Computational complexity of competitive equilibria in exchange markets Katarína Cechlárová P. J. Šafárik University Košice, Slovakia Budapest, Summer school, 2013 Outline of the talk brief history of the notion of competitive equilibrium model computation for divisible goods indivisible goods – housing market Top trading cycles algorithm housing market with duplicated houses algorithm and complexity approximate equilibrium and its complexity K. Cechlárová, Budapest 2013 2 First ideas Adam Smith: An Inquiry into the Nature and Causes of the Wealth of Nations (1776) Francis Ysidro Edgeworth: Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences (1881) Marie-Ésprit Léon Walras: Elements of Pure Economics (1874) Vilfredo Pareto: Manual of Political Economy (1906) K. Cechlárová, Budapest 2013 3 Exchange economy set of agents, set of commodities each agent owns a commodity bundle and has preferences over bundles economic equilibrium: pair (prices, redistribution) such that: each agent owns the best bundle he can afford given his budget demand equals supply if commodities are infinitely divisible and preferences of agents strictly monotone and strictly convex, equilibrium always exists K. Cechlárová, Budapest 2013 Kenneth Arrow & Gérard Debreu (1954) 4 Example: two agents, two goods agent 1: ω (2,1); 2 agent 2: ω (1,0); prices (1,1) 1 u1 ( x1 , x2 ) x1 x2 2 u ( x1 , x2 ) x2 3 5 x 2 , 2 i x2 3 3 x , 2 2 1 x2 x 2 0,1 3,1 i prices (1,1) are not equilibrium, as x1 demand supply x1 K. Cechlárová, Budapest 2013 5 Example - continued agent 1: ω (2,1); 2 agent 2: ω (1,0); prices (1,4) 1 x2 3 x 3, 4 1 u1 ( x1 , x2 ) x1 x2 2 u ( x1 , x2 ) x2 x 3,1 i x2 1 x 0, 4 2 x1 i ω 3,1 Equilibrium! x1 K. Cechlárová, Budapest 2013 6 Economy with indivisible goods Equlibrium might not exists! X. Deng, Ch. Papadimitriou, S. Safra (2002): Decision problem: Does an economic equilibrium exist in exchange economy with indivisible commodities and linear utility functions? NP-complete, already for two agents K. Cechlárová, Budapest 2013 7 Housing market n agents, each owns one unit of a unique indivisible good – house preferences of agent: linear ordering on a subset of houses Shapley-Scarf economy (1974) housing market is a model of: kidney exchange several Internet based markets K. Cechlárová, Budapest 2013 8 strict preferences trichotomous preferences ties acceptable houses K. Cechlárová, Budapest 2013 9 a1 a2 a4 a3 a7 a5 a6 K. Cechlárová, Budapest 2013 10 Definition. Lemma. not equilibrium: a6 not satisfied K. Cechlárová, Budapest 2013 a1 a2 a4 a3 a7 a5 a6 11 Top Trading Cycles algorithm for Shapley-Scarf model (m=n, identity) Step 0. N:=A, round r:=0, pr=n. Step 1. Take an arbitrary agent a0. Step 2. a0 points to a most preferred house, in N, its owner is a1 . Agent a1 points to the most preferred house a2 in N etc. A cycle C arises. Step 3. r:=r+1, pr= pr-1; Cr:=C, all houses on C receive price pr, N:=N-C. Step 4. If N , go to Step 1, else end. Shapley & Scarf (1974): author D. Gale Abraham, KC, Manlove, Mehlhorn (2004): implementation linear in the size of the market K. Cechlárová, Budapest 2013 12 Top Trading Cycles algorithm for Shapley-Scarf model (m=n, identity) Step 0. N:=A, round r:=0, pr=n. Step 1. Take an arbitrary agent a0. Step 2. a0 points to a most preferred house, in N, its owner is a1 . Agent a1 points to the most preferred house a2 in N etc. A cycle C arises. Step 3. r:=r+1, pr= pr-1; Cr:=C, all houses on C receive price pr, N:=N-C. Step 4. If N , go to Step 1, else end. Theorem (Gale 1974). K. Cechlárová, Budapest 2013 13 Theorem (Fekete, Skutella , Woeginger 2003). Theorem (KC & Fleiner 2008). K. Cechlárová, Budapest 2013 14 h2 a4 a3 a5 h1 a1 a2 h4 K. Cechlárová, Budapest 2013 a7 a6 p1 > p2 h3 15 Definition. Theorem (KC & Schlotter 2010). h2 a4 a3 a5 h1 Theorem (KC & Schlotter 2010). a1 a2 h4 a7 a6 h3 K. Cechlárová, Budapest 2013 16 Approximating the number of satisfied agents Definition. K. Cechlárová, Budapest 2013 17 Theorem (KC & Jelínková 2011). K. Cechlárová, Budapest 2013 18 Theorem (KC & Jelínková 2011). K. Cechlárová, Budapest 2013 19 Theorem (KC & Jelínková 2011). K. Cechlárová, Budapest 2013 20 Theorem (KC & Jelínková 2011). 2 3 9 7 6 1 8 4 5 K. Cechlárová, Budapest 2013 21 Theorem (KC & Jelínková 2011). Theorem (KC & Jelínková 2011). K. Cechlárová, Budapest 2013 22 Thank you for your attention!
© Copyright 2026 Paperzz