฅ2 ) are absent.
Example: reduce ๐(๐ฅ1 , ๐ฅ2 ) = ๐11 ๐ฅ12 + ๐22 ๐ฅ22 + (๐12 + ๐21 )๐ฅ1 ๐ฅ2 to canonical form.
๐11 ๐12
1) Identify the A matrix: ๐ = [๐
๐22 ], chose ๐12 , ๐21 to be equal so that the
21
matrix is symmetrical. 2) Find the eigenvalues. 3) Plug in to get the canonical form:
๐(๐ฅฬ1 , ๐ฅฬ2 ) = ๐1 ๐ฅฬ12 + ๐2 ๐ฅฬ22 . 4) Find the connection between ๐ฅฬand ๐ฅ by ๐ฑ = ๐๐ฑฬ
where Q is the eigenvector matrix from A.
Tensors:
๐๐ข๐ฃ = ๐ฎโจ๐ฏ = ๐ฎ๐ฏ ๐ = ๐ฎ๐ข ๐ฏ๐ฃ
๐๐ข๐ฃ๐ค๐ฅ = ๐ฎโจ๐ฏโจ๐ฐโจ๐ฑ = ๐ฎ๐ข ๐ฏ๐ฃ ๐ฐ๐ค ๐ฑ๐ฅ
๐๐ (๐) = ๐๐ข๐ข = trace(๐) = 1st Invariant
1
๐๐ (๐) = (๐๐ข๐ข ๐๐ฃ๐ฃ โ ๐๐ฃ๐ข ๐๐ข๐ฃ ) = trace(๐) = 2nd Invariant
2
1st invariant of stress is hydrostatic pressure.
Eigenvalues of stress and strain tensors are principal stresses and strains.
Eigenvectors of stresses and strains are the directions.
๐๐ (๐) = ๐๐๐ข ๐๐๐ฃ ๐๐๐ค ๐๐ข๐ฃ๐ค = ๐๐๐ญ(๐)=3rd Invariant
To find eigenvalues solve for the roots of:
๐๐ โ ๐๐ ๐๐ + ๐๐ ๐ โ ๐๐ = 0
๐ ๐๐ฎ๐ข ๐๐ฎ๐ฃ ๐๐ฎ๐ค ๐๐ฎ๐ค
๐๐ข๐ฃ = ( โฒ + โฒ + โฒ
)
๐ ๐๐ฑ๐ฃ ๐๐ฑ๐ข ๐๐ฑ๐ข ๐๐ฑ๐ฃโฒ
= Finite strain tensor (as opposed to the small strain tensor).
Where: ๐ฑ โฒ is the reference position.
Fourier Series:
= ๐๐ (๐ฅ) + ๐๐ (๐ฅ)
โ๐
๐
โซ cos
โ๐
0, ๐ โ ๐
๐๐๐ฅ
๐๐๐ฅ
sin
๐๐ฅ {๐, ๐ = ๐ โ 0
๐
๐
๐๐๐ฅ
๐๐๐ฅ
sin
๐๐ฅ = 0, for all ๐, ๐
๐
๐
Integration by parts: โซ ๐ฅ 2 sin ๐ฅ ๐๐ฅ = ๐ข๐ฃ โ โซ ๐ฃ๐๐ข , where ๐ฃ โฒ = sin ๐ฅ , ๐ข = ๐ฅ 2
Questions:
If we have 4 vectors of Rank 3, are they guaranteed to be LD? It seems they are if
we have more vectors than the rankโฆ
Integral Table:
โซ sin2 ๐๐๐๐ =
๐ sin 2๐๐
โ
+๐ถ
2
4๐
โซ ln ๐ฅ ๐๐ฅ = ๐ฅ ln ๐ฅ โ ๐ฅ + ๐ถ
โซ ๐ ๐ฅ ๐๐ฅ =
๐๐ฅ
+๐ถ
ln ๐
1
โซ ๐๐ฅ = ln ๐ฅ + ๐ถ
๐ฅ
๐๐ฅ
๐ฅ
โซ
= sinโ1 + ๐ถ
๐
โ๐2 โ ๐ฅ 2
โซ ๐ ๐ฅ ๐๐ฅ = ๐ ๐ฅ + ๐ถ
๐ ๐ฅ
๐ข = ๐ข ๐ฅ ln u
๐๐ฅ
โ๐ซ(t + h) โ๐ซ(t)โ
๐๐
= lim
๐๐ก โโ0
โ
๐
1
1
2
โซ โ1 + 4๐ก ๐๐ก = ๐โ1 + 4๐ 2 + ln(2๐ + โ1 + 4๐ 2 )
2
4
0
๐ด
โซ
๐๐ฅ = โ๐ด ln(๐ต โ ๐ฅ) + ๐ถ
๐ตโ๐ฅ
u substitution for simplifying integrals: 1) Substitute a single variable (u) for a hardto-integrate portion (x). 2) Find du. 3) Rework limits of integration.
Power rule:
© Copyright 2026 Paperzz