Z2 Lattice Gerbe Theory Des Johnston CompPhys14 Leipzig, Nov 2014 Des Johnston Lattice Gerbe Theory 1/15 Plan of talk Gerbes? Lattice Gauge, Gerbe Theory Z2 Lattice Gerbe Theory Des Johnston Lattice Gerbe Theory 2/15 Gerbes? (Abelian) Gauge theory, one forms: S= 1 4g 2 Z d4 xFµν F µν Fµν = ∂[µ Aν] (Abelian) Gerbe theory, two forms: 1 S= 2 4g Z dd x Hµνλ H µνλ Hµνλ = ∂[µ Bνλ] Des Johnston Lattice Gerbe Theory 3/15 Lattice Gauge/Gerbe Theory Gauge - Hamiltonian defined on plaquettes Gerbe - Hamiltonian defined on cubets → Des Johnston Lattice Gerbe Theory 4/15 Higher Abelian Gauge theory General Framework H=− Y X Cn+1 U (Cn ) + c.c. Cn ∈∂Cn+1 U (Cn ) = exp(iA(Cn )) live on the boundaries Cn of cells Cn+1 Hamiltonian given by the sum of products of the U (Cn ) around the boundary of a Cn+1 Des Johnston Lattice Gerbe Theory 5/15 Z2 Gauge theory Many of the properties are visible already in simplest Z2 case Symmetries, observables (loops) * Γ(L) = + Y U (C1 ) C1 ∈L If a confining transition exists ( exp(−A(L)) β < βc Γ(L) ∼ exp(−P (L)) β > βc Des Johnston Lattice Gerbe Theory 6/15 Z2 Gerbe theory Play same game with Gerbe theory Symmetries, observables (surfaces) * Γ(S) = + Y U (C2 ) C2 ∈S If a confining transition exists ( exp(−V (S)) β < βc Γ(S) ∼ exp(−A(S)) β > βc Des Johnston Lattice Gerbe Theory 7/15 So Far, so general We can use Wegner’s results on duality for generalized Ising models (1971) to say more Lattice N d-dimensional hypercubes d Md,n model, Ns = n−1 N spins sited at the centres of the (n − 1)-dimensional hypercubes Hamiltonians Hdn , product of 2n spins on the (n − 1)-dimensional faces of the Nb = nd N n-dimensional hypercubes. Md,3 are lattice Gerbe theories Des Johnston Lattice Gerbe Theory 8/15 Schematically Gauge Md,2 H = − X H = − X U4 Gerbe Md,3 Des Johnston U6 Lattice Gerbe Theory 9/15 (Generalized) Ising duality ∗ Md,n on d-dimensional hypercubic lattice and dual Md,d−n on dual lattice ∗ Zd,n (β) ∼ Zd,d−n (β ∗ ) tanh(β) = exp(−2β ∗ ) Duality also in field ∗ Zd,n (β, h) ∼ Zd,d−n+1 (β ∗ , h∗ ) tanh(β) = exp(−2h∗ ) tanh(h) = exp(−2β ∗ ) Des Johnston Lattice Gerbe Theory 10/15 Consequences of (Generalized) Ising duality d = 3 d = 3, use in field duality ∗ Z3,3 (β, 0) ∼ Z3,1 (∞, h∗ ) Dualize back Z3,3 (β, 0) ∼ 2Ns cosh(β)Nb + sinh(β)Nb Analytic, no transition Des Johnston Lattice Gerbe Theory 11/15 Consequences of (Generalized) Ising duality d = 4, 6.. d = 4, Z2 Gerbe theory dual to standard Ising model ∗ Z4,3 (β) ∼ Z4,1 (β ∗ ) Continuous transition d = 6, self-duality ∗ Z2n,n (β) ∼ Z2n,n (β ∗ ) 6d Z2 Gerbe theory is self dual, familiar critical temperature √ βc = 21 ln(1 + 2) Des Johnston Lattice Gerbe Theory 12/15 Making life more complicated Gauge Higgs H = − X H = − X U4 − λ X U6 − λ X U σ2 hiji Gerbe Higgs Des Johnston U σ4 Lattice Gerbe Theory 13/15 Conclusions Interest in formulating lattice Gerbe theories Wegner has very thoughtfully calculated much of what is needed to discuss Z2 lattice Gerbe theory These shed some light on Abelian and non-Abelian Gerbe theories These models are curiously unsimulated..... Des Johnston Lattice Gerbe Theory 14/15 References A. E. Lipstein and R. A. Reid-Edwards, Lattice Gerbe Theory, JHEP 09 (2014) 034, [arxiv:1404.2634]. C. Omero, P. A. Marchetti and A. Maritan, J. Phys. A 16, 1465 (1983). F. J. Wegner, J. Math. Phys. 12 2259 (1971). F. J. Wegner, Duality in Generalized Ising Models, [arXiv:1411.5815] D. A. Johnston, Z2 lattice gerbe theory, Phys. Rev. D 90, 107701 (2014), [arXiv:1405.7890] Des Johnston Lattice Gerbe Theory 15/15
© Copyright 2026 Paperzz