Control Systems EE 4314 Lecture 11 February 18, 2014 Spring 2014 Woo Ho Lee [email protected] Announcement β’ Lab #2 report due is extended by Feb. 25th at 3:30PM. Submit a hard copy at class. Woo Ho Lee Control Systems EE 4314, Spring 2014 State Space Representation β’ Nth-order system π¦ (π) + π1 π¦ (πβ1) + β― + ππβ1 π¦ + ππ π¦ = π’ β’ State space representation πΏ = π¨πΏ + π©π’ π₯1 0 π₯2 0. . where πΏ = . , π΄ = . 0 . βπ π π₯π 1 0. . 0 βππβ1 0 1. . 0 βππβ2 β― 0 β― 0. β― . ,B = β― 1 βπ β― 1 0 0. . . 1 π = πͺπΏ + π·π’ Where πͺ = 1 0 β― 0 , output matrix β’ Transfer function π(π ) 1 = π π(π ) π + π1 π πβ1 + β― + ππβ1 π + ππ Woo Ho Lee Control Systems EE 4314, Spring 2014 DC Motor in State Space Form β’ Dynamic equations of motion π½π ππ + πππ = πΎπ‘ ππ πππ πΏπ + π π ππ = π£π β πΎπ ππ ππ‘ β’ Find state space equation β Define π₯1 = ππ , π₯2 = ππ , π₯3 = ππ Woo Ho Lee Control Systems EE 4314, Spring 2014 DC Motor in State Space Form Woo Ho Lee Control Systems EE 4314, Spring 2014 DC Motor in State Space Form β’ Draw a block diagram Woo Ho Lee Control Systems EE 4314, Spring 2014 Canonical Form β’ Canonical form: each state variable is connected by the feedback to the control input β’ Consider a system π(π ) π(π ) π(π ) = π1 π πβ1 + π2 π πβ2 + β― + ππ π(π ) = π π + π1 π πβ1 + π2 π πβ2 + β― + ππ βπ1 βπ3 βπ3 β― βππ 1. 0. 0. β― 0. π΄= . . ,B = . β― . 0 0 1 β― 0 0 1 0 0 0 πΆ = π1 π2 β― ππ , D = 0 β’ MATLAB symbolic canonical form Woo Ho Lee Control Systems EE 4314, Spring 2014 0 0. . . 1 Canonical Form β’ Ex] Find a state space representation and draw a block diagram π¦ + 6π¦ + 11π¦ + 6π¦ = 6π’ Define π₯1 = π¦, π₯2 = π¦, π₯3 = π¦ Woo Ho Lee Control Systems EE 4314, Spring 2014 Canonical Form π¦ + 6π¦ + 11π¦ + 6π¦ = 6π’ Define π₯1 = π¦, π₯2 = π¦, π₯3 = π¦ Woo Ho Lee Control Systems EE 4314, Spring 2014 Canonical Form π¦ + 6π¦ + 11π¦ + 6π¦ = 6π’ Define π₯1 = π¦, π₯2 = π¦, π₯3 = π¦ Woo Ho Lee Control Systems EE 4314, Spring 2014 Transfer Function from State Space Equations β’ State space equation πΏ = π¨πΏ + π©π’ β’ Find transfer function from state space equation Woo Ho Lee Control Systems EE 4314, Spring 2014 Transfer Function from State Space Equations β’ State space equation πΏ = π¨πΏ + π©π’ β’ Find transfer function from state space equation β Taking the Laplace transform with I.C.=0 π π π = π΄π(π ) + π΅π(π ) β Combining with π π π πΌ β π΄ π π = π΅π π β Premultiplying π πΌ β π΄ β1 π π = π πΌ β π΄ β1 π΅π(π) where πΌ: identity matrix β Since π¦ = πΆπ π π = πΆπ π = πΆ π πΌ β π΄ β1 π΅π(π) π(π) β Transfer function πΊ π = π(π) πΊ π = πΆ π πΌ β π΄ Woo Ho Lee Control Systems EE 4314, Spring 2014 β1 π΅ Transfer Function from State Space Equations β’ Find transfer function from state space equation β7 β12 1 π΄= ,π΅ = ,πΆ = 1 2 ,D = 0 1 0 0 From πΊ π = πΆ π πΌ β π΄ β1 π΅ Woo Ho Lee Control Systems EE 4314, Spring 2014 Transfer Function from State Space Equations β’ Find transfer function from state space equation β7 β12 1 π΄= ,π΅ = ,πΆ = 1 2 ,D = 0 1 0 0 β Transfer function πΊ π = πΆ π πΌ β π΄ β1 π΅ π πΌ β π΄ = π πΌ β π΄ π β1 π +7 β1 12 π π β12 = 1 π +7 π π + 7 + 12 β12 1 1 2 1 π +7 0 πΊ π = = π π + 7 + 12 β MATLAB functions β’ β’ [num,den]=ss2tf(A,B,C,D) [A,B,C,D]=tf2ss(num,den) Woo Ho Lee Control Systems EE 4314, Spring 2014 (π + 2) π + 3 (π + 4) Transfer Function Poles from State Space Equations β’ The eigenvalues of an π × π matrix π¨ are the roots of the characteristic equation det π π° β π¨ = 0 Where π°: π × π identity matrix β6 β11 β6 β’ Find poles when π΄ = 1 0 0 0 1 0 Woo Ho Lee Control Systems EE 4314, Spring 2014 Transfer Function Poles from State Space Equations β6 β11 β6 β’ Find poles when π΄ = 1 0 0 0 1 0 π 0 0 β6 β11 β6 π + 6 11 6 π πΌ β π΄ = 0 π 0 β 1 0 0 = β1 π 0 0 0 π 0 1 0 0 β1 π det π π° β π¨ = π 2 π + 6 + 6 + 11π = 0 π +1 π +2 π +3 =0 Poles=-1, -2, -3 β’ MATLAB command: eig(A) Woo Ho Lee Control Systems EE 4314, Spring 2014
© Copyright 2026 Paperzz