The Information Hidden in Derivatives Markets Emlyn Flint – Peregrine Securities (With Anthony Seymour & Florence Chikurunhe at Peregrine Securities and Eben Maré at University of Pretoria) Actuarial Society 2016 Convention 23 – 24 November 2016 Contents 1. Motivation 2. Estimating Implied Distributions 3. Ross Recovery Theorem 4. Top40 Index Option Results 5. Conclusion Actuarial Society 2016 Convention 23 – 24 November 2016 Actuarial Society 2016 Convention 23 – 24 November 2016 Theory vs. Reality Black-Scholes-Merton Reality Actuarial Society 2016 Convention 23 – 24 November 2016 Motivation Theory vs. Reality Reality Top40 Volatility Surface - 18 Sep 2006 0.4 Volatility 0.35 0.3 0.25 0.2 80 100 120 Strike ? ⟺ 0.25 0.5 0.75 1 1.25 1.5 Term Actuarial Society 2016 Convention 23 – 24 November 2016 Implied Information 1 Portfolio Management • Expected Return & Volatility estimates • Average Implied Correlation (CIX) • Forward-looking Implied Betas • Tactical Asset Allocation 2 Risk Management • Forward-looking Volatility estimates (VIX & SKEW) • Forward-looking Implied VaR • Regime Identification Actuarial Society 2016 Convention 23 – 24 November 2016 Contents 1. Motivation 2. Estimating Implied Distributions 3. Ross Recovery Theorem 4. Top40 Index Option Results 5. Conclusion Actuarial Society 2016 Convention 23 – 24 November 2016 Actuarial Society 2016 Convention 23 – 24 November 2016 Breeden-Litzenberger (1978) Option Value: Strike Delta: Strike Gamma: ∞ 𝐶 𝐾, 𝑇 = 𝑒 −𝑟𝑇 0 𝜕𝐶 𝑟𝑇 𝑒 =− 𝜕𝐾 𝑆𝑇 − 𝐾 + 𝑞 𝑆 𝑑𝑆 Q ∞ 𝑞 𝑆 𝑑𝑆 𝐾 2𝐶 𝜕 𝑒 𝑟𝑇 =𝑞 𝐾 2 𝜕𝐾 Option-Implied Risk-Neutral Distribution (RND) Actuarial Society 2016 Convention 23 – 24 November 2016 Implied Information 1 Direct Estimation from Expectation Integral • Complex underlying distributions or expansion terms • Mixture of lognormals • Entropy-based methods • Kernel Smoothing 2 Indirect Estimation from Implied Volatility Skews • Cubic splines for interpolation and extrapolation • Deterministic volatility models (SVI, quadratic) • Stochastic volatility models (Heston, SABR) • Jump Diffusion Processes (Merton) Actuarial Society 2016 Convention 23 – 24 November 2016 Implied Information 1 Direct Estimation from Expectation Integral • Complex underlying distributions or expansion terms • Mixture of lognormals • Entropy-based methods • Kernel Smoothing 2 Indirect Estimation from Implied Volatility Skews • Cubic splines for interpolation and extrapolation • Deterministic volatility models (SVI, quadratic) • Stochastic volatility models (Heston, SABR) • Jump Diffusion Processes (Merton) Actuarial Society 2016 Convention 23 – 24 November 2016 Calculating the RND 1 Calibrate the SVI Model Actuarial Society 2016 Convention 23 – 24 November 2016 Calculating the RND 1 Calibrate the SVI Model Actuarial Society 2016 Convention 23 – 24 November 2016 Calculating the RND 2 Convert to BS Call Prices Actuarial Society 2016 Convention 23 – 24 November 2016 Calculating the RND 3 Use Breeden-Litzenberger Actuarial Society 2016 Convention 23 – 24 November 2016 Estimating Implied Distributions Calculating the RND 1 2 3 Actuarial Society 2016 Convention 23 – 24 November 2016 An RND Surface RNDs are NOT equivalent to Real-world distributions! Actuarial Society 2016 Convention 23 – 24 November 2016 Actuarial Society 2016 Convention 23 – 24 November 2016 Contents 1. Motivation 2. Estimating Implied Distributions 3. Ross Recovery Theorem 4. Top40 Index Option Results 5. Conclusion Actuarial Society 2016 Convention 23 – 24 November 2016 Actuarial Society 2016 Convention 23 – 24 November 2016 Ross Recovery Theorem Risk-Neutral Real-World 𝑷 = 𝝍𝑭 Ross (2015) Recovery Theorem can extract pricing kernel and realworld probabilities simultaneously RECOVERY ASSUMPTIONS 1. Markets are complete and arbitrage-free 2. The underlying takes on a finite number of states Actuarial Society 2016 Convention 23 – 24 November 2016 Ross Recovery Theorem Risk-Neutral Real-World 𝑷 = 𝝍𝑭 Ross (2015) Recovery Theorem can extract pricing kernel and realworld probabilities simultaneously RECOVERY ASSUMPTIONS 1. Markets are complete and arbitrage-free 2. The underlying takes on a finite number of states 3. The transition probability matrix (TPM) is irreducible and time-independent Actuarial Society 2016 Convention 23 – 24 November 2016 Ross Recovery Theorem Risk-Neutral Real-World 𝑷 = 𝝍𝑭 Ross (2015) Recovery Theorem can extract pricing kernel and realworld probabilities simultaneously RECOVERY ASSUMPTIONS 1. Markets are complete and arbitrage-free 2. The underlying takes on a finite number of states 3. The transition probability matrix (TPM) is irreducible and time-independent 4. The pricing kernel is path-independent Actuarial Society 2016 Convention 23 – 24 November 2016 Ross Recovery Theorem For those interested in the maths… 𝑝𝑖𝑗 𝐷𝑒𝑓𝑖𝑛𝑒 𝜓𝑖𝑗 = . 𝑓𝑖𝑗 𝐹𝑟𝑜𝑚 𝐴2 & 𝐴3 ⟹ 𝑃𝒛 = 𝜆𝒛. letting 𝐻 = 𝑑𝑖𝑎𝑔 ℎ 𝑆1 , … , ℎ(𝑆𝑛 ) : ℎ(𝑆𝑗 ) 𝐹𝑟𝑜𝑚 𝐴4 ⟹ 𝜓𝑖𝑗 = 𝛿 ℎ(𝑆𝑖 ) 𝑃 = 𝛿𝐻 −1 𝐹𝐻 ⟺ 𝐹 = 𝐻𝑃𝐻 −1 . 𝛿 1 𝐵𝑢𝑡 𝟏 = 𝐹𝟏 = 𝐻𝑃𝐻−1 𝟏, 𝛿 ∴ 𝑃𝐻 −1 𝟏 = 𝛿𝐻 −1 𝟏 ⟹ 𝒛 = 𝐻 −1 𝟏. ℎ(𝑆𝑗 ) ∴ 𝑝𝑖𝑗 = 𝛿 𝑓 . ℎ(𝑆𝑖 ) 𝑖𝑗 1 Actuarial Society 2016 Convention 23 – 24 November 2016 Applying the Recovery Theorem 1 Market Prices 2 RND 3 TPM 4 Real-World Actuarial Society 2016 Convention 23 – 24 November 2016 Applying the Recovery Theorem 1 Market Prices 2 RND 3 TPM 4 Real-World Actuarial Society 2016 Convention 23 – 24 November 2016 Applying the Recovery Theorem 1 Market Prices 2 RND 3 TPM 4 Real-World Actuarial Society 2016 Convention 23 – 24 November 2016 Applying the Recovery Theorem Density 1 Market Prices 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 2 RND 3 TPM 4 Real-World Risk-Neutral, μ = 8.7% Real-World, μ = 14.7% 50 60 70 80 90 100 110 Spot Moneyness 120 130 140 150 Actuarial Society 2016 Convention 23 – 24 November 2016 Contents 1. Motivation 2. Estimating Implied Distributions 3. Ross Recovery Theorem 4. Top40 Index Option Results 5. Conclusion Actuarial Society 2016 Convention 23 – 24 November 2016 Actuarial Society 2016 Convention 23 – 24 November 2016 South African Recovery Volatility Surface Data • SAFEX trades from Sep 2005 – Jan 2016 • SVI volatility skews for each SAFEX expiry • Strike extrapolation for 20 – 300% Moneyness • Term interpolation & Extrapolation: [1, 24] months Focus of Analysis • Weekly RND Surfaces • Recovered 3-month Real-World Distributions • Expected Return, Volatility, Skewness & Kurtosis • Tactical Asset Allocation with Implied Moments Actuarial Society 2016 Convention 23 – 24 November 2016 History of 3-Month RND’s 150 140 95th Spot Moneyness 130 120 110 50th 75th 100 25th 90 80 70 5th = Implied VaR 60 50 Sep-05 Sep-07 Sep-09 Sep-11 Sep-13 Sep-15 Actuarial Society 2016 Convention 23 – 24 November 2016 Full RND at 1 Feb 2016 150 Spot Moneyness Distribution 130 95th Median 110 90 70 5th 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Future time, in months Actuarial Society 2016 Convention 23 – 24 November 2016 RND vs. Real-World Moments Expected Return, % 30 20 10 0 Sep-05 Sep-07 Sep-09 Sep-11 Sep-13 Sep-15 Volatility, % 60 40 20 0 Sep-05 Sep-07 Sep-09 ActuarialSep-11 Society 2016 Convention 23 – 24 November 2016 Sep-13 Sep-15 RND vs. Real-World Moments Skewness 1 0 -1 -2 Sep-05 Sep-07 Sep-09 Sep-11 Sep-13 Sep-15 Kurtosis 15 10 5 0 Sep-05 Sep-07 Sep-09 Actuarial Society 2016 Convention 2016 Sep-11 Sep-13 23 – 24 November Sep-15 TAA with Implied Moments SIMPLE TIMING STRATEGY • • • • Four independent moment timing strategies If current week’s exp. return, skewness or kurtosis is higher than previous week then hold Top40, otherwise hold cash If current week’s volatility is lower than previous week then hold Top40, otherwise hold cash No costs included Actuarial Society 2016 Convention 23 – 24 November 2016 Cumulative Log-Return TAA with Implied Moments 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 Sep-05 RN Mean RN Skew RW Mean RW Skew RN Vol RN Kurt RW Vol RW Kurt Real-World Risk-Neutral Sep-07 Sep-09 Sep-11 Sep-13 Sep-15 Actuarial Society 2016 Convention 23 – 24 November 2016 TAA with Implied Moments Actuarial Society 2016 Convention 23 – 24 November 2016 TAA with Implied Moments Real-world TAA strategies dominate Top40 mean and volatility Actuarial Society 2016 Convention 23 – 24 November 2016 TAA with Implied Moments Real-world TAA strategies dominate Top40 mean and volatility RN Skewness is the only RN moment showing good performance Actuarial Society 2016 Convention 23 – 24 November 2016 TAA with Implied Moments Real-world TAA strategies dominate Top40 mean and volatility RN Skewness is the only RN moment showing good performance Simple TAA strategies still show high drawdown Actuarial Society 2016 Convention 23 – 24 November 2016 Contents 1. Motivation 2. Estimating Implied Distributions 3. Ross Recovery Theorem 4. Top40 Index Option Results 5. Conclusion Actuarial Society 2016 Convention 23 – 24 November 2016 Vol Surface is a Forecasting Tool Actuarial Society 2016 Convention 23 – 24 November 2016 Estimating Implied Distributions Estimate the Implied RN Distribuion 1 2 3 Actuarial Society 2016 Convention 23 – 24 November 2016 Apply the Recovery Theorem Density 1 Market Prices 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 2 RND 3 TPM 4 Real-World Risk-Neutral, μ = 8.7% Real-World, μ = 14.7% 50 60 70 80 90 100 110 Spot Moneyness 120 130 140 150 Actuarial Society 2016 Convention 23 – 24 November 2016 Use the Implied Information 1 Portfolio Management • Expected Return & Volatility estimates • Average Implied Correlation (CIX) • Forward-looking Implied Betas • Tactical Asset Allocation 2 Risk Management • Forward-looking Volatility estimates (VIX & SKEW) • Forward-looking Implied VaR • Regime Identification Actuarial Society 2016 Convention 23 – 24 November 2016 Thank You Questions? Actuarial Society 2016 Convention 23 – 24 November 2016
© Copyright 2026 Paperzz