ENGI 1313 Mechanics I Lecture 10: Particle Equilibrium, Free-Body Diagrams and Coplanar Forces Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland [email protected] Chapter 3 Objectives to introduce the concept of the free-body diagram for a particle. to show how to solve particle equilibrium problems using the equations of equilibrium 2 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Lecture 10 Objectives 3 to examine and apply Chapter 3 objectives in 2D space © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Particle Equilibrium Newton’s 1st Law – Inertia +Y V = 0, v F1 Particle equilibrium +X • Rest (Static) • Constant velocity F3 F 0 F2 Scalar components = 0 2 Equations Solve for at most 2 Unknowns 4 © 2007 S. Kenny, Ph.D., P.Eng. F F1 F2 F3 0 Fx î Fy ĵ 0 F 0 F 0 x y ENGI 1313 Statics I – Lecture 10 Free-Body Diagram (FBD) What is it? Purpose? Sketch or diagram illustrating all force vectors acting on a particle (body) A visual aid in developing equilibrium equation of motion What is the procedure? Draw isolated or “free” outlined shape Show all forces Characterize each force • • • 5 Magnitude Sense Direction © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-01 +Y FBD Procedure Draw isolated or “free” outlined shape Show all forces Characterize each force +X • Magnitude • Sense • Direction 6 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Comprehension Quiz 10-01 Select the Correct FBD of Particle A Answer: D Hibbeler (2007) 7 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Applications Hibbeler (2007) 8 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-01 9 For the engine in static equilibrium, using a free body diagram, solve for the force magnitudes FAD and FAB. The engine mass is 255 kg. © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-01 Draw FBD +Y FAB A = 30 FAD +X W = FAC = mg W = (255 kg)(9.806m/s2) = 2.5kN 10 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-01 State Equilibrium Equation F 0 +Y FAB A = 30 FAD x FAD FAB cos 30 0 W = FAC = 2.5kN FAD 5 kN cos 30 4.33 kN F y 0 FAC FAB sin 30 0 11 © 2007 S. Kenny, Ph.D., P.Eng. FAB 2.5 kN 5 kN sin 30 ENGI 1313 Statics I – Lecture 10 +X Example 10-02 The car is towed at a constant speed by the 600 lb force and the angle is 25°. Find the forces in the ropes AB and AC. 12 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-02 (cont.) FBD at Point A 600 lb A 25 F x 0 FAB 30 FAC FAC cos 30 FAB cos 25 0 F y 0 FAC sin 30 FAB sin 25 600 lb 0 2 Equations 2 Unknowns 13 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-03 (cont.) 600 lb Equilibrium at Point A Rearrange F x 0 A FAC cos 30 FAB cos 25 0 25 FAC 1.047 FAB FAB Substitute F y 0 FAC sin 30 FAB sin 25 600 lb 0 1.047 FAB sin 30 FAB sin 25 600 lb 0 FAB 634.2 lb 634lb FAC 1.047 FAB 664 lb 14 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 30 FAC Example 10-03 Find the forces in the cables and weight of sack B. What point is first selected for the FBD? 15 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-03 (cont.) Unknown force magnitudes at Point C FBD at Point E F 0 x TEG sin 30 TEC cos 45 0 F y 0 TEG cos 30 TEC sin 45 20 lb 0 2 Equations 2 Unknowns 16 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Example 10-03 (cont.) Equilibrium at Point E Rearrange F x 0 TEG sin 30 TEC cos 45 0 TEG 2 TEC Substitute F y 0 TEG cos 30 TEC sin 45 20 lb 0 2 TEC cos 30 TEC sin 45 20 lb 0 TEC 38.64 lb 38.6 lb TEG 2TEC 54.6 lb 17 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 TEG 54.6 lb Example 10-03 (cont.) 18 FBD at Point E and Point C © 2007 S. Kenny, Ph.D., P.Eng. TEC 38.6 lb ENGI 1313 Statics I – Lecture 10 Example 10-03 (cont.) Equilibrium at Point C F 0 x TCD TCD 4 TCE cos 45 0 5 5 38.64 lbcos 45 34.2 lb 4 F y 0 3 TCD TCE sin 45 WB 0 5 3 WB 34.15 lb 38.64 lbcos 45 47.8 lb 5 19 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Homework Problem 20 Each cord can sustain a maximum tension of 200 lb. Determine the largest weight of the sack that can be supported. Also, determine θ of cord DC for equilibrium. © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Quiz #2 Examining concepts from Tutorial Problem Set #2 Only approved calculators allowed Any formulae, conversion factors will be provided Ancillary information may also be provided 21 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 Classification of Textbook Problems Hibbeler (2007) 22 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10 References Hibbeler (2007) http://wps.prenhall.com/esm_hibbeler_eng mech_1 23 © 2007 S. Kenny, Ph.D., P.Eng. ENGI 1313 Statics I – Lecture 10
© Copyright 2026 Paperzz