Session 7a Agenda Binomial lattice models Dynamic programming and valuation of investment opportunities Applications: –Value of American Options –Value a Lease on Gold Mine Binomial Lattice Any model in which a stock price can only increase or decrease by a certain amount during a period is called a binomial model. Key Factors: Two possible next states (up, down) at each stage • Maybe in the form of a multiplier Fixed independent probabilities from stage to stage (p, q) • Where q = 1 - p Time frame (Δt) Discount rate Period 0 Period 1 S uS dS For spreadsheet layout Up move: directly to the right Down move: right and down one step Single Period Example Period 0 Period 1 S uS dS A stock is currently selling for $40. One period from now the stock will either • increase to $50 with probability 0.5, or • decrease in price to $32 with probability 0.5. Single Period Call Option What is a fair price for a European call option with an exercise price of $40? Assume the risk free rate of interest is 1/9 ≈ 0.1111. Payoff of the option: Stock Up: $10 with prob 0.5 Stock Down: $0 with prob 0.5 Expected payoff of the option: $10.00 * 0.5 + $0.00 *0.5 = $5.00 Discounted expected payoff: $5.00 / (1 + 0.1111) = $4.50 A 1 2 3 4 5 6 7 8 9 B C D E Today Price Discount Rate $ 40.00 $ 0.11 Future Price Probability Payout $ 50.00 0.5 $ 10.00 $ 32.00 0.5 $ - Expected Payout Present Value $ $ 5.00 4.50 F G =MAX(C5-$C$1,0) =MAX(C6-$C$1,0) =SUMPRODUCT(D5:D6,E5:E6) =C8/(1+C2) H Stock’s Growth Rate In this example, the factors that influence the option price are Current stock price ($40) Two values of stock price in next period ($50, $32) Risk free interest rate (1/9) Exercise price of the call ($40) How about the probability that the stock will go up or down? The current price of the stock theoretically incorporates information about the stock’s growth rate. One benchmark: risk-neutral probability implied by the actual option price. Risk-Neutral Probability Example: A stock is currently selling for $40. One period from now the stock will either increase to $50 with probability 1 - q or decrease in price to $32 with probability q. The risk free rate of interest is 1/9. The arbitrage-free price for a European call option with an exercise price of $40 is $56/9 ≈ $6.22. Assume this is the correct discounted expected payoff. Expected payoff of the option: $10 * (1 - q) + $0 * q = $10 * (1 - q) Set the discounted expected payoff of the option equal to $56/9 $10 * (1 - q) / (1 + 1 / 9) = $6.22 Risk-Neutral Probability $10 * (1 - q) / (1 + 1 / 9) (1 - q) / (1 + 1 / 9) 1-q q = $6.22 = $6.22 / $10 = $0.622 * 1.1111 = 0.30865 Here q = 0.30865 = 25/81 is called the Risk-Neutral Probability. Expected stock price next period: (($50*0.69135+$32*0.30865) = $44.44 Expected growth rate of the stock: ($44.44/$40)-1 = 1/9 American Option Pricing: Binomial Lattice The Black-Scholes option pricing formula for pricing European puts and calls was derived under the assumption that future stock prices follow a lognormal distribution (continuous) St S 0 exp[ t t Normal(0,1)] where 𝑆0 is the initial stock price, v be the expected yearly growth rate, and σ be the standard deviation of yearly growth rate. To price American options, we need to approximate stock prices in discrete time and work backwards from the option’s expiration date (dynamic programming). The trick is to approximate a continuous time stochastic process with a discrete time stochastic process. One popular approximation is binomial lattice. Multi-period Binomial Lattice Define a basic period length Δt (such as a day or a week). If the price is known at the beginning of a period, the price at the beginning of the next period is one of only two possible values. Usually, these two possibilities are defined to be multiples of the price at the previous period • A multiple u > 1 (for up) with probability p • A multiple d < 1 (for down) with probability q = 1 - p • The parameters u, d, p are independent of the price at the beginning of the period If the price at the beginning of a period is S, then the new price is • 𝑢 × 𝑆 with probability p • 𝑑 × 𝑆 with probability q = 1 - p Period 0 S Binomial Lattice Period 1 Period 2 Period 3 uS u2S u 3S dS duS du 2 S d 2S d 2uS For spreadsheet layout Up move: directly to the right Down move: right and down one step d 3S Risk Neutral Approach When applying risk neutral approach, we set u e ae t , d e t r f t ad p , ud 𝑟𝑓 is the risk free rate. q 1 p 1/ u American Option Pricing: Example Let’s price a 5-month American put option having • Current stock price =$50 • Exercise price =$50 • Risk-free rate =10% • Annual volatility =40% • Δt=1 month=0.083 years A 1 2 3 4 5 6 7 B American Put Option S Current Price K Strike Price r sigma t delta t C $ $ 50.00 50.00 0.1 0.4 0.4167 0.0833 D =5/12 =1/12 A 1 2 3 4 5 6 7 8 9 10 11 12 American Put Option S K r sigma t delta t u d a p q B Current Price Strike Price Up Multiplier Down Multiplier Prob. Up Prob. Down C $ $ 50.00 50.00 0.1 0.4 0.4167 0.0833 1.1224 0.8909 1.0084 0.5073 0.4927 D E F t ue d e =EXP(C5*SQRT(C7)) =1/C8 =EXP(C4*C7) =(C10-C9)/(C8-C9) =1-C11 t ae ad p ud q 1 p 1/ u r f t Generating stock prices in next five periods: A 8 9 10 11 12 13 14 15 16 17 18 19 20 21 u d a p q Down Moves B C Up Multiplier Down Multiplier Prob. Up Prob. Down D E F G H I 1.1224 0.8909 1.0084 0.5073 0.4927 Stock Prices 0 1 0 $ 50.000 $ 56.120 1 $ 44.547 2 3 4 5 - 2 3 4 5 =$C$8*C16 $ 62.989 $ 70.699 $ 79.353 $ 89.066 =IF($B17<=D$15,($C$9/$C$8)*D16,"-") $ 50.000 $ 39.689 - $ 56.120 $ 44.547 $ 35.361 - $ 62.989 $ 50.000 $ 39.689 $ 31.505 - $ 70.699 $ 56.120 $ 44.547 $ 35.361 $ 28.069 Expected discounted value of future cash flows from the put • At month 5, the option is just worth Max(0, exercise price - stock price at month 5) A 14 15 16 Down Moves 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 B C D E F G H 2 $ 62.989 $ 50.000 $ 39.689 - 3 $ 70.699 $ 56.120 $ 44.547 $ 35.361 - 4 $ 79.353 $ 62.989 $ 50.000 $ 39.689 $ 31.505 - 5 $ 89.066 $ 70.699 $ 56.120 $ 44.547 $ 35.361 $ 28.069 0 1 2 3 4.489 $ 2.163 $ 0.636 $ $ 6.960 $ 3.771 $ 1.302 $ 10.362 $ 6.378 $ 14.639 - 4 5 Stock Prices 0 1 0 $ 50.000 $ 56.120 1 $ 44.547 2 3 4 5 - I Put Value 0 1 2 3 4 5 $ - $ $ $ 2.664 $ 10.311 $ 18.495 - $ $ $ $ 5.453 $ 14.639 $ 21.931 =IF($B30<=H$24,MAX($C$3-H21,(1/(1+$C$4*$C$7))*($C$11*I30+(1-$C$11)*I31)),"-") Optimal Policy via Conditional Formatting How we do know whether to exercise or not if we are at certain state of a stage (say in month 3, when the stock price is $44.55). It is optimal to exercise the option at a stage (month) and state (price) if and only if the value of the corresponding cell equals (exercise price stock price). A 14 15 16 Down Moves 17 18 19 20 21 22 23 24 25 26 27 28 29 30 B C D E F G H 2 $ 62.989 $ 50.000 $ 39.689 - 3 $ 70.699 $ 56.120 $ 44.547 $ 35.361 - 4 $ 79.353 $ 62.989 $ 50.000 $ 39.689 $ 31.505 - 5 $ 89.066 $ 70.699 $ 56.120 $ 44.547 $ 35.361 $ 28.069 0 1 2 3 4.489 $ 2.163 $ 0.636 $ $ 6.960 $ 3.771 $ 1.302 $ 10.362 $ 6.378 $ 14.639 - 4 5 Stock Prices 0 1 0 $ 50.000 $ 56.120 1 $ 44.547 2 3 4 5 Put Value 0 1 2 3 4 5 $ - $ $ $ 2.664 $ 10.311 $ 18.495 - $ $ $ $ 5.453 $ 14.639 $ 21.931 Value a Lease of a Gold Mine Goldco is trying to value a 10-year lease on a gold mine. Each year up to 10,000 ounces of gold can be extracted at a cost of $200 per ounce. The current price of gold is $400 and the future price of gold is uncertain. Model the future price of gold with a binomial tree, assuming each year that gold will increase by 20% or decrease by 10%. The risk free rate is assumed to remain constant at 10%. The price received for all gold extracted during a year is assumed to equal the price of gold at the beginning of the year, but all cash flows occur at the end of the year. What is the value of the lease? An Enhancement Option Suppose that there is a possibility of enhancing the production rate by purchasing a new mining machine and making some structural changes in the mine. (This option can be exercised any time before the lease is expired.) This enhancement would cost $4 million but would raise the mine capability by 25% to 12500 ounces per year, at a total operating cost of $240 per ounce. What is the value of this enhancement option? Basic parameters, risk-neutral “up” probability ad p ud 1 2 3 4 A B r u d ounces per year 0.1 1.2 0.9 10000 C D Risk Neutral Prob Cost E $ 0.6667 200.00 F G =(1+B1-B3)/(B2-B3) Gold prices after one period 1 2 3 4 5 6 7 8 9 10 A B r u d ounces per year 0.1 1.2 0.9 10000 Gold Prices 0 1 2 3 $ 0 400.00 $ $ - C D Risk Neutral Prob Cost E $ F 0.6667 200.00 1 2 3 =$B$2*B7 480.00 $ 576.00 $ 691.20 $ =IF($A8<=C$6,($B$3/$B$2)*C7,"-") 360.00 $ 432.00 $ 518.40 $ =IF($A9<=C$6,($B$3/$B$2)*C8,"-") $ 324.00 $ 388.80 $ $ 291.60 $ 4 829.44 622.08 466.56 349.92 A 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Gold Prices 0 1 2 3 4 5 6 7 8 9 10 Value Function 0 1 2 3 4 5 6 7 8 9 10 $ B C D E F G 0 400.00 $ $ - 1 480.00 $ 360.00 $ $ - 2 3 691.20 518.40 388.80 291.60 4 829.44 622.08 466.56 349.92 262.44 5 995.33 746.50 559.87 419.90 314.93 236.20 0 1 $ 24,074,547 $ 27,754,680 $ $ 17,936,647 $ $ - 576.00 $ 432.00 $ 324.00 $ $ - $ $ $ $ $ - 2 3 31,221,057 $ 34,248,617 $ 20,748,329 $ 23,252,253 $ 12,894,277 $ 15,004,981 $ $ 8,821,155 $ $ - 4 36,531,660 25,221,115 16,738,206 10,376,024 5,609,762 $ $ $ $ $ $ - $ $ $ $ $ $ - 5 37,660,608 26,350,063 17,867,154 11,504,972 6,733,336 3,172,343 H $ $ $ $ $ $ $ - $ $ $ $ $ $ $ - 6 1,194.39 895.80 671.85 503.88 377.91 283.44 212.58 6 37,092,764 26,234,640 18,091,047 11,983,353 7,402,582 3,967,004 1,448,845 I $ $ $ $ $ $ $ $ - $ $ $ $ $ $ $ $ - 7 1,433.27 1,074.95 806.22 604.66 453.50 340.12 255.09 191.32 7 34,115,541 24,343,230 17,013,996 11,517,071 7,394,377 4,302,357 1,983,342 437,213 J $ $ $ $ $ $ $ $ $ - $ $ $ $ $ $ $ $ $ - 8 1,719.93 1,289.95 967.46 725.59 544.20 408.15 306.11 229.58 172.19 8 27,800,322 19,982,473 14,119,086 9,721,546 6,423,391 3,949,774 2,094,562 703,153 36,497 'IF((number of down moves) <= (number of periods so far), (1/(1 + r)*MAX((gold price - extraction cost)*ounces per year, 0) + (expected lease value next period) * (1/(1 + r))) ,"-") Assuming this is a scenario that actually could happen, Discounted lease profit this period or zero, whichever is greater + Discounted expected lease value next period K $ $ $ $ $ $ $ $ $ $ - $ $ $ $ $ $ $ $ $ $ - 9 2,063.91 1,547.93 1,160.95 870.71 653.03 489.78 367.33 275.50 206.62 154.97 9 16,944,656 12,253,946 8,735,914 6,097,390 4,118,497 2,634,328 1,521,200 686,355 60,221 - L $ $ $ $ $ $ $ $ $ $ $ 10 2,476.69 1,857.52 1,393.14 1,044.86 783.64 587.73 440.80 330.60 247.95 185.96 139.47 10 $ $ $ $ $ $ $ $ $ $ $ - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 A B r u d ounces per year 0.1 1.2 0.9 10000 Gold Prices 0 1 2 3 4 5 6 7 8 9 10 Value Function 0 1 $ 0 400.00 $ $ - C D E Risk Neutral Prob Cost 1 480.00 $ 360.00 $ $ - $ 2 576.00 $ 432.00 $ 324.00 $ $ - F G H I 0.6667 200.00 3 691.20 518.40 388.80 291.60 $ $ $ $ $ - 4 829.44 622.08 466.56 349.92 262.44 $ $ $ $ $ $ - 5 995.33 746.50 559.87 419.90 314.93 236.20 $ $ $ $ $ $ $ - 6 1,194.39 895.80 671.85 503.88 377.91 283.44 212.58 $ $ $ $ $ $ $ $ - 7 1,433.27 1,074.95 806.22 604.66 453.50 340.12 255.09 191.32 0 1 2 3 4 5 6 7 =IF($A20<=B$19,(1/(1+$B$1)*MAX((B7-$E$2)*$B$4,0)+($E$1*C20+(1-$E$1)*C21)*(1/(1+$B$1))),"-") $ 24,074,547 $ 27,754,680 $ 31,221,057 $ 34,248,617 $ 36,531,660 $ 37,660,608 $ 37,092,764 $ 34,115,541 $ 17,936,647 $ 20,748,329 $ 23,252,253 $ 25,221,115 $ 26,350,063 $ 26,234,640 $ 24,343,230
© Copyright 2026 Paperzz