A generic constructive solution
for concurrent games with
expressive constraints on
strategies
Sophie Pinchinat
IRISA, Université de Rennes 1, France
RSISE, Canberra, Australia
Marie Curie Fellow, EU FP6
Games
•
•
•
•
•
•
•
•
Economy
Biology
Synthesis and Control of Reactive Systems
Checking and Realizability of Specifications
Compatibilty of Interfaces
Simulation Relations
Test Cases Generation
…
Games (Cont.)
• Concurrent Game Structures [AHK98]
–
–
–
–
Generalization of Kripke Structures
Based on Global States
Several Players make Decisions
Effect Transitions
• Specifications of Game Objectives
– Alternating Time Logic ATL,CTL*, AMC… [AHK98]
generalize Temporal Logic CTL, CTL*, -calculus
– Strategy Logic [CHP07]
– Our approach
Specifications
• Existence of strategies to achieve an objective
• Alternating Time Logic
– Model-Checking Problems
• Strategy Logic (First-order Kind)
– Synthesis Problems
– Non-elementary - Effective Subclasses
• Our approach (Second-Order Kind) DECIDABLE
Outline
•
•
•
•
•
•
Concurrent Games
Strategies
Relativization
Strategies Specifications
Theoretical Properties
Related Work
P1
3 Players
P2
P3
Predicate Q is a move from s for player P1
s |= P1 Q
s
:-)
Q
:-(
:-(
Q’’
Q
Q
Q
Q’
Q’
Q’
Q’’
Q’’
Q’’
Q’’
Decision modalities PQ
s |= P1 Q1 P2 Q2 P3 Q3
AX(Q1 Q2 Q3 Ro)
s
Ro
Q1
Q1
Q2
Q2
Q3
It
Fr
Q1
Q3
Q1
Q2
Q3
Q2
Q3
There exist moves of P1 and P3
such that …
^
s |= Q1. Q3.
Q
Q1. P3 Q3 AX((Q1 Q3) (Ro Fr))
P1{1,3}
s
Ro
Q1
Q3
It
Fr
Q1
Q1
Q3
Q1
Q3
Q3
Infinitary Setting
Strategies: P Q holds everywhere
^
Q. … Q. AG(P Q) …
Property AX(Ro Fr) holds inside Q1 and Q3
^
s |= . Q{1,3}. AX((Q1
(AX(Ro Q3)
Fr)|Q1
(Ro
Q3)
Fr))
s
Ro
Q1,Q3
It
Fr
Q1,Q3
RELATIVIZATION of wrt Q
(|Q)
« The subtree designated by Q satisfies »
(EX |Q) = EX(Q(|Q))
Inside Q
RELATIVIZATION (|Q)
Q is a set (conjunction) of propositions
•
•
•
•
(EX |Q) EX(Q(|Q))
(R|Q) R
(|Q) (|Q)
( ’|Q) (|Q) (’|Q)
If -calculus
CTL
+
• (Q.|Q) Q. (|Q)
• (PQ|Q) P(QQ)
(EFor
U
|Q)
•(Z|Q)
Z E ((Q(|Q)) U ((Q(|Q))
example
• (Z.(Z)|Q)
Z. ((Z)|Q)
Q.(
EFQ’.(’|Q’)|Q)
Q.(|Q)
E QUZ.
[Q’.(’|Q’Q)]
• (Z. (Z)|Q)
( (Z)|Q)
Q.(|Q)
Q.(
EFQ’.(’|Q’)|Q)
E Q U [Q’.(’|Q’Q)]
The meaning of
Relativization
Inside Q
Inside Q’ (inside Q)
’
Variants of
Relativization
Q. (EX Q’. (|Q’)
Q)
Q. EX (Q Q’. (|Q’))
Specifying Strategies
Let C be a coalition of players
^
QC. (|QC) « Coalition C has a strategy to enforce »
Nash Equilibrium (|QR) and
^
^
Q’. (Q’ Q) (|Q’R) R’. (R’ R) (|QR’)
Dominated Strategies « Q is a strictly dominated strategy »
^
^
^
Q’.R. (|QR)(|Q’R) R. (|Q’R)(|QR)
Theoretical Properties
• Bisimulation invariant fragments of MSO
where quantifiers and fixpoints can interleave
• Involved automata constructions
– Automata with variables [AN01]
– Projection [Rab69]
• Non-elementary (nEXPTIME/(n+1)EXPTIME)
where n is the number of quantifiers alternations
• Strategies synthesis
– Model-checking
– Regular solutions
G |= ^ Q . (|Q )
C
C
Related Works
•
Alternating Time Logic [AHK02]
ATL, ATL*, AMC, GL are subsumed
uses the variant of relativization
^
^
lC. EF( lC’.’) QC. ( EF(QC’.(’QC’)) QC)
GL
^
^
No relationship
QC. E
QCU (QC’.(’QC
between C and C’
Quantification under
the scope of a fixpoint
’
Related Works (cont.)
•
Strategy Logic [CHP07]
“x is strictly dominated”:
x’[y.(x,y) (x’,y)y (x’,y) (x,y)]
First-order Cannot
– Compare strategies (equality, uniqueness)
Eq(Q,Q’) AG(Q Q’)
^
Uniq(Q) (|Q) Q’. (|Q’) Eq(Q,Q’)’
– Express sets of strategies
© Copyright 2026 Paperzz