Control Systems EE 4314

Control Systems
EE 4314
Lecture 11
February 18, 2014
Spring 2014
Woo Ho Lee
[email protected]
Announcement
β€’ Lab #2 report due is extended by Feb. 25th at
3:30PM. Submit a hard copy at class.
Woo Ho Lee Control Systems EE 4314, Spring 2014
State Space Representation
β€’
Nth-order system
𝑦 (𝑛) + π‘Ž1 𝑦 (π‘›βˆ’1) + β‹― + π‘Žπ‘›βˆ’1 𝑦 + π‘Žπ‘› 𝑦 = 𝑒
β€’
State space representation
𝑿 = 𝑨𝑿 + 𝑩𝑒
π‘₯1
0
π‘₯2
0.
.
where 𝑿 = . , 𝐴 = .
0
.
βˆ’π‘Ž
𝑛
π‘₯𝑛
1
0.
.
0
βˆ’π‘Žπ‘›βˆ’1
0
1.
.
0
βˆ’π‘Žπ‘›βˆ’2
β‹― 0
β‹― 0.
β‹―
. ,B =
β‹―
1
βˆ’π‘Ž
β‹―
1
0
0.
.
.
1
π’š = π‘ͺ𝑿 + 𝐷𝑒
Where π‘ͺ = 1 0 β‹― 0 , output matrix
β€’
Transfer function
π‘Œ(𝑠)
1
= 𝑛
π‘ˆ(𝑠) 𝑠 + π‘Ž1 𝑠 π‘›βˆ’1 + β‹― + π‘Žπ‘›βˆ’1 𝑠 + π‘Žπ‘›
Woo Ho Lee Control Systems EE 4314, Spring 2014
DC Motor in State Space Form
β€’ Dynamic equations of motion
π½π‘š πœƒπ‘š + π‘πœƒπ‘š = 𝐾𝑑 π‘–π‘Ž
π‘‘π‘–π‘Ž
πΏπ‘Ž
+ π‘…π‘Ž π‘–π‘Ž = π‘£π‘Ž βˆ’ 𝐾𝑒 πœƒπ‘š
𝑑𝑑
β€’ Find state space equation
– Define π‘₯1 = πœƒπ‘š , π‘₯2 = πœƒπ‘š , π‘₯3 = π‘–π‘Ž
Woo Ho Lee Control Systems EE 4314, Spring 2014
DC Motor in State Space Form
Woo Ho Lee Control Systems EE 4314, Spring 2014
DC Motor in State Space Form
β€’
Draw a block diagram
Woo Ho Lee Control Systems EE 4314, Spring 2014
Canonical Form
β€’ Canonical form: each state variable is connected by the feedback to
the control input
β€’ Consider a system
𝑏(𝑠)
π‘Ž(𝑠)
𝑏(𝑠) = 𝑏1 𝑠 π‘›βˆ’1 + 𝑏2 𝑠 π‘›βˆ’2 + β‹― + 𝑏𝑛
π‘Ž(𝑠) = 𝑠 𝑛 + π‘Ž1 𝑠 π‘›βˆ’1 + π‘Ž2 𝑠 π‘›βˆ’2 + β‹― + π‘Žπ‘›
βˆ’π‘Ž1 βˆ’π‘Ž3 βˆ’π‘Ž3 β‹― βˆ’π‘Žπ‘›
1.
0.
0. β‹― 0.
𝐴= .
.
,B =
. β‹― .
0
0
1 β‹― 0
0 1 0
0
0
𝐢 = 𝑏1 𝑏2 β‹― 𝑏𝑛 , D = 0
β€’
MATLAB symbolic canonical form
Woo Ho Lee Control Systems EE 4314, Spring 2014
0
0.
.
.
1
Canonical Form
β€’ Ex] Find a state space representation and draw a
block diagram
𝑦 + 6𝑦 + 11𝑦 + 6𝑦 = 6𝑒
Define π‘₯1 = 𝑦, π‘₯2 = 𝑦, π‘₯3 = 𝑦
Woo Ho Lee Control Systems EE 4314, Spring 2014
Canonical Form
𝑦 + 6𝑦 + 11𝑦 + 6𝑦 = 6𝑒
Define π‘₯1 = 𝑦, π‘₯2 = 𝑦, π‘₯3 = 𝑦
Woo Ho Lee Control Systems EE 4314, Spring 2014
Canonical Form
𝑦 + 6𝑦 + 11𝑦 + 6𝑦 = 6𝑒
Define π‘₯1 = 𝑦, π‘₯2 = 𝑦, π‘₯3 = 𝑦
Woo Ho Lee Control Systems EE 4314, Spring 2014
Transfer Function from State Space
Equations
β€’ State space equation
𝑿 = 𝑨𝑿 + 𝑩𝑒
β€’ Find transfer function from state space equation
Woo Ho Lee Control Systems EE 4314, Spring 2014
Transfer Function from State Space
Equations
β€’ State space equation
𝑿 = 𝑨𝑿 + 𝑩𝑒
β€’ Find transfer function from state space equation
– Taking the Laplace transform with I.C.=0
𝑠𝑋 𝑠 = 𝐴𝑋(𝑠) + π΅π‘ˆ(𝑠)
– Combining with 𝑋 𝑠
𝑠𝐼 βˆ’ 𝐴 𝑋 𝑠 = π΅π‘ˆ 𝑆
– Premultiplying 𝑠𝐼 βˆ’ 𝐴 βˆ’1
𝑋 𝑆 = 𝑠𝐼 βˆ’ 𝐴 βˆ’1 π΅π‘ˆ(𝑆)
where 𝐼: identity matrix
– Since 𝑦 = 𝐢𝑋
π‘Œ 𝑆 = 𝐢𝑋 𝑆 = 𝐢 𝑠𝐼 βˆ’ 𝐴 βˆ’1 π΅π‘ˆ(𝑆)
π‘Œ(𝑆)
– Transfer function 𝐺 𝑆 = π‘ˆ(𝑆)
𝐺 𝑆 = 𝐢 𝑠𝐼 βˆ’ 𝐴
Woo Ho Lee Control Systems EE 4314, Spring 2014
βˆ’1
𝐡
Transfer Function from State Space
Equations
β€’ Find transfer function from state space equation
βˆ’7 βˆ’12
1
𝐴=
,𝐡 =
,𝐢 = 1 2 ,D = 0
1
0
0
From 𝐺 𝑆 = 𝐢 𝑠𝐼 βˆ’ 𝐴
βˆ’1 𝐡
Woo Ho Lee Control Systems EE 4314, Spring 2014
Transfer Function from State Space
Equations
β€’ Find transfer function from state space equation
βˆ’7 βˆ’12
1
𝐴=
,𝐡 =
,𝐢 = 1 2 ,D = 0
1
0
0
– Transfer function 𝐺 𝑆 = 𝐢 𝑠𝐼 βˆ’ 𝐴 βˆ’1 𝐡
𝑠𝐼 βˆ’ 𝐴 =
𝑠𝐼 βˆ’ 𝐴
𝑠
βˆ’1
𝑠+7
βˆ’1
12
𝑠
𝑠 βˆ’12
= 1 𝑠+7
𝑠 𝑠 + 7 + 12
βˆ’12
1
1 2 1 𝑠+7 0
𝐺 𝑆 =
=
𝑠 𝑠 + 7 + 12
– MATLAB functions
β€’
β€’
[num,den]=ss2tf(A,B,C,D)
[A,B,C,D]=tf2ss(num,den)
Woo Ho Lee Control Systems EE 4314, Spring 2014
(𝑠 + 2)
𝑠 + 3 (𝑠 + 4)
Transfer Function Poles from State
Space Equations
β€’ The eigenvalues of an 𝑛 × π‘› matrix 𝑨 are the roots of the
characteristic equation
det 𝑠𝑰 βˆ’ 𝑨 = 0
Where 𝑰: 𝑛 × π‘› identity matrix
βˆ’6 βˆ’11 βˆ’6
β€’ Find poles when 𝐴 = 1
0
0
0
1
0
Woo Ho Lee Control Systems EE 4314, Spring 2014
Transfer Function Poles from State
Space Equations
βˆ’6 βˆ’11 βˆ’6
β€’ Find poles when 𝐴 = 1
0
0
0
1
0
𝑠 0 0
βˆ’6 βˆ’11 βˆ’6
𝑠 + 6 11 6
𝑠𝐼 βˆ’ 𝐴 = 0 𝑠 0 βˆ’ 1
0
0 = βˆ’1
𝑠 0
0 0 𝑠
0
1
0
0
βˆ’1 𝑠
det 𝑠𝑰 βˆ’ 𝑨 = 𝑠 2 𝑠 + 6 + 6 + 11𝑠 = 0
𝑠+1 𝑠+2 𝑠+3 =0
Poles=-1, -2, -3
β€’ MATLAB command: eig(A)
Woo Ho Lee Control Systems EE 4314, Spring 2014