Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates 7/13/2017 http://numericalmethods.eng.usf.edu 1 Shooting Method http://numericalmethods.eng.usf.edu Shooting Method The shooting method uses the methods used in solving initial value problems. This is done by assuming initial values that would have been given if the ordinary differential equation were a initial value problem. The boundary value obtained is compared with the actual boundary value. Using trial and error or some scientific approach, one tries to get as close to the boundary value as possible. 3 http://numericalmethods.eng.usf.edu Example d 2u 1 du u 2 0, 2 dr r dr r u 5 0.0038731, u 8 0.0030770 r a b Let du w dr Then Where and a=5 b=8 dw 1 u w 2 0 dr r r 4 http://numericalmethods.eng.usf.edu Solution Two first order differential equations are given as du w, u 5 0.0038371 dr dw w u 2 , w5 not known dr r r Let us assume w5 du 5 u 8 u 5 0.00026538 dr 85 To set up initial value problem du w f1 r , u, w, u 5 0.0038371 dr dw w u 2 f 2 r , u, w, w5 0.00026538 dr r r 5 http://numericalmethods.eng.usf.edu Solution Cont Using Euler’s method, ui 1 ui f1ri , ui , wi h wi 1 wi f 2 ri , ui , wi h Let us consider 4 segments between the two boundaries, r 5 and r 8 then, 85 h 0.75 4 6 http://numericalmethods.eng.usf.edu Solution Cont For i 0, r0 5, u0 0.0038371, w0 0.00026538 u1 u0 f1 r0 , u0 , w0 h 0.0038371 f1 5,0.0038371,0.000265380.75 0.0038371 0.000265380.75 0.0036741 w1 w0 f 2 r0 , u0 , w0 h 0.00026538 f 2 (5,0.0038371,0.00026538)0.75 0.00026538 0.0038371 0.00026538 0.75 2 5 5 0.00010938 7 http://numericalmethods.eng.usf.edu Solution Cont For i 1, r1 r0 h 5 0.75 5.75, u1 0.0036741, w1 0.00010940 u 2 u1 f1 r1 , u1 , w1 h 0.0036741 f1 5.75,0.0036741,0.000109380.75 0.0036741 0.000109380.75 0.0035920 w2 w1 f 2 r1 , u1 , w1 h 0.00010938 f 2 5.75,0.0036741,0.000109380.75 0.00010938 0.000130150.75 0.000011769 8 http://numericalmethods.eng.usf.edu Solution Cont For i 2, r2 r1 h 5.75 0.75 6.5 u2 0.0035920, w2 0.000011785 u3 u 2 f1 r2 , u 2 , w2 h 0.0035920 f1 6.5,0.0035920,0.000011769 0.75 0.0035920 0.000011769 0.75 0.0035832 w3 w2 f 2 r2 , u 2 , w2 h 0.000011769 f 2 6.5,0.0035920,0.000011769 0.75 0.000011769 0.000086829 0.75 0.000053352 9 http://numericalmethods.eng.usf.edu Solution Cont For i 3, r3 r2 h 6.50 0.75 7.25 u3 0.0035832, w3 0.000053332 u 4 u3 f1 r3 , u3 , w3 h 0.0035832 f1 7.25,0.0035832,0.0000533520.75 0.0035832 0.0000533520.75 0.0036232 w4 w3 f 2 r3 , u3 , w3 h 0.000011785 f 2 5.75,0.0035832,0.000053352 0.75 0.000053352 0.0000608110.75 0.000098961 So at r r4 r3 h 7.25 0.75 8 u8 u4 0.0036232 10 http://numericalmethods.eng.usf.edu Solution Cont Let us assume a new value for w5 2 du 5 dr du 5 2 u 8 u 5 2 0.00026538 0.00053076 dr 85 Using h 0.75 and Euler’s method, we get u8 u4 0.0029665" While the given value of this boundary condition is u8 u4 0.0030770 11 http://numericalmethods.eng.usf.edu Solution Cont Using linear interpolation on the obtained data for the two assumed values of du 5 dr we get u8 0.00030770 du 5 0.00053076 0.00026538 0.0030770 0.0036232 0.00026538 dr 0.0029645 0.0036232 0.00048611 Using h 0.75 and repeating the Euler’s method with w(5) 0.00048611 u8 u4 0.0030769 12 http://numericalmethods.eng.usf.edu Solution Cont Using linear interpolation to refine the value of u4 till one gets close to the actual value of u8 which gives you, u1 u5 0.0038731 u5.75 u2 0.0035085 u6.50 u3 0.0032858 u7.25 u4 0.0031518 u8.00 u5 0.0030770 13 http://numericalmethods.eng.usf.edu Comparisons of different initial guesses 4.0E-03 du/dr = -0.00026538 Radial Displacement, u (in) 3.8E-03 3.6E-03 Exact 3.4E-03 du/d r= -0.00048611 3.2E-03 du/dr = -0.00053076 3.0E-03 5 6 7 8 Radial Location, r (in) 14 http://numericalmethods.eng.usf.edu Comparison of Euler and RungeKutta Results with exact results Table 1 Comparison of Euler and Runge-Kutta results with exact results. 15 r (in) Exact (in) 5 5.75 6.5 7.25 8 3.8731×10−3 3.5567×10−3 3.3366×10−3 3.1829×10−3 3.0770×10−3 Euler (in) t % 3.8731×10−3 0.0000 3.5085×10−3 1.3731 3.2858×10−3 1.5482 3.1518×10−3 9.8967×10−1 3.0770×10−3 1.9500×10−3 Runge-Kutta (in) t % 3.8731×10−3 3.5554×10−3 3.3341×10−3 3.1792×10−3 3.0723×10−3 0.0000 3.5824×10−2 7.4037×10−2 1.1612×10−1 1.5168×10−1 http://numericalmethods.eng.usf.edu Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/shooting_ method.html THE END http://numericalmethods.eng.usf.edu
© Copyright 2026 Paperzz