A Little Aspect of Real Analysis, Topology and Probability

Governors State University
OPUS Open Portal to University Scholarship
All Student Theses
Student Theses
Summer 2016
A Little Aspect of Real Analysis, Topology and
Probability
Asmaa A. Abdulhameed
Governors State University
Follow this and additional works at: http://opus.govst.edu/theses
Part of the Mathematics Commons
Recommended Citation
Abdulhameed, Asmaa A., "A Little Aspect of Real Analysis, Topology and Probability" (2016). All Student Theses. Paper 81.
For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
Visit the Governors State Mathematics Department
This Thesis is brought to you for free and open access by the Student Theses at OPUS Open Portal to University Scholarship. It has been accepted for
inclusion in All Student Theses by an authorized administrator of OPUS Open Portal to University Scholarship. For more information, please contact
[email protected].
A LITTLE ASPECT OF REAL ANALYSIS, TOPOLOGY AND
PROBABILITY
By
Asmaa A. Abdulhameed
B.A., Trinity Christian College, 2012
Thesis
Submitted in partial fulfillment of the requirements
For the Degree of Master of Science,
With a Major in Mathematics
Governors State University
University Park, IL 60484
2016
Table of Contents
ABSTRACT.................................................................................................................................... 5
INTRODUCTION .......................................................................................................................... 6
PART ONE : MERTIC, NORMED VECTOR SPACE AND TOPOLOGICAL SPACES ........... 7
1. Metric Space (Distance Function) ๐‘‹๐‘‹, ๐‘‘๐‘‘ ....................................................................................... 7
2. Norms and Normed Vector Spaces (V,โ€– โˆ™โ€–) ............................................................................... 8
2.1 Different Kinds of Norms ......................................................................................................... 9
2.2 Ball in โ„“๐‘๐‘ ................................................................................................................................. 10
2.3 ๐ฟ๐ฟ๐‘๐‘ Space (Function Spaces) .................................................................................................... 10
2.4 Distance Between Functions, ๐ฟ๐ฟ๐‘๐‘ -distance ............................................................................. 11
3. Topological space ..................................................................................................................... 12
3.1 Continuous Function in Metric and Topology ........................................................................ 13
3.2 Limit Point .............................................................................................................................. 15
PART TWO : OUTLINES OF MEASURE AND PROBABILITY SPACES............................. 16
1. Measure and Measure Space ..................................................................................................... 16
1.1 Construction of Sigma Algebra ๐œŽ๐œŽ(๐’œ๐’œ) .................................................................................... 17
1.2 The Inverse Function is Measurable Function ........................................................................ 18
2. Probability Space ...................................................................................................................... 20
2.1 Sample Space ฮฉ ...................................................................................................................... 21
2.2 The ๐œŽ๐œŽ-field and Class of Events โ„ฑ .......................................................................................... 21
2.3 Sequences of Events in Probability......................................................................................... 22
2.4 Continuity Theorems of Probability ....................................................................................... 23
3. General Idea of Borel Set .......................................................................................................... 23
3.1 Complicated Borel Sets (Cantor set)....................................................................................... 25
3.2 Borel ๐œŽ๐œŽ-algebra in Topology ................................................................................................ 26
3.3 Borel Set of Probability Space ................................................................................................ 27
4. Measurable Space in Probability ............................................................................................. 27
5. Random Variable (R.V) ............................................................................................................ 28
5.1 Measurable Function is a Random Variable ........................................................................... 29
PART THREE: MEASURE AND PROBABILITY THEORY AND DISTRIBUTION
FUNCTION .................................................................................................................................. 31
1. Lebesgueโ€™s Idea of Integral (subdivide the range) .................................................................... 31
2. Additive Set Function and Countable Additivity...................................................................... 33
3. Construction of Measure on โ„, โ„2 and โ„3 ............................................................................... 34
2
4. Hyper Rectangles and Hyperplanes {๐ป๐ป๐ป๐ป}.................................................................................. 35
5. Lebesgue Measures on โ„ and โ„๐‘›๐‘› ............................................................................................. 37
6. Basic Definitions and Properties ............................................................................................... 39
6.1 Measure Extension from Ring To ๐œŽ๐œŽ-ring................................................................................ 40
7. The Outer Measure ................................................................................................................... 40
7.1 Premeasure .............................................................................................................................. 43
7.2 Extending the Measure by Carathedoryโ€™s Theorem ............................................................... 43
8. Lebesgue, Uniform Measure on [0,1] and Borel Line.............................................................. 45
9. The Advantage of Measurable Function ................................................................................... 46
10. Induced Measure ..................................................................................................................... 47
11. Probability Space and the Distribution Function .................................................................... 49
12. Lebesgue-Stieltjes Measure .................................................................................................... 51
12.1 Lebesgue-Stieltjes Measure as a Model for Distributions .................................................... 52
13. Properties of the Distribution Function................................................................................... 52
14. Relate the Measure ๐œ‡๐œ‡ to the Distribution Function, ๐น๐น ............................................................ 54
15. Distribution Function onโ„๐‘›๐‘› .................................................................................................... 54
CONCLUSION IN GENERAL .................................................................................................... 59
REFERENCES ............................................................................................................................. 60
3
List of Figures
Figure 1 Metric spaces and topology space ....................................................................................7
Figure 2 Diagram of triangle equality in metric space ....................................................................7
Figure 3 Ball inโ„2 with the โ„“1 , โ„“2 , โ„“โˆž norms .....................................................................................10
Figure 4 The convergence of the sequence ................................................................................... 14
Figure 5 Measure on a set, S ..........................................................................................................16
Figure 6 Constructing sigma algebra ..................................................................................................18
Figure 7 mapping ๐‘“๐‘“: ๐‘‹๐‘‹ โŸถ ๐‘Œ๐‘Œ ..........................................................................................................19
Figure 8 ๐‘“๐‘“ is measurable function because of ๐‘“๐‘“ โˆ’1 exist ...............................................................19
Figure 9 A probability measure mapping the probability space ....................................................20
Figure 10 Borel set .........................................................................................................................26
Figure 11 Borel sets, ๐ธ๐ธ is a collection of subsets of ฮฉ .................................................................26
Figure 12 Two measurable spaces .................................................................................................28
Figure 13 The transformation of some sample points ..................................................................29
Figure 14. Example about Lebesgue integral ................................................................................32
Figure 15 two dimensional rectangle of half open intervals (๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ] .........................36
Figure 16 Lebesgue outer measure ................................................................................................41
Figure 17 Set โ„ณ โІ โ„, left half open intervals covering โ„ณ .........................................................42
Figure 18 โ„™๐‘“๐‘“ is a probability measure on (โ„, โ„ฌ) ..........................................................................49
Figure 19 Cartesian product of ๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ]) ..................................................................56
Figure 20 Non Example .................................................................................................................56
Figure 21 Solution for Non Example .............................................................................................57
List of Tables
Table 1 interpretation of measure theory and probability theory concepts .............................................6
Table 2 Different Kind of vector norms are summarized ................................................................9
Table 3. Terminology of measure theory.......................................................................................18
Table 4. Terminology of set theory and probability theory ...........................................................21
Table 5 The relationship between premeasure, outer measure and measure ................................43
Table.6 Terminology for both measure space and the equivalent probability space ....................49
4
ABSTRACT
The body of the paper is divided into three parts:
Part one: include definitions and examples of the metric, norm and topology along with some
important terms such as metrics โ„“1 , โ„“2 , โ„“โˆž and vector norm |๐‘ฅ๐‘ฅ|๐‘๐‘ which also known as the ๐ฟ๐ฟ๐‘๐‘
space. In case of the topology space this concept adjusted to be a unit ball that is distance one
from a point unit circle.
Part two: demonstrate the measure and probability which is one of the main topics in this work.
This section serves as an introduction for the remaining part. It explains the construction of the
๐œŽ๐œŽ-algebra and the Borel set, and the usefulness of the Borel set in the probability theory.
Part Three: to understand the measure, one has to understand finitely additive measure and
countable additivity of subsets, besides knowing the definition of ring, ๐œŽ๐œŽ-ring and their measure
extension. One also has to differentiate between the terms premeasure, outer measure and
measure from their domains and additivity conditions, which is clarified in the form of table.
The advantage of measurable function and the induced measure is explained, as both share to
define the probability as a measure, the probability that has values in the Borel set. As a
summary of this section, a Borel ๐œŽ๐œŽ-algebra shows a special role in real-life probability because
numerical data, real numbers, is gathered whenever a random experiment is performed.
In this work a simple technique that is supported by pictorial presentation mostly is used, and for
easiness most proofs are replaced by examples. I have freely borrowed a lot of material from
various sources, and collected them in the manner that makes this thesis equipped with a little
aspect of the real analysis, topology and probability theory.
5
INTRODUCTION
Probability space has its own vocabulary, which is inherited from probability theory. In modern
real analysis instead of the word set, the word space used, the word space is used to title a set that
has been endowed with a special structure. We therefore begin by presenting a brief list of real
analysis, probability and topological space dialect.
Analysts' Term
Probabilists' Term
Topological Term
Normed Measure space (๐‘‹๐‘‹, โ„ณ, ๐œ‡๐œ‡)
Probability space (๐›บ๐›บ, โ„ฑ, โ„™) or
called field of probability
Topological Space (๐‘‹๐‘‹, ๐’ฏ๐’ฏ)
๐œŽ๐œŽ-algebras ๐œŽ๐œŽ(๐’œ๐’œ) and Borel set
๐œŽ๐œŽ-field ๐œŽ๐œŽ(๐ธ๐ธ) and Borel set
๐œŽ๐œŽ(๐’ฏ๐’ฏ) and Borel ๐œŽ๐œŽ-algebras
๐’œ๐’œ: subset
๐ธ๐ธ: Event
The Borel subsets of โ„๐‘›๐‘› is
the ฯƒ-algebra generated by
the open sets of โ„๐‘›๐‘› (with a
compact metric space)
Measurable function ๐‘“๐‘“
Measurable function (Random
Points in space
Points in space
Convergence in measure
Outcome, ๐œ”๐œ”
the induced Measure ๐œ‡๐œ‡๐น๐น (Lebesgue-
the induced Measure ๐œ‡๐œ‡๐น๐น
Support Measure Theory
(Lebesgue-Stieltjes
measure)
Continuous function is measurable
Measure induced by continuous
random variable
Stieltjes measure)
Measurable space
variable)
Convergence in probability
(Distribution)
Convergence in ๐œ€๐œ€-ball
Continuous function is
measurable
Table 1 Interpretation of measure theory and probability theory concepts (adopted from: Gerald B.
Folland, 1999).
6
PART ONE : MERTIC, NORMED VECTOR SPACE AND TOPOLOGICAL SPACES
Figure 1 Metric space ๏ƒ  topological space, but not all topological spaces can be metric
1. Metric Space (Distance Function) (๐‘ฟ๐‘ฟ, ๐’…๐’…)
A metric space as a pair (๐‘‹๐‘‹, ๐‘‘๐‘‘), where ๐‘‹๐‘‹ is a set and ๐‘‘๐‘‘ is a function that assign a real number
๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) to every pair ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ โˆˆ ๐‘‹๐‘‹ written as; ๐‘‘๐‘‘: ๐‘‹๐‘‹ × ๐‘‹๐‘‹ โŸถ โ„, and the Cartesian product ๐‘‹๐‘‹ × ๐‘‹๐‘‹ =
{ (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)| ๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘ฆ๐‘ฆ โˆˆ ๐‘‹๐‘‹ }.
The distance function is ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) and ๐‘‘๐‘‘ map the ๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆ to positive real number [0,โˆž) such that:
1.
2.
3.
๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โ‰ฅ 0 for all ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ โˆˆ ๐‘‹๐‘‹ and ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = 0 if and only if ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ,
๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๐‘‘๐‘‘(๐‘ฆ๐‘ฆ, ๐‘ฅ๐‘ฅ) for all ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ โˆˆ ๐‘‹๐‘‹;
๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ง๐‘ง) โ‰ค ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) + ๐‘‘๐‘‘(๐‘ฆ๐‘ฆ, ๐‘ง๐‘ง) for all ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ, ๐‘ง๐‘ง โˆˆ ๐‘‹๐‘‹.
Condition (3) is called the triangle inequality because (when applied to โ„2 with the usual metric)
it says that the sum of two sides of the triangle is at least as big as the third side(๐‘Ž๐‘Ž + ๐‘๐‘ โ‰ฅ ๐‘๐‘).
Figure 2 Diagram of triangle equality in metric space (source: Ji๐‘Ÿ๐‘Ÿฬ† i Lebl, 2011)
7
The plane โ„2 with usual metric ๐‘‘๐‘‘1 is obtained from the measure of the horizontal and vertical
distance, and add the two together. ๐‘‘๐‘‘1 ๏ฟฝ(๐‘ฅ๐‘ฅ1 , ๐‘ฆ๐‘ฆ1 ), (๐‘ฅ๐‘ฅ2 , ๐‘ฆ๐‘ฆ2 )๏ฟฝ = |๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฅ๐‘ฅ2 | + |๐‘ฆ๐‘ฆ1 โˆ’ ๐‘ฆ๐‘ฆ2 |.
The metric ๐‘‘๐‘‘2 obtained from Pythagorasโ€™s theorem (called the Euclidean metric). For ๐‘›๐‘› = 2, it
is defined by ๐‘‘๐‘‘2 (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๏ฟฝ((๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฆ๐‘ฆ1 )2 + (๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฆ๐‘ฆ2 )2 ), where ๐‘ฅ๐‘ฅ = (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 ), ๐‘ฆ๐‘ฆ = (๐‘ฆ๐‘ฆ1 , ๐‘ฆ๐‘ฆ2 ). For
๐‘›๐‘› > 2, ๐‘‘๐‘‘2 (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๏ฟฝ((๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฆ๐‘ฆ1 )2 + (๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฆ๐‘ฆ2 )2 + โ‹ฏ (๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ ๐‘ฆ๐‘ฆ๐‘›๐‘› )2 ), where ๐‘ฅ๐‘ฅ = (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ), ๐‘ฆ๐‘ฆ =
(๐‘ฆ๐‘ฆ1 , ๐‘ฆ๐‘ฆ2 , โ€ฆ , ๐‘ฆ๐‘ฆ2 ).
The plane โ„2 with the supremum metric ๐‘‘๐‘‘โˆž . ๐‘‘๐‘‘โˆž ๏ฟฝ(๐‘ฅ๐‘ฅ1 , ๐‘ฆ๐‘ฆ1 ), (๐‘ฅ๐‘ฅ2 , ๐‘ฆ๐‘ฆ2 )๏ฟฝ = ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š {|๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฅ๐‘ฅ2 |, |๐‘ฆ๐‘ฆ1 โˆ’
๐‘ฆ๐‘ฆ2 |}. We can represent it as ๐‘‘๐‘‘โˆž : โ„2 × โ„2 โ†’ โ„.
Note. Some reference use the notation โ„“1 , โ„“2 , โ„“โˆž instead of d1 , d2 and dโˆž.
2. Norms and Normed Vector Spaces (V, โ€–โˆ™โ€–)
The norm is best thought of as a length, defined for functions in space, where it must satisfy
some properties. In linear algebra, we define a vector ๐‘ฅ๐‘ฅโƒ— as an ordered tuple of numbers ๐‘ฅ๐‘ฅโƒ— =
(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ). If ๐‘‹๐‘‹ is a vector space over โ„, a norm is a function โ€–โˆ™โ€–: ๐‘‹๐‘‹ โ†’ [0, โˆž) having the
following properties:
N1
N2
N3
โ€–๐‘ฅ๐‘ฅโ€– > 0 when ๐‘ฅ๐‘ฅ โ‰  0 and โ€–๐‘ฅ๐‘ฅโ€– = 0 if and only if ๐‘ฅ๐‘ฅ = 0.
โ€–๐›ผ๐›ผ๐›ผ๐›ผโ€–= | ๐›ผ๐›ผ | ใƒปโ€–๐‘ฅ๐‘ฅโ€– for all ๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹ and ๐›ผ๐›ผ โˆˆโ„, ๐›ผ๐›ผ a scalar.
โ€–๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆโ€– โ‰คโ€–๐‘ฅ๐‘ฅโ€– + โ€–๐‘ฆ๐‘ฆโ€– for all ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ โˆˆ ๐‘‹๐‘‹.
Note. A general vector norm |๐‘ฅ๐‘ฅ|, sometimes written with a double bar โ€–๐‘ฅ๐‘ฅโ€– as above, is a
nonnegative norm.
The distance between two numbers ๐‘ฅ๐‘ฅ1 and ๐‘ฅ๐‘ฅ2 in โ„ is the absolute value of their difference is
๐‘‘๐‘‘(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 ) = | ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1 |, in other words, a normed vector space is automatically a metric space.
8
But a metric space may have no algebraic (vector) structure (i.e., it may not be a vector space) so
the concept of a metric space is a generalization of the concept of a normed vector space.
The triangle inequality can be shown as absolute value: (Satish Shirali and Harkrishan L.
Vasudeva, 2011):
๐‘ฅ๐‘ฅ
| ๐‘ฅ๐‘ฅ1 | = ๏ฟฝ 1
โˆ’๐‘ฅ๐‘ฅ1
๐‘ฅ๐‘ฅ1 โ‰ฅ 0
๐‘ฅ๐‘ฅ1 < 0
|๐‘ฅ๐‘ฅ1 | = ๏ฟฝ๐‘ฅ๐‘ฅ1 2
| โˆ’ ๐‘ฅ๐‘ฅ1 | = | ๐‘ฅ๐‘ฅ1 |
|๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2 | โ‰ค |๐‘ฅ๐‘ฅ1 | + |๐‘ฅ๐‘ฅ2 |
|๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฅ๐‘ฅ2 | โ‰ฅ |๐‘ฅ๐‘ฅ1 | โˆ’ |๐‘ฅ๐‘ฅ2 |
or alternatively
| ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1 | โ‰ค | ๐‘ฅ๐‘ฅ1 | + | ๐‘ฅ๐‘ฅ2 |
2.1 Different Kinds of Norms
Types of vector norms are summarized in the following table, together with the value of the
norm for example vector ๐‘ฃ๐‘ฃ = (1,2,3) :
Distance
Norm
๐‘‘๐‘‘1
๐ฟ๐ฟ1 โˆ’ ๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›
๐‘‘๐‘‘3
๐ฟ๐ฟ3 โˆ’ ๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›
๐‘‘๐‘‘โˆž
๐ฟ๐ฟโˆž โˆ’ ๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›
๐‘‘๐‘‘2
๐‘‘๐‘‘4
๐ฟ๐ฟ2 โˆ’ ๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›
๐ฟ๐ฟ4 โˆ’ ๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›๐‘›
Symbol
|๐‘ฅ๐‘ฅ|1
|๐‘ฅ๐‘ฅ|2
|๐‘ฅ๐‘ฅ|3
|๐‘ฅ๐‘ฅ|4
|๐‘ฅ๐‘ฅ|โˆž
Value
Approx.
1+2+3=6
6.000
(12 + 22 + 32 )1/2 = โˆš14
3.742
(13 + 23 + 33 )1/3 = 62/3
3.302
(14 + 24 + 34 )1/4 = 21/4 . ๏ฟฝ7
3
3.146
3.000
Table 2. Different kind of norms, (adopted from: Eric Weisstein, 2015).
9
2.2 Ball in ๐“ต๐“ต๐’‘๐’‘
Let ๐‘‹๐‘‹ = โ„๐‘›๐‘› , the distance function between ๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆ
๐‘›๐‘›
๐‘‘๐‘‘๐‘๐‘ (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๏ฟฝ๏ฟฝ|๐‘ฅ๐‘ฅ๐‘–๐‘– โˆ’ ๐‘ฆ๐‘ฆ๐‘–๐‘– |๏ฟฝ
๐‘๐‘
๐‘–๐‘–=1
where ๐‘ฅ๐‘ฅ = (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ3 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) , ๐‘ฆ๐‘ฆ = (๐‘ฆ๐‘ฆ1 , ๐‘ฆ๐‘ฆ2 , ๐‘ฆ๐‘ฆ3 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) and the sequence ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = (๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฆ๐‘ฆ1 , ๐‘ฅ๐‘ฅ2 โˆ’
๐‘ฆ๐‘ฆ2 , ๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฆ๐‘ฆ3 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ ๐‘ฆ๐‘ฆ๐‘›๐‘› ) are in โ„๐‘›๐‘› with 0 < ๐‘๐‘ < 1, is the metric space ๏ฟฝโ„๐‘›๐‘› , ๐‘‘๐‘‘๐‘๐‘ ๏ฟฝ denoted by โ„“๐‘๐‘๐‘›๐‘› .
The โ„“๐‘๐‘๐‘›๐‘› norm is a locally convex topological vector space. All the points lying at a given distance
from a fixed point that is {๐‘๐‘ โˆˆ โ„2 |๐‘‘๐‘‘(0, ๐‘๐‘) < 1} in โ„“๐‘๐‘๐‘›๐‘› norm are convex.
Figure 3 Ball in โ„2 with the โ„“1 , โ„“2 , โ„“โˆž norms. The unit ball (and so all balls) in โ„“๐‘๐‘ norm are convex.
2.3 ๐‘ณ๐‘ณ๐’‘๐’‘ Space (Function Spaces)
Definition. Let (๐‘‹๐‘‹, โ„ณ, ๐œ‡๐œ‡) be a three tuple space, the set ๐ฟ๐ฟ๐‘๐‘๐œ‡๐œ‡ (๐‘‹๐‘‹) consists of equivalence classes of
a functions ๐‘“๐‘“: ๐‘‹๐‘‹ โ†’ โ„, where ๐ฟ๐ฟ๐‘๐‘ norm of ๐‘“๐‘“ โˆˆ ๐ฟ๐ฟ๐‘๐‘๐œ‡๐œ‡ (๐‘‹๐‘‹) is given by:
๐‘œ๐‘œ
๐ฟ๐ฟ๐‘๐‘๐œ‡๐œ‡ (๐‘‹๐‘‹) = ๏ฟฝ๐‘“๐‘“: ๏ฟฝ |๐‘“๐‘“|๐‘๐‘ ๐‘‘๐‘‘๐‘‘๐‘‘ < โˆž๏ฟฝ
๐‘‹๐‘‹
A function ๐‘“๐‘“: ๐‘‹๐‘‹ โ†’ โ„ is measurable depends on the measure ๐œ‡๐œ‡ with integral is taken over a set ๐‘‹๐‘‹
and 1 โ‰ค ๐‘๐‘ < โˆž. The set ๐ฟ๐ฟ๐‘๐‘๐œ‡๐œ‡ (๐‘‹๐‘‹) = ๐ฟ๐ฟ๐‘๐‘ (๐‘‹๐‘‹, ๐‘‘๐‘‘๐‘‘๐‘‘) is a vector space with a norm.
10
Let ๐‘‹๐‘‹ be the closed unit interval, so that the continuous functions on [0,1] define the norm of ๐‘‹๐‘‹
to be.
๐‘๐‘
1/๐‘๐‘
|๐‘“๐‘“|๐‘๐‘ = ๏ฟฝ๏ฟฝ|๐‘“๐‘“|๐‘๐‘ ๐‘‘๐‘‘๐‘‘๐‘‘๏ฟฝ
1
= โ€–๐‘“๐‘“โ€– = ๏ฟฝ |๐‘“๐‘“(๐‘ฅ๐‘ฅ)|๐‘‘๐‘‘๐‘‘๐‘‘
0
๐‘‹๐‘‹
2.4 Distance Between Functions, ๐‘ณ๐‘ณ๐’‘๐’‘ -distance
If ๐‘“๐‘“, ๐‘”๐‘” โˆˆ ๐ฟ๐ฟ๐‘๐‘ , the ๐ฟ๐ฟ๐‘๐‘ -distance between function space elements ๐‘“๐‘“ and ๐‘”๐‘” is essentially the area
between them, โ€–๐‘“๐‘“ โˆ’ ๐‘”๐‘”โ€–๐‘๐‘ = (โˆซ|๐‘“๐‘“ โˆ’ ๐‘”๐‘”|๐‘๐‘ )1/๐‘๐‘ . (adopted from: William Johnston, 2015).
The set of all continuous functions on [๐‘Ž๐‘Ž, ๐‘๐‘] can also be equipped with metric. For example, let ๐‘‹๐‘‹
the collection of all continuous function from ๐‘Ž๐‘Ž to ๐‘๐‘,
๐‘“๐‘“: [๐‘Ž๐‘Ž, ๐‘๐‘] โ†’ โ„. In the space of all
continuous functions on [๐‘Ž๐‘Ž, ๐‘๐‘], the distance between ๐‘“๐‘“ and ๐‘”๐‘” is defined to be;
๐‘๐‘
๐‘‘๐‘‘(๐‘“๐‘“, ๐‘”๐‘”) = ๏ฟฝ |๐‘“๐‘“(๐‘ฅ๐‘ฅ) โˆ’ ๐‘”๐‘”(๐‘ฅ๐‘ฅ)|
๐‘Ž๐‘Ž
There are different ways to represent the distance between two functions in ๐‘‹๐‘‹ such as:
๐‘‘๐‘‘1 (๐‘“๐‘“, ๐‘”๐‘”) = ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘Ž๐‘Žโ‰ค๐‘ฅ๐‘ฅโ‰ค๐‘๐‘ |๐‘“๐‘“(๐‘ฅ๐‘ฅ) โˆ’ ๐‘”๐‘”(๐‘ฅ๐‘ฅ)|
Distance between two function, ๐ฟ๐ฟ๐‘๐‘ -distance.
11
3. Topological space
A Topology on a set ๐‘‹๐‘‹ is a set of subsets, called open subset, including ๐‘‹๐‘‹ and the empty set, such
that any union of open sets is open, and any finite intersection of open sets is open.
In other words, A collection of subsets ๐’ฏ๐’ฏ of ๐‘‹๐‘‹ is called a topology on ๐‘‹๐‘‹, if:
1. ๐‘‹๐‘‹ โˆˆ ๐’ฏ๐’ฏ,โˆ… โˆˆ ๐’ฏ๐’ฏ,
2. ๐ด๐ด โˆˆ ๐’ฏ๐’ฏ and ๐ต๐ต โˆˆ ๐’ฏ๐’ฏ, then their intersection โˆˆ ๐’ฏ๐’ฏ,
3. The union of sets in any sub-collection of ๐’ฏ๐’ฏ is an element of ๐’ฏ๐’ฏ (i.e ๐‘†๐‘† โŠ‚ ๐’ฏ๐’ฏ is any
collection of sets in ๐’ฏ๐’ฏ then โ‹ƒ๐ด๐ดโˆˆ๐‘†๐‘† ๐ด๐ด โˆˆ ๐’ฏ๐’ฏ ).
In a topological space, every open set open in ๐’ฏ๐’ฏ can be written as the union of countable
open sets.
Example. The ordered pair (๐‘‹๐‘‹, ๐’ฏ๐’ฏ) is a topological space, with ๐‘‹๐‘‹ = {1,2} and ๐’ฏ๐’ฏ = {โˆ…,
{1},{2},{1,2}}.
A topological space ๐‘‹๐‘‹ is called path connected if every two points in ๐‘‹๐‘‹ are connected by a path,
that is, for all ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ โˆˆ ๐‘‹๐‘‹ there is a continuous function
and ๐‘“๐‘“(1) = ๐‘ฆ๐‘ฆ. (John B. Etnyre, 2014).
๐‘“๐‘“: [0,1] โ†’ ๐‘‹๐‘‹
such that ๐‘“๐‘“(0) = ๐‘ฅ๐‘ฅ,
12
If ๐‘๐‘ is an element of a metric space (๐‘‹๐‘‹, ๐‘‘๐‘‘), given ๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹ and ๐œ€๐œ€ > 0, the collection of points ๐‘ฅ๐‘ฅ in ๐‘‹๐‘‹
within distance ๐œ€๐œ€ from ๐‘๐‘ is the ๐œ€๐œ€-ball, define as ๐ต๐ต๐œ€๐œ€ (๐‘ฅ๐‘ฅ) = {๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹|๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘๐‘) < ๐œ€๐œ€} or ๐ต๐ต๐œ€๐œ€ (๐‘ฅ๐‘ฅ) =
{๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹||๐‘๐‘ โˆ’ ๐‘ฅ๐‘ฅ| < ๐œ€๐œ€}.
Open Ball, ๐œ€๐œ€-ball
The open balls of metric space form a basis for a topological space, called the topology induced
by the metric ๐‘‘๐‘‘.
A collection of subsets {๐‘ˆ๐‘ˆ๐‘Ž๐‘Ž }๐‘Ž๐‘Žโˆˆ๐ฝ๐ฝ of ๐‘‹๐‘‹ is a cover of ๐‘‹๐‘‹ if ๐‘‹๐‘‹ = โ‹ƒ๐‘Ž๐‘Žโˆˆ๐ฝ๐ฝ ๐‘ˆ๐‘ˆ๐‘Ž๐‘Ž (here ๐ฝ๐ฝ is an indexing set,
so for example if ๐ฝ๐ฝ = {1,2, โ€ฆ ๐‘›๐‘›} then {๐‘ˆ๐‘ˆ๐‘Ž๐‘Ž }๐‘Ž๐‘Žโˆˆ๐ฝ๐ฝ = {๐‘ˆ๐‘ˆ1 , ๐‘ˆ๐‘ˆ2 , โ€ฆ ๐‘ˆ๐‘ˆ๐‘›๐‘› }). (John B. Etnyre, 2014),
A topology space ๐‘‹๐‘‹ is compact if every cover of ๐‘‹๐‘‹ by open sets has a finite subcover, in other
words if {๐‘ˆ๐‘ˆ๐‘Ž๐‘Ž }๐‘Ž๐‘Žโˆˆ๐ฝ๐ฝ is a collection of open sets in ๐‘‹๐‘‹ that cover ๐‘‹๐‘‹ then there is a subset ๐ผ๐ผ โŠ‚ ๐ฝ๐ฝ such
that ๐ผ๐ผ is finite and ๐‘‹๐‘‹ = โ‹ƒ๐‘Ž๐‘Žโˆˆ๐ผ๐ผ ๐‘ˆ๐‘ˆ๐‘Ž๐‘Ž , which means that every open cover has a finite refinement.
3.1 Continuous Function in Metric and Topology
An element ๐‘ฅ๐‘ฅ of a topological space is said to be the limit of a sequence ๐‘ฅ๐‘ฅ๐‘›๐‘› of other points when,
for any given integer N, there is a neighborhood of ๐‘ฅ๐‘ฅ which contains every ๐‘ฅ๐‘ฅ๐‘›๐‘› for ๐‘›๐‘› โ‰ฅ ๐‘๐‘. A
sequence is said to be convergent if it has a limit. More clearly we say that the function ๐‘“๐‘“: โ„๐‘›๐‘› โ†’
โ„๐‘š๐‘š is continuous at the point ๐‘ฅ๐‘ฅ1 โˆˆ โ„๐‘›๐‘› if โˆ€๐œ€๐œ€ > 0, โˆƒ ๐›ฟ๐›ฟ > 0 such that, โ€–๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ1 โ€– < ๐›ฟ๐›ฟ โŸน |๐‘“๐‘“(๐‘ฅ๐‘ฅ) โˆ’
๐‘“๐‘“(๐‘ฅ๐‘ฅ1 )| < ๐œ€๐œ€.
13
Figure 4 The convergence of the sequence (source Ben Garside, 2014)
To generalize to metric space we replace the difference vector norms โ€–๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ1 โ€– with distance
metric ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ1 ) with letting ๐‘“๐‘“(๐‘ฅ๐‘ฅ1 ) to be an arbitrarily small open ball around ๐‘“๐‘“(๐‘ฅ๐‘ฅ) and by
keeping ๐‘ฅ๐‘ฅ1 to be a sufficiently small open ball around ๐‘ฅ๐‘ฅ.(adopted from: Sadeep Jayasumana,
2012).
Definition: The (๐‘‹๐‘‹, ๐‘‘๐‘‘๐‘‹๐‘‹ ) and ๏ฟฝ๐‘‹๐‘‹1 , ๐‘‘๐‘‘๐‘‹๐‘‹1 ๏ฟฝ are arbitrary metric spaces. A function ๐‘“๐‘“: ๐‘‹๐‘‹ โ†’ ๐‘‹๐‘‹1 is
continuous at a point ๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹ if, for any ๐œ€๐œ€ > 0, there is an ๐›ฟ๐›ฟ > 0 such that for each ๐‘ฅ๐‘ฅ1 โˆˆ ๐‘‹๐‘‹1:
๐‘‘๐‘‘๐‘‹๐‘‹ (๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ1 ) < ๐›ฟ๐›ฟ implies ๐‘‘๐‘‘๐‘‹๐‘‹1 ๏ฟฝ๐‘“๐‘“(๐‘ฅ๐‘ฅ), ๐‘“๐‘“(๐‘ฅ๐‘ฅ1 )๏ฟฝ < ๐œ€๐œ€.
In other words, ๐‘“๐‘“ is continuous at ๐‘ฅ๐‘ฅ if, for any ๐œ€๐œ€ > 0, there exist a ๐›ฟ๐›ฟ > 0 such that
๐‘“๐‘“(๐ต๐ต๐‘‹๐‘‹ (๐‘ฅ๐‘ฅ|๐›ฟ๐›ฟ)) โŠ‚ ๐ต๐ต๐‘‹๐‘‹1 (๐‘“๐‘“(๐‘ฅ๐‘ฅ)|๐œ€๐œ€)
If ๐‘“๐‘“ is continuous at every point of ๐‘‹๐‘‹, we simply say that ๐‘“๐‘“ in continuous on ๐‘‹๐‘‹.
The planes ๐‘‹๐‘‹ = โ„2 and ๐‘‹๐‘‹1 = โ„2 (adopted from: Jianfei Shen,2012),
Using topological terms we define: a function ๐‘“๐‘“: (๐‘‹๐‘‹1 , ๐’ฏ๐’ฏ1 ) โ†’ (๐‘‹๐‘‹2 , ๐’ฏ๐’ฏ2 ) between two topological
spaces is said to be continuous if whenever ๐‘ˆ๐‘ˆ โˆˆ ๐’ฏ๐’ฏ2 , then ๐‘“๐‘“ โˆ’1 (๐‘ˆ๐‘ˆ) โˆˆ ๐’ฏ๐’ฏ1 is the preimage of ๐’ฏ๐’ฏ2 .
More easily, we say that a function between two topological spaces is continuous if preimages of
14
open sets are open, that is for any open neighborhood ๐‘ˆ๐‘ˆ of ๐‘“๐‘“(๐‘ฅ๐‘ฅ1 ), there exists an open
neighborhood ๐‘‰๐‘‰ of ๐‘ฅ๐‘ฅ1 such that ๐‘“๐‘“(๐‘‰๐‘‰) โŠ‚ ๐‘ˆ๐‘ˆ, as in the following theorem.
Theorem. given ๐‘“๐‘“: ๐‘‹๐‘‹1 โ†’ ๐‘‹๐‘‹2 , the following are equivalent : (Jianfei Shen,2012)
o ๐‘“๐‘“ is continuous on ๐‘‹๐‘‹1 by the ๐œ€๐œ€- ๐›ฟ๐›ฟ definition
o For every ๐‘ฅ๐‘ฅ1 โˆˆ ๐‘‹๐‘‹1 , if ๐‘ฅ๐‘ฅ๐‘›๐‘› โ†’ ๐‘ฅ๐‘ฅ1 in ๐‘‹๐‘‹, then ๐‘“๐‘“(๐‘ฅ๐‘ฅ๐‘›๐‘› ) โ†’ ๐‘“๐‘“(๐‘ฅ๐‘ฅ1 ) in ๐‘‹๐‘‹2
o If ๐‘ˆ๐‘ˆ is closed in ๐‘‹๐‘‹2, then ๐‘“๐‘“ โˆ’1 (๐‘ˆ๐‘ˆ) is closed in ๐‘‹๐‘‹1
o If ๐‘ˆ๐‘ˆ is open in ๐‘‹๐‘‹2, then ๐‘“๐‘“ โˆ’1 (๐‘ˆ๐‘ˆ) is open in ๐‘‹๐‘‹1
3.2 Limit Point
A point ๐‘ฅ๐‘ฅ of a topological space is said to be a limit point of a subset ๐ผ๐ผ if every neighborhood of
๐‘ฅ๐‘ฅ intersects ๐ผ๐ผ in some point other than ๐‘ฅ๐‘ฅ.
That is, in a metric space (๐‘‹๐‘‹, ๐‘‘๐‘‘), if ๐ผ๐ผ = {๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘› โ€ฆ}, and โˆ€๐œ€๐œ€ > 0, ๐‘ฅ๐‘ฅ๐‘–๐‘– โˆˆ ๐ต๐ต๐œ€๐œ€ (๐‘ฅ๐‘ฅ) for some ๐‘ฅ๐‘ฅ๐‘–๐‘– โˆˆ ๐ผ๐ผ
then ๐‘ฅ๐‘ฅ is a limit point of ๐ผ๐ผ.
15
PART TWO : OUTLINES OF MEASURE AND PROBABILITY SPACES
1. Measure and Measure Space
A measure on a set ๐‘‹๐‘‹, is a systematic way to assign a number to each suitable subset of that set,
intuitively interpreted as its size. In this sense, it generalizes the concepts of length, area, and
volume.
Figure 5 Measure on a set, S (source: Rauli Susmel, 2015)
The measure of ๐’œ๐’œ denoted as ๐œ‡๐œ‡(๐’œ๐’œ) is a measure ๐œ‡๐œ‡ on set ๐‘‹๐‘‹ associates to the subset ๐’œ๐’œ of ๐‘‹๐‘‹.
Measurable set is set that have a well-defined measure, (๐‘‹๐‘‹, โ„ณ) called a measurable space and
the members of โ„ณ are the measurable sets.
A measure space (๐‘‹๐‘‹, โ„ณ, ๐œ‡๐œ‡) consisting of a set X, class of subsets ๐’œ๐’œ ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘‹๐‘‹ represented by ๐œŽ๐œŽ(๐’œ๐’œ)
which is equal to โ„ณ, and ๐œ‡๐œ‡ attaching a nonnegative number to each set ๐’œ๐’œ in โ„ณ. The measure ๐œ‡๐œ‡
is required to have properties that facilitate calculations involving limits along sequences.
16
1.1 Construction of Sigma Algebra ๐ˆ๐ˆ(๐“๐“)
Construction of sigma algebra for a set ๐‘‹๐‘‹ is done by identifying a subsets ๐’œ๐’œโ€ฒ๐‘ ๐‘  of the elements we
wish to measure, and then defining the associating sigma algebra by generating the sigma
algebra on ๐’œ๐’œ, ๐œŽ๐œŽ(๐’œ๐’œ).
There are three requirements in generating ๐œŽ๐œŽ(๐’œ๐’œ) = โ„ณ:
1. The set ๐‘‹๐‘‹ is an element in โ„ณ ,
2. The complement of any element in โ„ณ will also be in โ„ณ,
3. For any two elements in โ„ณ their union also in โ„ณ.
For example, let set ๐‘‹๐‘‹ = {A,B,C,D,E,F,G,H}, and let subset of ๐‘‹๐‘‹ be ๐’œ๐’œ1 = {๐ต๐ต, ๐ถ๐ถ, ๐ท๐ท} and
๐’œ๐’œ2 = {๐น๐น, ๐บ๐บ, ๐ป๐ป}. Then the algebra โ„ณ that generated by ๐’œ๐’œ denoted by ๐œŽ๐œŽ({๐’œ๐’œ1 , ๐’œ๐’œ2 }) or
simply by ๐œŽ๐œŽ(๐’œ๐’œ).
17
Figure 6 Constructing sigma algebra, (adopted from: Viji Diane Kannan, 2015).
In other words, measurable set contain the subset ๐’œ๐’œ1 and ๐’œ๐’œ2 , make a class of measurable sets
โ„ณ is;
๐œŽ๐œŽ(๐’œ๐’œ) =
{(๐ด๐ด, ๐ต๐ต, ๐ถ๐ถ, ๐ท๐ท, ๐ธ๐ธ, ๐น๐น, ๐บ๐บ, ๐ป๐ป), (๐ต๐ต, ๐ถ๐ถ, ๐ท๐ท), (๐ด๐ด, ๐ธ๐ธ, ๐น๐น, ๐บ๐บ, ๐ป๐ป), (๐น๐น, ๐บ๐บ, ๐ป๐ป), (๐ด๐ด, ๐ต๐ต, ๐ถ๐ถ, ๐ท๐ท, ๐ธ๐ธ), (๐ต๐ต, ๐ถ๐ถ, ๐ท๐ท, ๐น๐น, ๐บ๐บ, ๐ป๐ป), (๐ด๐ด, ๐ธ๐ธ), (โˆ…)}
Typical notation
X
๐ด๐ด, ๐ต๐ต, ๐ถ๐ถ, โ€ฆ
๐’œ๐’œ1 , ๐’œ๐’œ2 , โ€ฆ ๐’œ๐’œ๐‘›๐‘›
๐œŽ๐œŽ-algebra of ๐’œ๐’œ
Table 3. Terminology of measure theory
Measure Terminology
Collection of objects - Set
a member of X
subset of X
measurable sets โ„ณ or Borel sets โ„ณ
1.2 The Inverse Function is Measurable Function
A function between measurable spaces is said to be measurable if the preimage of each
measurable set is measurable, and this is equivalent of the inverse and measurable function with
the continuous function is shown also between topological spaces.
18
Suppose ๐‘“๐‘“: ๐‘‹๐‘‹ โŸถ ๐‘Œ๐‘Œ and let ๐‘Ž๐‘Ž โІ ๐‘‹๐‘‹, and ๐ด๐ด โІ ๐‘Œ๐‘Œ. The image โ€œaโ€ and the inverse image of โ€œAโ€ are:
๐‘“๐‘“(๐‘Ž๐‘Ž) = {๐‘ฆ๐‘ฆ|๐‘ฆ๐‘ฆ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ) for some ๐‘ฅ๐‘ฅ โˆˆ ๐‘Ž๐‘Ž}
๐‘“๐‘“ โˆ’1 (๐ด๐ด) = {๐‘ฅ๐‘ฅ|๐‘“๐‘“(๐‘ฅ๐‘ฅ) โˆˆ ๐ด๐ด}
Figure 7 mapping ๐‘“๐‘“: ๐‘‹๐‘‹ โŸถ ๐‘Œ๐‘Œ (adopted from: Viji Diane Kannan, 2015)
Definition. Let (๐‘‹๐‘‹,โ„ณ) and (๐‘Œ๐‘Œ, ๐’ฉ๐’ฉ) be two measurable spaces. The function ๐‘“๐‘“: ๐‘‹๐‘‹ โŸถ ๐‘Œ๐‘Œ is said to
be (โ„ณ, ๐’ฉ๐’ฉ) measurable if ๐‘“๐‘“ โˆ’1 (๐’ฉ๐’ฉ) โІ โ„ณ. Say that ๐‘“๐‘“: (๐‘‹๐‘‹, โ„ณ) โŸถ (๐‘Œ๐‘Œ, ๐’ฉ๐’ฉ)
is measurable if
๐‘“๐‘“: ๐‘‹๐‘‹ โŸถ ๐‘Œ๐‘Œ is an (โ„ณ, ๐’ฉ๐’ฉ) measurable function.
Figure 8 ๐‘“๐‘“ is a measurable function because ๐‘“๐‘“ โˆ’1 exist, (source: Viji Diane Kannan, 2015).
If (๐‘Ž๐‘Ž๐‘–๐‘– )๐‘–๐‘–โˆˆ๐ผ๐ผ is a collection of subsets of ๐‘‹๐‘‹ and (๐ด๐ด๐‘–๐‘– )๐‘–๐‘–โˆˆ๐ผ๐ผ is a collection of subsets of ๐‘Œ๐‘Œ then
๐‘“๐‘“ ๏ฟฝ๏ฟฝ ๐‘Ž๐‘Ž๐‘–๐‘– ๏ฟฝ = ๏ฟฝ ๐‘“๐‘“(๐‘Ž๐‘Ž๐‘–๐‘– )
๐‘–๐‘–โˆˆ๐ผ๐ผ
๐‘–๐‘–โˆˆ๐ผ๐ผ
๐‘“๐‘“ โˆ’1 ๏ฟฝ๏ฟฝ ๐ด๐ด๐‘–๐‘– ๏ฟฝ = ๏ฟฝ ๐‘“๐‘“ โˆ’1 (๐ด๐ด๐‘–๐‘– )
๐‘–๐‘–โˆˆ๐ผ๐ผ
๐‘–๐‘–โˆˆ๐ผ๐ผ
19
2. Probability Space
Probability is mapping in a measurement system where the domain of ฮฉ is a field of outcomes
and the domain of โ„ฑ is the unit interval [0,1] (see figure 9). The measurement triple is (ฮฉ, โ„ฑ, โ„™)
called the probability field or space. A probability space is needed for each experiment or
collection of experiments that we wish to describe mathematically.
The ingredients of a probability space are:
-
ฮฉ is a set (sometimes called a sample space in elementary probability). Elements ๐œ”๐œ” of
๐›บ๐›บ are sometimes called outcomes. When ฮฉ is a finite set, we have the probability
-
(๐œ”๐œ”) =
1
|ฮฉ|
, where |ฮฉ| is the number of points ฮฉ.
โ„ฑ is a ๐œŽ๐œŽ-algebra (or ๐œŽ๐œŽ -field, we will use these terms synonymously) of subsets of ๐›บ๐›บ.
โ„™, probability measure, is a function from โ„ฑ to [0,1] with total probability โ„™(๐›บ๐›บ) = 1 and
such that if ๐ธ๐ธ1 , ๐ธ๐ธ2 , โ€ฆ โˆˆ โ„ฑ are pairwise disjoint events, meaning that ๐ธ๐ธ๐‘–๐‘– โˆฉ ๐ธ๐ธ๐‘—๐‘— = โˆ…
whenever ๐‘–๐‘– โ‰  ๐‘—๐‘—, then
โˆž
โˆž
๐‘—๐‘—=1
๐‘—๐‘—=1
โ„™ ๏ฟฝ๏ฟฝ ๐ธ๐ธ๐‘—๐‘— ๏ฟฝ = ๏ฟฝ โ„™๏ฟฝ๐ธ๐ธ๐‘—๐‘— ๏ฟฝ
Figure 9 A probability measure mapping the probability space for 3 events to the unit interval
(source: Probability measure, Wikipedia, cited 2014).
20
Typical notation
Set Terminology
Probability jargon
ฮฉ
Collection of objects
Sample Space
๐œ”๐œ”
Outcome
E
a member of ฮฉ
โ„ฑ
subset of ฮฉ
๐œŽ๐œŽ-algebra of ๐ธ๐ธ
Measurable sets or Borel sets
โ„™
Event (that some outcome in E occurs)
Probability Measure
Table 4. Terminology of set theory and probability theory (adopted from: Manuel Cabral Morais,
2009-2010)
2.1 Sample Space ๐›€๐›€
The set of all possible outcomes is called the sample space, If we flip a coin a single time and are
interested just in which side turns up heads or tails, then we can take the sample space to be,
symbolically, the set {H, T}. ฮฉ represents the sample space and ๐œ”๐œ” represent some generic
outcome; hence, ฮฉ = {H, T} for this experiment, and we would write ๐œ”๐œ” = H to indicate that the
coin came up heads.(T W Epps, 2013).
2.2 The ๐ˆ๐ˆ-field and Class of Events ๐“•๐“•
The field of events is the collection of events or the subset of ฮฉ whose occurrence is of interest to
us and about which we have the information. ๐œŽ๐œŽ-field is a nonempty class of subsets of ฮฉ closed
under the formation of complements and countable unions.(RJS, 2012).
Here are some examples:
Event, ๐ธ๐ธ1 = { the outcome of the die is even } = {2,4,6}
Event, ๐ธ๐ธ2 = { exactly two tosses come out tails} = {(0,1,1),(1,0,1),(1,1,0)}
Event, ๐ธ๐ธ3 = { the second toss comes out tails and the fifth heads}
โ„•
={๐œ”๐œ” = (๐‘ฅ๐‘ฅ๐‘–๐‘– )โˆž
๐‘–๐‘–=1 }โˆˆ {0,1} | ๐‘ฅ๐‘ฅ2 = 1 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘ฅ๐‘ฅ5 = 0}
21
In discrete sample space the class โ„ฑ of events contains all subsets of the sample space, in
complicated sample spaces the case is different, since in general theory โ„ฑ is a ๐œŽ๐œŽ-field in sample
space. โ„ฑ follow the following axioms:
-
-
ฮฉ โˆˆ โ„ฑ and โˆ… โˆˆ โ„ฑ (the sample space ฮฉ and the empty set โˆ… are events)
if E โˆˆ โ„ฑ then ๐ธ๐ธ ๐‘๐‘ โˆˆ โ„ฑ. (๐ธ๐ธ ๐‘๐‘ ) is the complement of E, this is the set of points of ฮฉ that do
not belong to E,
-
if ๐ธ๐ธ1 , ๐ธ๐ธ2 , ๐ธ๐ธ3 โ€ฆ โˆˆ โ„ฑ then also โ‹ƒโˆž
๐‘–๐‘–=1 ๐ธ๐ธ๐‘–๐‘– โˆˆ โ„ฑ , in other words the union of sequence of
events is also an event.(Benedek Valkó, 2015)
2.3 Sequences of Events in Probability
We deal here with sequences of events and various types of limits of such sequences. The limits
are also events. We start with two simple definitions (Kyle Siegrist, 2015).
Suppose that (๐ธ๐ธ1 , ๐ธ๐ธ2 , โ€ฆ ) is a sequence of events.
1. The sequence is increasing {๐ธ๐ธ๐‘›๐‘› } โ†‘ if ๐ธ๐ธ๐‘›๐‘› โІ ๐ธ๐ธ๐‘›๐‘›+1 for every ๐‘›๐‘› โˆˆ โ„•+ , and we can define the
limit, lim๐‘›๐‘›โ†’โˆž ๐ธ๐ธ๐‘›๐‘› = โ‹ƒโˆž
๐‘›๐‘›=1 ๐ธ๐ธ๐‘›๐‘› .
2. The sequence is decreasing {๐ธ๐ธ๐‘›๐‘› } โ†“ if ๐ธ๐ธ๐‘›๐‘›+1 โІ ๐ธ๐ธ๐‘›๐‘› for every ๐‘›๐‘› โˆˆ โ„•+ , and we can define
the limit, lim๐‘›๐‘›โ†’โˆž ๐ธ๐ธ๐‘›๐‘› = โ‹‚โˆž
๐‘›๐‘›=1 ๐ธ๐ธ๐‘›๐‘› .
A sequence of decreasing events and their intersection
A sequence of increasing events and their union
(source: Kyle Siegrist,2015).
22
2.4 Continuity Theorems of Probability
A function is continuous if it preserves limits. Thus, the following results are the continuity
theorems of probability, suppose that (๐ธ๐ธ1 , ๐ธ๐ธ2 , โ€ฆ ) is a sequence of events:
-
Continuity theorem for increasing events: If the sequence is increasing then
-
lim๐‘›๐‘›โ†’โˆž โ„™(๐ธ๐ธ๐‘›๐‘› ) = โ„™(lim๐‘›๐‘›โ†’โˆž ๐ธ๐ธ๐‘›๐‘› ) = โ„™ (โ‹ƒโˆž
๐‘›๐‘›=1 ๐ธ๐ธ๐‘›๐‘› ) and,
Continuity theorem for decreasing events: If the sequence is decreasing then
lim๐‘›๐‘›โ†’โˆž โ„™(๐ธ๐ธ๐‘›๐‘› ) = โ„™(lim๐‘›๐‘›โ†’โˆž ๐ธ๐ธ๐‘›๐‘› ) = โ„™ (โ‹‚โˆž
๐‘›๐‘›=1 ๐ธ๐ธ๐‘›๐‘› )
3. General Idea of Borel Set
A Borel Set in a topological space is a set which can be formed from open sets through
operations of countable union, countable intersection and complement. The set of Borel sets
which are intersections of countable collections of open sets is called ๐บ๐บ๐›ฟ๐›ฟ and the set of countable
unions of closed sets is called ๐น๐น๐œŽ๐œŽ . We can consider set of type ๐น๐น๐œŽ๐œŽ๐œŽ๐œŽ , which are the intersections of
countable collections of sets each which is an ๐น๐น๐œŽ๐œŽ . Similarly we construct classes ๐บ๐บ๐›ฟ๐›ฟ๐›ฟ๐›ฟ , ๐น๐น๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ , etc.
(H.L. Royden,1988).
Then we can take countable unions and countable intersection of those new sets, and get
more new sets, all of which will be Borel, too. This process will never stop. (Dr. Nikolai
Chernov, 2012-1014)
23
Note. ๐น๐น๐œŽ๐œŽ : ๐น๐น refer to closed sets and the subscript ๐œŽ๐œŽ is addition. ๐บ๐บ๐›ฟ๐›ฟ : ๐บ๐บ refer to open sets and the
subscript is ๐›ฟ๐›ฟ intersection.
The following properties of Borel sets are clear.
1. If ๐’œ๐’œ1 , ๐’œ๐’œ2 , ๐’œ๐’œ3 , ๐’œ๐’œ4 , ๐’œ๐’œ5 , โ€ฆ โŠ‚ โ„ฌ are open, then โ‹‚โˆž
๐‘–๐‘–=1 ๐’œ๐’œ๐‘–๐‘– is a Borel set;
2. All closed sets are Borel.
In the above graph โ„ฌ is contained in a finite collection of ๐’œ๐’œ๐‘–๐‘– .(adopted Tai-Danae Bradley, 2015)
1
If ๐‘Ž๐‘Ž is a real number, {๐‘Ž๐‘Ž} can be written as the countable intersection {๐‘Ž๐‘Ž} = โ‹‚โˆž
๐‘›๐‘›=1[๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž + ๐‘›๐‘›๏ฟฝ, so
1
itโ€™s a Borel set. Further monotonicity tells us that ๐œ‡๐œ‡({๐‘Ž๐‘Ž}) = lim๐‘›๐‘›โŸถโˆž ๐œ‡๐œ‡ ๏ฟฝ[๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž + ๐‘›๐‘›๏ฟฝ๏ฟฝ =
1
lim๐‘›๐‘›โŸถโˆž ๐‘›๐‘› = 0 and so the singleton {a} has measure zero.
Example. ๐œŽ๐œŽ-algberas are closed under countable union, it follows that the interval (๐‘Ž๐‘Ž, ๐‘๐‘) โˆˆ โ„ฌ,
where (๐‘Ž๐‘Ž, ๐‘๐‘) โˆˆ โ„.
โˆž
1
1
(๐‘Ž๐‘Ž, ๐‘๐‘) = ๏ฟฝ ๏ฟฝ๐‘Ž๐‘Ž + , ๐‘๐‘ โˆ’ ๏ฟฝ
๐‘›๐‘›
๐‘›๐‘›
๐‘›๐‘›=1
The Borel ๐œŽ๐œŽ-algebra on โ„ called โ„ฌ(โ„) is generated by any of the following collection of
intervals
{(โˆ’โˆž, ๐‘๐‘): ๐‘๐‘ โˆˆ โ„}, {(โˆ’โˆž,๐‘๐‘]: ๐‘๐‘ โˆˆ โ„},
{(๐‘Ž๐‘Ž, โˆž): ๐‘Ž๐‘Ž โˆˆ โ„}, {[๐‘Ž๐‘Ž,โˆž): ๐‘Ž๐‘Ž โˆˆ โ„}
Proposition1: Let ๐‘‹๐‘‹ = โ„ and let us consider the following collections
24
๐’œ๐’œ1 = {(๐‘Ž๐‘Ž, ๐‘๐‘): ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘} , ๐’œ๐’œ2 = {(๐‘Ž๐‘Ž, ๐‘๐‘]: ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘}, ๐’œ๐’œ3 = {[๐‘Ž๐‘Ž, ๐‘๐‘): ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘}, ๐’œ๐’œ4 = {[๐‘Ž๐‘Ž, ๐‘๐‘]: ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘}
Then โ„ฌ(โ„) = ๐œŽ๐œŽ(๐’œ๐’œ1 ) = {(๐‘Ž๐‘Ž, ๐‘๐‘): ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘} and โ„ฌ(โ„) = ๐œŽ๐œŽ(๐’œ๐’œ2 ) = {(๐‘Ž๐‘Ž, ๐‘๐‘]: ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘} and so on.
Proposition2: Let ๐‘›๐‘› โˆˆ โ„• and ๐‘‹๐‘‹ = โ„๐‘›๐‘› and consider ๐’œ๐’œ = {(๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ] × โ€ฆ (๐‘Ž๐‘Ž๐‘›๐‘› , ๐‘๐‘๐‘›๐‘› ]: ๐‘Ž๐‘Ž๐‘–๐‘– โ‰ค
๐‘๐‘๐‘–๐‘– , ๐‘–๐‘– = 1, โ€ฆ , ๐‘›๐‘›}
then โ„ฌ(โ„๐‘›๐‘› ) = ๐œŽ๐œŽ(๐’œ๐’œ).
The Borel sets of โ„๐‘›๐‘› is defined by replacing intervals with rectangles as
[๐‘ฅ๐‘ฅ = (๐‘ฅ๐‘ฅ1 , โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘› ): ๐‘Ž๐‘Ž๐‘–๐‘– โ‰ค ๐‘ฅ๐‘ฅ๐‘–๐‘– โ‰ค ๐‘๐‘๐‘–๐‘– , ๐‘–๐‘– = 1, โ€ฆ ๐‘˜๐‘˜]
and sometimes called hyperrectangles in the definition of ๐œŽ๐œŽ(๐’œ๐’œ). (RJS 2012).
3.1 Complicated Borel Sets (Cantor set)
1 2
Definition. If we take the interval [0,1] as a Borel set, and we remove the open interval ๏ฟฝ3 , 3๏ฟฝ,
1
2
then we have ๏ฟฝ0, 3๏ฟฝ โ‹ƒ ๏ฟฝ3 , 1๏ฟฝ and continue this way by removing middle third and taking the
intersection of countably many Borel sets, we end with a Borel set that called Cantor set (H. L.
Royden and P.M. Fitzpatrick, 2010)
To construct the Cantor set of the interval ฮฉ = [0,1], the subset we remove is the disjoint union
1 2
๐ธ๐ธ1 = ๏ฟฝ , ๏ฟฝ
3 3
๐ธ๐ธ3 = ๏ฟฝ
1 2
7 8
๐ธ๐ธ2 = ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ
9 9
9 9
1 2
7 8
19 20
25 26
, ๏ฟฝ๏ฟฝ๏ฟฝ , ๏ฟฝ๏ฟฝ๏ฟฝ , ๏ฟฝ๏ฟฝ๏ฟฝ , ๏ฟฝ
27 27
27 27
27 27
27 27
1 2
7 8
19 20
25 26
55 56
61 62
73 74
79 80
๐ธ๐ธ4 = ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ ๏ฟฝ , ๏ฟฝ
81 81
81 81
81 81
81 81
81 81
81 81
81 81
81 81
๐‘›๐‘›
โ‹ฎ
โˆž
1
1 1
1
1
1
1
1 2 4
2๐‘›๐‘›โˆ’1
lim ๐œ‡๐œ‡ ๏ฟฝ๏ฟฝ ๐ธ๐ธ๐‘›๐‘› ๏ฟฝ = = ๏ฟฝ + ๏ฟฝ + ๏ฟฝ +
+
+ ๏ฟฝโ€ฆ = + +
โ€ฆ = ๏ฟฝ ๐‘›๐‘› = 1
๐‘›๐‘›โ†’โˆž
3
3
9 9
27 27 27 27
3 9 27
๐‘–๐‘–=1
The total length removed is geometric progression
๐‘›๐‘›=1
25
โˆž
โˆž
2๐‘›๐‘›โˆ’1
2๐‘›๐‘›
1 2 4
1
1
๏ฟฝ ๐‘›๐‘› = 1 ๐‘œ๐‘œ๐‘œ๐‘œ ๏ฟฝ ๐‘›๐‘›+1 = + + โ€ฆ = ๏ฟฝ
๏ฟฝ=1
3
3
3 9 27
3 1โˆ’2
๐‘›๐‘›=1
๐‘›๐‘›=0
3
The subset we remove from [0, 1] which is of measure 1, is the disjoint union โ‹ƒโˆž
1 ๐ธ๐ธ๐‘›๐‘› .
Figure 10 Borel set (adopted from H. L. Royden and P.M. Fitzpatrick,2010)
Figure 11 Borel sets, ๐ธ๐ธ is a collection of subsets of ฮฉ . The minimal field containing ๐ธ๐ธ, denoted
โ„ฑ(๐ธ๐ธ) , is the smallest field containing ๐ธ๐ธ. (source Albert Tarantola, 2007).
3.2 Borel ๐ˆ๐ˆ-algebra in Topology
Defintion: Let (๐‘‹๐‘‹, ๐’ฏ๐’ฏ) be a topological space. The ๐œŽ๐œŽ-algebra โ„ฌ(๐‘‹๐‘‹) = โ„ฌ(๐‘‹๐‘‹, ๐’ฏ๐’ฏ) = ๐œŽ๐œŽ(๐’ฏ๐’ฏ)
that is generated by the open sets is called the Borel ๐œŽ๐œŽ-algebra on ๐‘‹๐‘‹. The element ๐’œ๐’œ โˆˆ โ„ฌ(๐‘‹๐‘‹, ๐’ฏ๐’ฏ)
are called Borel measurable sets. (Paolo Dai Pra, cited 2016).
Borel Function. Let ๐‘‹๐‘‹1 , ๐’ฏ๐’ฏ1 and ๐‘‹๐‘‹2 , ๐’ฏ๐’ฏ2 be two topological spaces, a function ๐‘“๐‘“: ๐‘‹๐‘‹1 โ†’ ๐‘‹๐‘‹2 is said
to be Borel function iff for any open set ๐‘ˆ๐‘ˆ โŠ‚ ๐’ฏ๐’ฏ its preimage ๐‘“๐‘“ โˆ’1 (๐‘ˆ๐‘ˆ) โŠ‚ ๐‘‹๐‘‹ is a Borel set.
Borel Measure. If ๐œ‡๐œ‡ measure is defined on Borel ๐œŽ๐œŽ-algebra of all open sets in โ„๐‘›๐‘› , then ๐œ‡๐œ‡ is
called Borel measure.
26
3.3 Borel Set of Probability Space
Consider the following probability space ([0,1], โ„ฌ([0,1]), ๐œ‡๐œ‡ ), the sample space is the real
interval [0,1]. A measure is a function โ„™: โ„ฑ โ†’ [0,1] which assigns a nonnegative extended real
number โ„™(๐ธ๐ธ) to every subset ๐ธ๐ธ in โ„ฑ, which means we extended the probability measure โ„™ from
๐ธ๐ธ to the entire ๐œŽ๐œŽ-field โ„ฑ, that is ๐œŽ๐œŽ(๐ธ๐ธ) = โ„ฌ
โ„ฑ consist of the empty set and all sets that are finite unions of intervals of the form (a,b]. In more
detail, if a set ๐ธ๐ธ โˆˆ โ„ฑ is nonempty, it is of the form
๐ธ๐ธ = (๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] โˆช โ€ฆ โˆช (๐‘Ž๐‘Ž๐‘›๐‘› , ๐‘๐‘๐‘›๐‘› ],
Then
๐‘ค๐‘คโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ 0 โ‰ค ๐‘Ž๐‘Ž1 < ๐‘๐‘1 โ‰ค ๐‘Ž๐‘Ž2 < ๐‘๐‘2 โ‰ค โ‹ฏ โ‰ค ๐‘Ž๐‘Ž๐‘›๐‘› < ๐‘๐‘๐‘›๐‘› โ‰ค 1, ๐‘›๐‘› โˆˆ โ„•
๐‘›๐‘›
โ„™ ๏ฟฝ๏ฟฝ|๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– |๏ฟฝ
๐‘–๐‘–=1
Example. Consider the Borel ๐œŽ๐œŽ-algebra on [0,1], denoted by โ„ฌ [0,1]. This is the minimal ๐œŽ๐œŽ-
algebra generated by the elementary event {[0,๐‘๐‘), 0 โ‰ค ๐‘๐‘ โ‰ค 1}. This collection contain things
like:
1 2
1
2
2
1 2
๏ฟฝ , ๏ฟฝ , ๏ฟฝ0, ๏ฟฝ ๏ฟฝ ๏ฟฝ , 1๏ฟฝ , ๏ฟฝ , 1๏ฟฝ , ๏ฟฝ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ๏ฟฝ
2 3
2
3
3
2 3
4. Measurable Space in Probability
Given two measurable spaces (ฮฉ1 ,โ„ฑ1) and (ฮฉ2 ,โ„ฑ2 ), a mapping or a transformation from โ„™: ๐›บ๐›บ1 โ†’
๐›บ๐›บ2 i.e. a function ๐œ”๐œ”2 = โ„™(๐œ”๐œ”1 ) that assigns for each point ๐œ”๐œ”1 โˆˆ ๐›บ๐›บ1 a point ๐œ”๐œ”2 = โ„™(๐œ”๐œ”1 ) โˆˆ ๐›บ๐›บ2 is
said to be measurable if for every measurable set ๐ธ๐ธ โˆˆ โ„ฑ2 , there is an inverse image
โ„™โˆ’1 (๐ธ๐ธ) = {๐œ”๐œ”1 : โ„™(๐œ”๐œ”1 ) โˆˆ ๐ธ๐ธ} โˆˆ โ„ฑ1.
27
The function ๐‘“๐‘“: ฮฉ โ†’ โ„ defined on (ฮฉ, โ„ฑ, โ„) is called โ„ฑ-measurable if
๐‘“๐‘“ โˆ’1 (๐ธ๐ธ) = {๐œ”๐œ”: ๐‘“๐‘“(๐œ”๐œ”1 ) โˆˆ ๐ธ๐ธ} โˆˆ โ„ฑ for all ๐ธ๐ธ โˆˆ โ„ฌ(โ„). i.e., the inverse ๐‘“๐‘“ โˆ’1 maps all of the Borel sets
๐ธ๐ธ โŠ‚ โ„ to โ„ฑ. The function in this context is a random variable.
Figure 12 Two measurable spaces
5. Random Variable (R.V)
Definition. A random variable is numerical function of the outcome of random experiment, can
be represented as ๐‘…๐‘…: ๐œ”๐œ” โ†’ R(๐œ”๐œ”).
Knowing that the random variables by definition are measurable functions and can be limited to
a subset of measurable functions through the measurable mapping [๐‘…๐‘…: ๐œ”๐œ” โ†’ R(๐œ”๐œ”)] โˆˆ โ„ฑ.
The random variable is a simple random variable if it has finite range (assumes only finitely
many values) and if [๐‘…๐‘…: ๐œ”๐œ” โ†’ R(๐œ”๐œ”) = โ„] โˆˆ โ„ฑ for each ๐‘…๐‘…. (adopted from Patrick Billingsley,
1995).
28
The function or the transformation R, has the sample space (domain) of the random experiment
and the range is the real number line, where ๐œ”๐œ”1 , ๐œ”๐œ”2 , ๐œ”๐œ”3 subset ฮฉ and the function R assigns a
real number R(๐œ”๐œ”1 ), R(๐œ”๐œ”2 ) and R(๐œ”๐œ”3 ).
Figure 13 The transformation of some sample points ๐œ”๐œ”1 , ๐œ”๐œ”2 , ๐œ”๐œ”3 and real line segment [๐‘Ž๐‘Ž1 , ๐‘Ž๐‘Ž2 ] of
event ๐ธ๐ธ on the real number line. (adopted from:Prateek Omer, 2013).
If the Outcomes are grouped into sets of outcomes called event, then ๐ธ๐ธ is a ๐œŽ๐œŽ-algebra on ฮฉ
generated by R.
5.1 Measurable Function is a Random Variable
Let R be a function from a measurable space to the Borel line, R is measurable if the inverse
image of every measurable space set in the Borel line is a measurable set in the measurable
space.
Random Variable (Measurable Function)
โ‰ก Rโˆ’1 that map(set in the Borel line) into the measurable space โ„ฑ
โ‰ก Rโˆ’1 (๐ธ๐ธ): โ„ฌ โ†’ โ„ฑ
29
In the probability the measurable functions are random variables. They are functions whose
variable represent outcomes ๐œ”๐œ” of an experiment that can happen to be random.(Sunny Auyang,
1995)
Measurable functions. (source: Florian Herzong 2013).
30
PART THREE: MEASURE , PROBABILITY THEORY AND DISTRIBUTION
FUNCTION
1. Lebesgueโ€™s Idea of Integral (subdivide the range)
Lebesgue began with what he stated a problem of integration, which is considered the modern
method of integration that has a relation with interval, the basic measure idea.
Lebesgueโ€™s idea is to assign to each bounded function ๐‘“๐‘“ defined on a bounded interval ๐•€๐•€ = [๐‘Ž๐‘Ž, ๐‘๐‘]
๐‘๐‘
๐‘๐‘
๐‘œ๐‘œ
a number, called it integral and denoted by โˆซ๐‘Ž๐‘Ž ๐‘“๐‘“(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘‘๐‘‘ = โˆซ๐‘Ž๐‘Ž ๐‘“๐‘“ = โˆซ๐•€๐•€ ๐‘“๐‘“.(Charles Swartz. 1994)
Example. (adopted from Bruckner & Thomson, 2008). Suppose that we have coins: 5 dimes 2
nickels and 4 pennies, where a dime is worth 10 cents, a nickel is worth 5 cents, a penny is worth
1 cent.
First: we take an amount have computation (1) as:
10+10+10+10+10+5+5+1+1+1+1=64
The sum of the partition between the interval [0,11] gives the area by Riemann integration as:
11
โˆซ0 ๐‘“๐‘“(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘‘๐‘‘ = 64
Second: we take an amount have computation (2) as:
5(10)+2(5)+4(1)=64
31
Figure 14. Example about Lebesgue integral, (source: Bruckner & Thomson, 2008)
Looking to the computation (2) (the Lebesgue idea); let |๐•๐•| be the length of interval , if ๐’œ๐’œ is a
finite union of pairwise-disjoint intervals, ๐’œ๐’œ = |๐•€๐•€1 | โˆช โ€ฆ |๐•€๐•€๐‘›๐‘› |, and the measure of ๐’œ๐’œ is ๐œ‡๐œ‡(๐’œ๐’œ) =
|๐•€๐•€1 | + โ‹ฏ + |๐•€๐•€๐‘›๐‘› |.
Going back to the last example; let ๐’œ๐’œ1 = {๐‘ฅ๐‘ฅ: ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 1}, ๐’œ๐’œ5 = {๐‘ฅ๐‘ฅ: ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 5}, and ๐’œ๐’œ10 =
{๐‘ฅ๐‘ฅ: ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 10}, then ๐œ‡๐œ‡(๐’œ๐’œ1 ) = 4, ๐œ‡๐œ‡(๐’œ๐’œ5 ) = 2 and ๐œ‡๐œ‡(๐’œ๐’œ10 ) = 5
The sum (1)๐œ‡๐œ‡(๐’œ๐’œ1 ) + (5)๐œ‡๐œ‡(๐’œ๐’œ5 ) + (10)๐œ‡๐œ‡(๐’œ๐’œ10 ), given the number 1,5, and 10, is the value of
the function ๐‘“๐‘“ and ๐œ‡๐œ‡(๐’œ๐’œ๐‘–๐‘– ) is how often the value ๐‘–๐‘– is taken on.
Assume that the function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) has range:
๐‘š๐‘š โ‰ค ๐‘“๐‘“(๐‘ฅ๐‘ฅ) < ๐‘€๐‘€ ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘ฅ๐‘ฅ โˆˆ [๐‘Ž๐‘Ž, ๐‘๐‘].
Instead of partition the interval [๐‘Ž๐‘Ž, ๐‘๐‘] we partition [๐‘š๐‘š, ๐‘€๐‘€] and have
For ๐‘–๐‘– = 1, 2, โ€ฆ , ๐‘›๐‘›,
๐‘š๐‘š = ๐‘ฆ๐‘ฆ0 < ๐‘ฆ๐‘ฆ1 < โ‹ฏ < ๐‘ฆ๐‘ฆ๐‘›๐‘› = ๐‘€๐‘€.
๐’œ๐’œ๐‘–๐‘– = {๐‘ฅ๐‘ฅ: ๐‘ฆ๐‘ฆ๐‘–๐‘–โˆ’1 โ‰ค ๐‘“๐‘“(๐‘ฅ๐‘ฅ) < ๐‘ฆ๐‘ฆ๐‘–๐‘– }, thus the partition of the range induces a partition of the
interval[๐‘Ž๐‘Ž, ๐‘๐‘]:
[๐‘Ž๐‘Ž, ๐‘๐‘] = ๐’œ๐’œ1 โˆช ๐’œ๐’œ2 โˆช โ€ฆ โˆช ๐’œ๐’œ๐‘›๐‘›
32
Where the sets {๐’œ๐’œ๐‘–๐‘– } are clearly pairwise disjoint, and we can form the sums โˆ‘ ๐‘ฆ๐‘ฆ๐‘–๐‘– ๐œ‡๐œ‡(๐’œ๐’œ๐‘–๐‘– ) above
and โˆ‘ ๐‘ฆ๐‘ฆ๐‘–๐‘–โˆ’1 ๐œ‡๐œ‡(๐’œ๐’œ๐‘–๐‘– ) below. These two sums approximate the integration, the approximation of the
integration reaches a limit as the norm of the partition reaches zero (squeeze theorem). The idea
of partitioning the range is a Lebesgueโ€™s contribution.
2. Additive Set Function and Countable Additivity
Set function
A set function ๐œ‡๐œ‡: โ„ณ โ†’ [0, โˆž], is a function whose domain is a class of sets โ„ณ. An extended
real value set function is a measure ๐œ‡๐œ‡ if its domain is a semi ring.
Usually the input of the set function is a set and the output is a number. Often the input is a set of
real numbers, a set of points in Euclidean space, or a set of points in some measure space.
The Lebesgue measure is a set function that assigns a non-negative real number to each set of
real numbers. Let ๐œ‡๐œ‡ be a set function, we have the following:
1.
๐œ‡๐œ‡ is increasing if, for all ๐ด๐ด, ๐ต๐ต โˆˆ ๐’œ๐’œ with ๐ด๐ด โІ ๐ต๐ต,
๐œ‡๐œ‡(๐ด๐ด) โ‰ค ๐œ‡๐œ‡(๐ต๐ต)
2. ๐œ‡๐œ‡ is additive if, for all disjoint sets ๐ด๐ด, ๐ต๐ต โˆˆ ๐’œ๐’œ with ๐ด๐ด โˆช ๐ต๐ต โˆˆ ๐’œ๐’œ,
๐œ‡๐œ‡(๐ด๐ด โˆช ๐ต๐ต) = ๐œ‡๐œ‡(๐ด๐ด) + ๐œ‡๐œ‡(๐ต๐ต)
3. ๐œ‡๐œ‡ is (๐ˆ๐ˆ- additive) countable additive if, ๐ด๐ด โˆˆ ๐’œ๐’œ and ๐ด๐ด = โ‹ƒ๐‘๐‘
๐‘›๐‘›=1 ๐ด๐ด๐‘›๐‘› where ๐ด๐ด1 , โ€ฆ ๐ด๐ด๐‘›๐‘› โˆˆ ๐’œ๐’œ
4.
๐‘๐‘
are pairwise disjoint sets (sequence of disjoint sets), then ๐œ‡๐œ‡(โ‹ƒ๐‘๐‘
๐‘›๐‘›=1 ๐ด๐ด๐‘›๐‘› ) = โˆ‘๐‘›๐‘›=1 ๐œ‡๐œ‡(๐ด๐ด๐‘›๐‘› ).
๐œ‡๐œ‡ is countable subadditive if, for all sequences (๐ด๐ด๐‘›๐‘› : ๐‘›๐‘› โˆˆ โ„•) in ๐’œ๐’œ then ๐œ‡๐œ‡(โ‹ƒ๐‘›๐‘› ๐ด๐ด๐‘›๐‘› ) โ‰ค
โˆ‘๐‘›๐‘› ๐œ‡๐œ‡(๐ด๐ด๐‘›๐‘› ). (J.R.Norris, cited 2016).
33
Example. The length is a ๐œŽ๐œŽ-additive measure on the family of all bounded intervals inโ„.
โˆž
|๐•€๐•€| = ๏ฟฝ|๐•€๐•€๐‘˜๐‘˜ |
๐‘˜๐‘˜=1
Example. Probability is an additive function. If the event ๐ธ๐ธ is a disjoint union of a finite
sequence of event ๐ธ๐ธ1 , โ€ฆ , ๐ธ๐ธ๐‘›๐‘› , then
โˆž
โ„™(๐ธ๐ธ) = ๏ฟฝ โ„™(๐ธ๐ธ๐‘˜๐‘˜ )
๐‘˜๐‘˜=1
3. Construction of Measure on โ„, โ„๐Ÿ๐Ÿ and โ„๐Ÿ‘๐Ÿ‘
Definition. An interval ๐•€๐•€ โŠ‚ โ„. Its length is |๐•€๐•€| = ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž
The useful property of the length is additivity. If ๐•€๐•€ is a disjoint union of a finite family {๐•€๐•€๐‘›๐‘› }๐‘›๐‘›๐‘˜๐‘˜=1
of intervals, then |๐•€๐•€| = โˆ‘๐‘›๐‘›๐‘˜๐‘˜=1|๐•€๐•€๐‘›๐‘› | . If there are no gap between ๐•€๐•€๐‘˜๐‘˜ then, each intervals ๐•€๐•€๐‘˜๐‘˜ has
necessarily the end points ๐‘Ž๐‘Ž0 , ๐‘Ž๐‘Ž๐‘๐‘ , we conclude that |๐•€๐•€| = ๐‘Ž๐‘Ž๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž0 = โˆ‘๐‘๐‘โˆ’1
๐‘–๐‘–=0 (๐‘Ž๐‘Ž๐‘–๐‘–+1 โˆ’ ๐‘Ž๐‘Ž๐‘–๐‘– ) =
โˆ‘๐‘›๐‘›๐‘˜๐‘˜=1|๐•€๐•€๐‘›๐‘› |
Definition. A rectangle ๐ด๐ด โŠ‚ โ„2 is a set of the form ๐ด๐ด = ๐•€๐•€1 × ๐•€๐•€2 = {(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ โ„2 : ๐‘ฅ๐‘ฅ โˆˆ ๐•€๐•€1 , ๐‘ฆ๐‘ฆ โˆˆ ๐•€๐•€2 }
where ๐•€๐•€1 , ๐•€๐•€2 are intervals. The area of a rectangle is Area(๐ด๐ด) = |๐•€๐•€1 | × |๐•€๐•€2 |. (Alexander Grigoran,
2007).
We claim that the area is also additive: if the rectangle is a disjoint union of a finite family of
rectangles, that is ๐ด๐ด = โ‹ƒ๐‘˜๐‘˜ ๐ด๐ด๐‘˜๐‘˜ , then ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž(๐ด๐ด) = โˆ‘๐‘›๐‘›๐‘˜๐‘˜=1 area(๐ด๐ด๐‘˜๐‘˜ ).
Consider a particular case, when the rectangles ๐ด๐ด1 , โ€ฆ ๐ด๐ด๐‘˜๐‘˜ form a regular tiling of ๐ด๐ด, that is
๐ด๐ด = ๐•€๐•€1 × ๐•€๐•€2 when ๐•€๐•€1 = โ‹ƒ๐‘–๐‘– ๐•€๐•€1 and ๐•€๐•€2 = โ‹ƒ๐‘—๐‘— ๐•€๐•€2 and assume that all rectangles ๐ด๐ด๐‘˜๐‘˜ have the form
34
๐•€๐•€1๐‘–๐‘– × ๐•€๐•€2๐‘—๐‘— . Then ๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด(๐ด๐ด) = โˆ‘๐‘–๐‘–๏ฟฝ๐•€๐•€1๐‘–๐‘– ๏ฟฝ โˆ‘๐‘—๐‘— ๏ฟฝ๐•€๐•€2๐‘—๐‘— ๏ฟฝ = โˆ‘๐‘–๐‘–๐‘–๐‘–๏ฟฝ๐•€๐•€1๐‘–๐‘– ๏ฟฝ ๏ฟฝ๐•€๐•€2๐‘—๐‘— ๏ฟฝ = โˆ‘๐‘˜๐‘˜ ๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด(๐ด๐ด๐‘˜๐‘˜ ) . (Alexander
Grigoran, 2007).
Definition. Volume of domain in โ„3 . The construction is similar to the area.
Consider all boxes in โ„3 , that is, the domain of the form ๐ด๐ด = ๐•€๐•€1 × ๐•€๐•€2 × ๐•€๐•€3 where ๐•€๐•€1 , ๐•€๐•€2 , ๐•€๐•€3 are
intervals in โ„, and set
๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ๐‘ฃ(๐ด๐ด) = |๐•€๐•€1 |. |๐•€๐•€2 |. |๐•€๐•€3 |
Then the volume is also an additive function.
(source: Dr. Nikolai Chernov,1994)
4. Hyper Rectangles and Hyperplanes {๐‘ฏ๐‘ฏ๐’Š๐’Š }
An interval of the form [๐‘Ž๐‘Ž, ๐‘๐‘] โŠ‚ โ„3 has length ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž. This is consistent with the fact that a point
has length zero, because the point {๐‘Ž๐‘Ž} can be written as [๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž]. The additivity of length implies
that the intervals of the form [๐‘Ž๐‘Ž, ๐‘๐‘], (๐‘Ž๐‘Ž, ๐‘๐‘) ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž [๐‘Ž๐‘Ž, ๐‘๐‘) all have the same length ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž.
(Christopher Genovese, 2006).
To see why, notice that the interval [๐‘Ž๐‘Ž, ๐‘๐‘] can be written as a union pairwise disjoint intervals in
three ways:
[๐‘Ž๐‘Ž, ๐‘๐‘] = [๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž]โ‹ƒ(๐‘Ž๐‘Ž, ๐‘๐‘) โˆช [๐‘๐‘, ๐‘๐‘] = [๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž] โˆช (๐‘Ž๐‘Ž, ๐‘๐‘] = [๐‘Ž๐‘Ž, ๐‘๐‘) โˆช [๐‘๐‘, ๐‘๐‘]
35
Additivity tells us that for any such disjoint partition of [๐‘Ž๐‘Ž, ๐‘๐‘], the sum of the lengths of the
pieces must be ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž.
Since the boundaries [๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž] and [๐‘๐‘, ๐‘๐‘] have length 0 (they are zero dimensional sets), all four
types of intervals have the same length. This still holds if ๐‘Ž๐‘Ž or ๐‘๐‘ are infinite; (๐‘Ž๐‘Ž, โˆž), (โˆ’โˆž, ๐‘๐‘), and
(โˆ’โˆž, โˆž) all have length โˆž.
Similarly, the area of rectangle [๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × [๐‘Ž๐‘Ž2 , ๐‘๐‘2 ] is (๐‘๐‘1 โˆ’ ๐‘Ž๐‘Ž1 )(๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž2 ) and the volume of a
rectangular box [๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × [๐‘Ž๐‘Ž2 , ๐‘๐‘2 ] × [๐‘Ž๐‘Ž3 , ๐‘๐‘3 ] is (๐‘๐‘1 โˆ’ ๐‘Ž๐‘Ž1 )(๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž2 )(๐‘๐‘3 โˆ’ ๐‘Ž๐‘Ž3 ). These hold for
rectangles and rectangular box with any part of the boundary missing because the boundary is a
lower dimensional set. (Christopher Genovese, 2006).
Figure 15 Two dimensional rectangle of half open intervals (๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ], and 1 dimension
(๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] โˆฉ (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ] = (๐‘Ž๐‘Ž1 , ๐‘๐‘2 ]
In Euclidean spaces โ„๐‘›๐‘› , the set of the points (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) of โ„๐‘›๐‘› that fulfill a linear equation
๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ1 + ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ2 + โ‹ฏ + ๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐‘๐‘ , where ๐‘๐‘, ๐‘Ž๐‘Ž1 , ๐‘Ž๐‘Ž2 , โ€ฆ , ๐‘Ž๐‘Ž๐‘›๐‘›
are real numbers and, of these the
coeffiecents ๐‘Ž๐‘Ž1 , ๐‘Ž๐‘Ž2 , โ€ฆ , ๐‘Ž๐‘Ž๐‘›๐‘› do not all vanish together is called hyperplane ๐‘Ž๐‘Ž1 ๐‘ฅ๐‘ฅ1 + ๐‘Ž๐‘Ž2 ๐‘ฅ๐‘ฅ2 + โ‹ฏ +
๐‘Ž๐‘Ž๐‘›๐‘› ๐‘ฅ๐‘ฅ๐‘›๐‘› = ๐‘๐‘.
The space โ„ is a straight line and the space โ„2 in a plane. Accordingly, the sets in โ„ will often
be called linear, and those in โ„2 plane sets. In โ„ hyperplanes coincide with points, in โ„2 and โ„3
36
they are straight lines and planes respectively. If ๐‘๐‘1 โˆ’ ๐‘Ž๐‘Ž1 = ๐‘๐‘2 โˆ’ ๐‘๐‘2 = โ‹ฏ = ๐‘๐‘๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘› > 0, the
interval [๐‘Ž๐‘Ž1 , ๐‘๐‘1 ; ๐‘Ž๐‘Ž2 , ๐‘๐‘2 ; โ€ฆ ; ๐‘Ž๐‘Ž๐‘›๐‘› , ๐‘๐‘๐‘›๐‘› ] is termed cube (square in โ„2 ). (Stanisล‚aw Saks, cited 2016 )
5. Lebesgue Measures on โ„ and โ„๐’๐’
Theorem. There exists a unique Borel measure ๐œ‡๐œ‡ on โ„ such that, for all ๐‘Ž๐‘Ž, ๐‘๐‘ โˆˆ โ„ with ๐‘Ž๐‘Ž < ๐‘๐‘, we
have ๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž, ๐‘๐‘]๏ฟฝ = ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž. The measure ๐œ‡๐œ‡ is called Lebesgue measure on โ„.
For Lebesgue measure on โ„๐‘›๐‘› , we define the Cartesian product of two closed intervals [๐‘Ž๐‘Ž, ๐‘๐‘]
and [๐‘๐‘, ๐‘‘๐‘‘] in โ„ as the rectangle in โ„2 bounded by the lines ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฅ๐‘ฅ = ๐‘๐‘, ๐‘ฆ๐‘ฆ = ๐‘๐‘ and ๐‘ฆ๐‘ฆ = ๐‘‘๐‘‘.
(adopted from: Prof. Quibb,2013)
Its volume is the product of the lengths of the respective intervals; in this case, it is (๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž)(๐‘‘๐‘‘ โˆ’
๐‘๐‘), in equation form, with the Cartesian product, ๐œ‡๐œ‡([๐‘Ž๐‘Ž, ๐‘๐‘] × [๐‘๐‘, ๐‘‘๐‘‘]) = (๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž)(๐‘‘๐‘‘ โˆ’ ๐‘๐‘).
This approach is extended to three dimensions by considering the Cartesian product of three
closed intervals, which takes the form of a rectangular prism, the volume of this set being the
length times the width times the height. (Prof. Quibb,2013).
Then Lebesgue measure in โ„๐‘›๐‘› is defined as
๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž, ๐‘๐‘]๏ฟฝ = (๐‘๐‘1 โˆ’ ๐‘Ž๐‘Ž1 ). (๐‘๐‘2 โˆ’ ๐‘Ž๐‘Ž2 ) โ€ฆ (๐‘๐‘๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘› ),
Which is the product of the sides
37
๐‘›๐‘›
๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž, ๐‘๐‘]๏ฟฝ = ๏ฟฝ ๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž๐‘˜๐‘˜ , ๐‘๐‘๐‘˜๐‘˜ ]๏ฟฝ,
Lebesgue measure in โ„๐‘›๐‘› can also be written as
Where ๐•€๐•€ = [๐‘Ž๐‘Ž1 ,๐‘๐‘1 ) × โ€ฆ × [๐‘Ž๐‘Ž๐‘›๐‘› ,๐‘๐‘๐‘›๐‘› ).
๐‘˜๐‘˜=1
๐‘›๐‘›
๐œ‡๐œ‡(|๐•€๐•€|) = ๏ฟฝ(๐‘๐‘๐‘–๐‘– โˆ’ ๐‘Ž๐‘Ž๐‘–๐‘– )
๐‘–๐‘–=1
Example. (Prof. Quibb,2013)
Let the single square ๐ฝ๐ฝ11 in 2-dimensions [0,1] × [0,1] contain set ๐ด๐ด, having side length 1, the
volume is 1.
(The interval, is an uncountable set, but it can be shown by a succession of approximations by
squares in โ„2 that this set has Lebesgue Measure 0)
1
๐œ‡๐œ‡(๐ฝ๐ฝ1 ) = ๐œ‡๐œ‡ ๏ฟฝ๏ฟฝ ๐ฝ๐ฝ1๐‘–๐‘– ๏ฟฝ = 1
๐‘–๐‘–=1
1 2
1
1 2
1
The next case is two squares ๐ฝ๐ฝ21 and ๐ฝ๐ฝ22 , each side length 2, the total volume ๏ฟฝ2๏ฟฝ + ๏ฟฝ2๏ฟฝ = 2
2
๐œ‡๐œ‡(๐ฝ๐ฝ2 ) = ๐œ‡๐œ‡ ๏ฟฝ๏ฟฝ ๐ฝ๐ฝ2๐‘–๐‘– ๏ฟฝ =
๐‘–๐‘–=1
1
2
38
6. Basic Definitions and Properties
a) An algebra
Theorem. A class of sets ๐ธ๐ธ โŠ‚ ๐’ซ๐’ซ(๐›บ๐›บ) is an algebra if and only if the following three properties
hold:
i.
ii.
iii.
ฮฉ โˆˆ ๐ธ๐ธ
๐ธ๐ธ is closed under complements.
๐ธ๐ธ is closed under intersections.
b) A ring ๐•ฝ๐•ฝ
A nonempty collection of sets โ„œ is a ring if
i.
ii.
iii.
Empty set โˆ… โˆˆ โ„œ,
if ๐ด๐ด, ๐ต๐ต โˆˆ โ„œ โ‡’ ๐ด๐ด โˆช ๐ต๐ต, and ๐ด๐ด\๐ต๐ต โˆˆ โ„œ,
it follows ๐ด๐ด โˆฉ ๐ต๐ต โˆˆ โ„œ because ๐ด๐ด โˆฉ ๐ต๐ต = ๐ต๐ต\(๐ต๐ต\๐ด๐ด) is also in โ„œ.
The ring is closed under the formation of symmetric difference and intersection.
c) A semiring ๐•พ๐•พ
A semiring is a non empty class ๐”–๐”– of sets such that
i.
ii.
If ๐ด๐ด โˆˆ ๐”–๐”– and ๐ต๐ต โˆˆ ๐”–๐”–, then ๐ด๐ด โˆฉ ๐ต๐ต โˆˆ ๐”–๐”– and
If ๐ด๐ด, ๐ต๐ต โˆˆ ๐”–๐”– โ‡’ ๐ด๐ด\๐ต๐ต โˆˆ ๐”–๐”–
For set ๐‘‹๐‘‹ = โ„ the set of ๐”–๐”– = {(๐‘Ž๐‘Ž, ๐‘๐‘]: โˆž < ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘ < โˆž}
d) ๐ˆ๐ˆ-ring (sigma ring)
The ๐œŽ๐œŽ-ring is a nonempty class ๐‘†๐‘† of sets such that,
i.
ii.
If ๐ด๐ด, ๐ต๐ต โˆˆ ๐‘†๐‘† then ๐ด๐ด โˆ’ ๐ต๐ต โˆˆ ๐‘†๐‘†.
If ๐’œ๐’œ๐‘–๐‘– โˆˆ ๐‘†๐‘†, ๐‘–๐‘– = 1,2, โ€ฆ , then โ‹ƒโˆž
๐‘–๐‘– ๐’œ๐’œ๐‘–๐‘– โˆˆ ๐‘†๐‘†. (Ross, Stamatis and Vladas, 2014)
39
Remarks:
Symmetric difference of two sets ๐ด๐ด and ๐ต๐ต is denoted by ๐ด๐ดโˆ†๐ต๐ต and defined by
๐ด๐ดโˆ†๐ต๐ต = (๐ด๐ด โˆ’ ๐ต๐ต) โˆช (๐ต๐ต โˆ’ ๐ด๐ด) = (๐ด๐ด โˆฉ ๐ต๐ต ๐‘๐‘ ) โˆช (๐ด๐ด๐‘๐‘ โˆฉ ๐ต๐ต)
Symmetric set difference. (source: Steve Cheng ,2008)
6.1 Measure Extension from Ring To ๐ˆ๐ˆ-ring
The construction procedure of obtaining the ๐œŽ๐œŽ-ring โˆ‘(โ„œ)from ring โ„œ is as follows: denote by
โ„œ๐œŽ๐œŽ the family of all countable unions of elements from โ„œ. Clearly, โ„œ โŠ‚ โ„œ๐œŽ๐œŽ โŠ‚ โˆ‘(โ„œ). Then
denote by โ„œ๐›ฟ๐›ฟ๐›ฟ๐›ฟ the family of all countable intersections from โ„œ๐œŽ๐œŽ so that
โ„œ โŠ‚ โ„œ๐œŽ๐œŽ โŠ‚ โ„œ๐›ฟ๐›ฟ๐›ฟ๐›ฟ โŠ‚ ๏ฟฝ(โ„œ)
Define similarly โ„œ๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ , โ„œ๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ๐œŽ , etc. we obtain an increasing sequence of families of sets all being
subfamilies of โˆ‘(โ„œ). In order to exhaust โˆ‘(โ„œ) by this procedure, one has to apply it
uncountable many times. (adopted from: Alexander Grigoryan, 2007)
7. The Outer Measure
Definition. Given a measure space (๐‘‹๐‘‹, โ„ณ, ๐œ‡๐œ‡) for any set ๐’œ๐’œ subset of ๐‘‹๐‘‹, the outer measure ๐œ‡๐œ‡ โˆ— is a
๐œŽ๐œŽ-subadditive function on ๐’ซ๐’ซ(๐‘‹๐‘‹).
The purpose of constructing an outer measure on all subsets of X is to pick out a class of subsets
(to be called measurable) in such a way as to satisfy the countable additivity property.
40
a) The idea
To extend the length function into bigger subsets of power set of the real line and that what we
call the outer measure, represented as a function ๐œ‡๐œ‡ โˆ— โˆถ ๐’ซ๐’ซ(๐‘‹๐‘‹) โ†’ [0, โˆž], which basically describe
the size.
b) The Technique
We know that ๐œ‡๐œ‡: |๐’œ๐’œ๐‘–๐‘– | โ†’ [0, โˆž] describes the size of the interval of a subset of real numbers.
Therefore we take a set of real numbers and call it โ„ณ and cover the set โ„ณ with intervals of
subset ๐’œ๐’œ (we could make two intervals, of ๐’œ๐’œ) and find an arbitrary set containing at most
countably infinite numbers of intervals such that โ„ณ is contained within the union of the
intervals, โ„ณ โІ โ‹ƒโˆž
๐‘–๐‘–=1 ๐’œ๐’œ๐‘–๐‘– , see the figure below.
Figure 16 Lebesgue outer measure. (adopted from: Ben Garside cited, 2015)
As the term outer measure is defined on the finite (infinite) sequence of the intervals, we can
compute the sum โˆ‘โˆž
๐‘–๐‘–=1 ๐œ‡๐œ‡(๐’œ๐’œ๐‘–๐‘– ), in our case is ๐œ‡๐œ‡(๐’œ๐’œ1 ) + ๐œ‡๐œ‡(๐’œ๐’œ2 ), that have the length. The ๐œ‡๐œ‡ map
these intervals to the extended real number by this we get the size of set โ„ณ that is less than or
equal the sum:
โˆž
๐œ‡๐œ‡ โˆ— (โ„ณ) โ‰ค ๏ฟฝ ๐œ‡๐œ‡(๐’œ๐’œ๐‘–๐‘– )
๐‘–๐‘–=1
41
The ๐œ‡๐œ‡ โˆ— is an outer measure and this is why we should examine the biggest set โ„ณ of the union of
the subsets ๐’œ๐’œ on the real number line
๐œ‡๐œ‡
โˆ— (โ„ณ)
โˆž
โˆž
๐‘–๐‘–=1
๐‘–๐‘–=1
= inf ๏ฟฝ๏ฟฝ ๐œ‡๐œ‡(โ„ณ๐‘–๐‘– )| โˆ€ coverings ๐’œ๐’œ๐‘–๐‘– โˆˆ ๐’œ๐’œ such that โ„ณ โІ ๏ฟฝ ๐’œ๐’œ๐‘–๐‘– ๏ฟฝ
But the sum of the lengths of the intervals is larger than the measure of โ„ณ. Therefore, the outer
measure of โ„ณ should be smallest (infimum) of the set of all such lengths of the intervals that
cover โ„ณ. (adopted from Paul Loya, 2013)
Thus, to justify that, we say that any set on real numbers is bounded below, and the set always
has an infimum and hence, we can work this out with for all โ„ณ as a set, subset in the real line.
Figure 17 Set โ„ณ โІ โ„, left half open intervals covering โ„ณ.
In โ„2 , the cover of โ„ณ consists of rectangles. For example, a disk in โ„2 and the cover
represented by the union of the rectangles gives the lower approximation to ๐œ‡๐œ‡ โˆ— (โ„ณ) which is
better than the upper approximation.
(source: Paul Loya, 2013)
42
7.1 Premeasure
Definition. Let โ„ณ โŠ‚ ๐’ซ๐’ซ(๐‘‹๐‘‹) be a Boolean algebra, a premeasure on โ„ณ is a function ๐œ‡๐œ‡: โ„ณ โ†’
[0, +โˆž] on a Boolean algebra โ„ณ that can be extended to a measure ๐œ‡๐œ‡: โ„ฌ โ†’ [0, +โˆž] on a ๐œŽ๐œŽalgebra โ„ฌ โŠ‚ โ„ณ and satisfying:
-
-
โˆž
๐œ‡๐œ‡(โˆ…) = 0, if ๏ฟฝ๐’œ๐’œ๐‘—๐‘— ๏ฟฝ๐‘—๐‘—=1 is a sequence of disjoint sets in โ„ณ, and
โˆž
โˆž
If โ‹ƒโˆž
1 ๐’œ๐’œ๐‘—๐‘— โˆˆ โ„ณ, then ๐œ‡๐œ‡๏ฟฝโ‹ƒ๐‘—๐‘—=1 ๐’œ๐’œ๐‘—๐‘— ๏ฟฝ = โˆ‘๐‘—๐‘—=1 ๐œ‡๐œ‡๏ฟฝ๐’œ๐’œ๐‘—๐‘— ๏ฟฝ.
Therefore the collection โ„ณ โŠ‚ ๐’ซ๐’ซ(๐‘‹๐‘‹) of finite unions of half open intervals is Boolean algebra,
๐‘›๐‘›
and if ๐’œ๐’œ โŠ‚ โ„ณ is a disjoint union, ๐’œ๐’œ = โ‹ƒโˆž
๐‘—๐‘—=1(๐‘Ž๐‘Ž๐‘—๐‘— , ๐‘๐‘๐‘—๐‘— ] then the function ๐œ‡๐œ‡(๐’œ๐’œ) = โˆ‘๐‘—๐‘—=1 ๐‘๐‘๐‘—๐‘— โˆ’ ๐‘Ž๐‘Ž๐‘—๐‘— is a
premeasure on โ„ณ. Premeasure has a right additive property.
Finiteness and ๐œŽ๐œŽ-finiteness are defined same for premeasure in the same way as for measures.
Premeasure
Outer measure
Measure
Domain
Additivity condition
Boolean algebra โ„ณ
countably additive, when possible
๐œŽ๐œŽ-algebra containing ๐’œ๐’œ
countably additive
all of ๐’ซ๐’ซ(๐‘‹๐‘‹)
Monotone countably subadditive
Table 5 The relationship between premeasure, outer measure and measure.(source: U.F.,
MAA6616 Course Notes Fall 2012).
7.2 Extending the Measure by Carathedoryโ€™s Theorem
Definition. On the measure space (๐‘‹๐‘‹, โ„ณ, ๐œ‡๐œ‡), let ๐’œ๐’œ be a subsets of a sets X, and let โ„ณ = ๐œŽ๐œŽ(๐’œ๐’œ).
Suppose that ๐œ‡๐œ‡ is a mapping from ๐’œ๐’œ to [0, โˆž] that satisfies a countable additivity on ๐’œ๐’œ.
Then, ๐œ‡๐œ‡ can be extended uniquely to a measure on (X, โ„ณ). That is, there exists a unique measure
๐œ‡๐œ‡ โˆ— on (X, โ„ณ) such that ๐œ‡๐œ‡ โˆ— (๐•€๐•€) = ๐œ‡๐œ‡(๐•€๐•€) for all ๐•€๐•€ โˆˆ ๐’œ๐’œ .(adopted from.MIT - 2008)
43
a) The Idea
Taking (๐‘‹๐‘‹, โ„ณ, ๐œ‡๐œ‡), first we start with defined a set function ๐œ‡๐œ‡ on a small paving โ„ณ, then we use ๐œ‡๐œ‡
to define a set function on all subset of ๐‘‹๐‘‹. Finally, we apply Carathedoryโ€™s theorem in order to
obtain measure. (J. Hoffman-Jorgensen,1994).
b) The Technique
Let ๐‘‹๐‘‹ be a set, and let ๐œ‡๐œ‡ โˆ— be an extended real valued function defined on ๐’ซ๐’ซ(๐‘‹๐‘‹) such that;
1. ๐œ‡๐œ‡ โˆ— (Ø) = 0
2. If ๐’œ๐’œ, โ„ณ โˆˆ ๐’ซ๐’ซ(๐‘‹๐‘‹), ๐’œ๐’œ โŠ‚ โ„ณ, then ๐œ‡๐œ‡ โˆ— (๐’œ๐’œ) โ‰ค ๐œ‡๐œ‡ โˆ— (โ„ณ), this property called monotonicity.
3. ๐œ‡๐œ‡ โˆ— is countably subadditive, i.e whenever โ„ณ โˆˆ ๐’ซ๐’ซ(๐‘‹๐‘‹) and (๐’œ๐’œ๐‘›๐‘› )โˆž
๐‘›๐‘›=1 is a sequence in
โˆž
โˆ—
โˆ—
๐’ซ๐’ซ(๐‘‹๐‘‹) with โ„ณ โŠ‚ โ‹ƒโˆž
๐‘›๐‘›=1 ๐’œ๐’œ๐‘›๐‘› , it follows that ๐œ‡๐œ‡ (โ„ณ) โ‰ค โˆ‘๐‘›๐‘›=1 ๐œ‡๐œ‡ (๐’œ๐’œ๐‘›๐‘› ).
Remarks. ๐œ‡๐œ‡ โˆ— is automatically subadditive in the sense that โ„ณ, ๐’œ๐’œ1 , โ€ฆ , ๐’œ๐’œ๐‘›๐‘› โˆˆ ๐’ซ๐’ซ(๐‘‹๐‘‹) such that
โ„ณ โŠ‚ ๐’œ๐’œ1 , โ‹ƒ โ€ฆ โ‹ƒ๐’œ๐’œ๐‘›๐‘› , it follow that ๐œ‡๐œ‡ โˆ— (โ„ณ) โ‰ค ๐œ‡๐œ‡ โˆ— (๐’œ๐’œ1 ) + โ‹ฏ + ๐œ‡๐œ‡ โˆ— (๐’œ๐’œ๐‘›๐‘› ).
c) Carathedoryโ€™s approach
Proposition. Let ๐‘‹๐‘‹ be a nonempty set, and let ๐”–๐”– be a semiring on ๐‘‹๐‘‹, and let ๐œ‡๐œ‡: ๐”–๐”– โ†’ [0, โˆž] be a
measure on ๐”–๐”–. Consider the collection:
๐’ซ๐’ซ๐œŽ๐œŽ๐”–๐”– (๐‘‹๐‘‹)
= ๏ฟฝโ„ณ โŠ‚ ๐‘‹๐‘‹: there exist
Define the map ๐œ‡๐œ‡: ๐’ซ๐’ซ๐œŽ๐œŽ๐”–๐”– (๐‘‹๐‘‹) โ†’ [0, โˆž] by
๐œ‡๐œ‡(โ„ณ) =
โˆ—
(๐’œ๐’œ๐‘›๐‘› )โˆž
๐‘›๐‘›=1
โˆž
๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– ๏ฟฝ๏ฟฝ ๐œ‡๐œ‡(๐’œ๐’œ๐‘›๐‘› ): (๐’œ๐’œ๐‘›๐‘› )โˆž
๐‘›๐‘›=1
๐‘›๐‘›=1
Then the map ๐œ‡๐œ‡ : ๐’ซ๐’ซ(๐‘‹๐‘‹) โ†’ [0, โˆž], defined by ๐œ‡๐œ‡
โˆž
โŠ‚ ๐”–๐”–, with โ„ณ โŠ‚ ๏ฟฝ ๐’œ๐’œ๐‘›๐‘› ๏ฟฝ.
๐‘›๐‘›=1
โˆž
โŠ‚ ๐”–๐”–, โ„ณ โŠ‚ ๏ฟฝ ๐’œ๐’œ๐‘›๐‘› ๏ฟฝ , โˆ€โ„ณ โˆˆ ๐’ซ๐’ซ๐œŽ๐œŽ๐”–๐”– (๐‘‹๐‘‹)
โˆ— (โ„ณ)
๐‘›๐‘›=1
๐œ‡๐œ‡(โ„ณ) ๐‘–๐‘–๐‘–๐‘– โ„ณ โˆˆ ๐’ซ๐’ซ๐œŽ๐œŽ๐”–๐”– (๐‘‹๐‘‹)
=๏ฟฝ
โˆž
๐‘–๐‘–๐‘–๐‘– โ„ณ โˆ‰ ๐’ซ๐’ซ๐œŽ๐œŽ๐”–๐”– (๐‘‹๐‘‹)
is an outer measure on ๐‘‹๐‘‹. (adopted from. Gabriel Nagy, 2011).
44
Caratheodoryโ€™s definition is equivalent to Lebesgueโ€™s definition, but the advantage of
Caratheodoryโ€™s definition is that it works for unbounded sets too. (Paul Loya, 2013).
Remark. the set ๐‘€๐‘€ is said to be bounded if ๐‘€๐‘€ โŠ‚ ๐ต๐ต(๐‘ฅ๐‘ฅ, ๐‘Ÿ๐‘Ÿ) for some ๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹ and ๐‘Ÿ๐‘Ÿ > 0. This means
if there an open ball with radius ๐‘Ÿ๐‘Ÿ then the entire set ๐‘€๐‘€ in contain within the open ball.
8. Lebesgue, Uniform Measure on [๐ŸŽ๐ŸŽ, ๐Ÿ๐Ÿ] and Borel Line
Real intervals are the simplest sets whose measures or lengths are easy to define. A Borel line is
a measurable set on the real line โ„, therefore a Borel line is a measurable space (โ„, โ„ฌ). The idea
of measure can be extended to more complicated sets of real numbers, leading to the Borel
measure and eventually to the Lebesgue measure.
In order to discuss the Lebesgue measure in the probability space (ฮฉ, โ„ฑ, โ„™) we can replace the
probability measure โ„™ with the measure ๐œ‡๐œ‡, such hat the measure space is (ฮฉ, โ„ฑ, ๐œ‡๐œ‡). The
Lebesgue measure that signed to any subset [0,1] is known as the uniform measure over the
interval of length one and uniquely extend it to the Borel sets of [0,1], hence by applying the
extension theorem we can conclude that there exist a probability measure โ„™, called Lebesgue or
uniform measure defined on entire Borel ๐œŽ๐œŽ algebra. The ๐œ‡๐œ‡ here as a set function is not the same
as a calculus function, because its domain consists of sets [0,1] instead of elements, where ๐œ”๐œ”๐‘–๐‘– are
members of event,๐ธ๐ธ that generate ๐œŽ๐œŽ-field= ๐œŽ๐œŽ(๐ธ๐ธ) = โ„ฑ.
The real line with Borel ๐œŽ๐œŽ-algebra plays a special role in real-life probability because numerical
data, real numbers, are recorded whenever a random experiment is performed. The number
assigned to outcome of an experiment is the random variable.
Example. (Michael Kozdron, 2008). Suppose that โ„™ is the uniform probability measure on
๏ฟฝ[0,1], 2[0,1] ๏ฟฝ. This means that if ๐‘Ž๐‘Ž < ๐‘๐‘ and, ๐•ก๐•ก{[๐‘Ž๐‘Ž, ๐‘๐‘]} = ๐•ก๐•ก{(๐‘Ž๐‘Ž, ๐‘๐‘)} = ๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž. The probability that
45
1
1
1 1
1
falls in the interval ๏ฟฝ0, 4๏ฟฝ is 4, the probability that falls in the interval ๏ฟฝ3 , 2๏ฟฝ is 6 and the
1
1 1
probability that falls in either the interval ๏ฟฝ0, 4๏ฟฝ or ๏ฟฝ3 , 2๏ฟฝ is:
1
1 1
๐‘›๐‘›
โˆž
โˆž
๐‘–๐‘–=1
๐‘–๐‘–=1
๐‘–๐‘–=1
๐•ก๐•ก ๏ฟฝ๏ฟฝ|๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– | = ๏ฟฝ ๐•ก๐•ก{|๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– |} = ๏ฟฝ(๐‘๐‘๐‘–๐‘– โˆ’ ๐‘Ž๐‘Ž๐‘–๐‘– )๏ฟฝ
1
1 1
1
1
5
โ„™ ๏ฟฝ๏ฟฝ0, 4๏ฟฝ โ‹ƒ ๏ฟฝ3 , 2๏ฟฝ๏ฟฝ = โ„™ ๏ฟฝ๏ฟฝ0, 4๏ฟฝ๏ฟฝ + ๐•ก๐•ก ๏ฟฝ๏ฟฝ3 , 2๏ฟฝ๏ฟฝ = 4 + 6 = 12.
9. The Advantage of Measurable Function
As we have shown before every continuous function is measurable. That is, continuous functions
๐‘“๐‘“: โ„ โ†’ โ„ are measurable. The interval (โˆ’โˆž, ๐‘Ž๐‘Ž) is an open set in the range, and so ๐‘“๐‘“ โˆ’1 ๏ฟฝ(โˆ’โˆž, ๐‘Ž๐‘Ž)๏ฟฝ
is an open set in the domain, and every open set is measurable so this gives us that ๐‘“๐‘“ is
measurable. For example, let ๐‘“๐‘“(๐‘ฅ๐‘ฅ) be a real function defined on space ๐‘‹๐‘‹. This functoion is called
measurable if and only if, for every real number ๐›ผ๐›ผ, the set: (Frank Porter cited 2016)
๐‘‹๐‘‹๐›ผ๐›ผ = {๐‘ฅ๐‘ฅ|๐‘“๐‘“(๐‘ฅ๐‘ฅ) < ๐›ผ๐›ผ, ๐‘ค๐‘คโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹}
(source. Frank Porter cited 2016)
Measurable functions ensure the compatibility of the concepts of magnitudes and qualities. The
measurable functions are important because we can use their inverse to project the measurable
nature of the Borel line into an arbitrary set and turn it into a measurable space.
46
10. Induced Measure
Recall that R(๐œ”๐œ”) is a function and the random variable R: ฮฉ โ†’ โ„.
I.
With (๐›บ๐›บ, โ„ฑ, ๐œ‡๐œ‡) as a probability space, consider the following:
The ๐œŽ๐œŽ-algebra (of event) on ฮฉ generate by R, denoted by ๐œŽ๐œŽ(๐‘…๐‘…) = ๐œŽ๐œŽ(๐ธ๐ธ1 , ๐ธ๐ธ2 , โ€ฆ ) = โ„ฑ is:
๐œŽ๐œŽ(๐‘…๐‘…) = {๐‘…๐‘… โˆ’1 (๐ธ๐ธ): ๐ธ๐ธ Borel in โ„}
The event that ๐‘…๐‘… takes values in the set ๐ธ๐ธ is
Thus
{๐‘…๐‘… โˆˆ ๐ธ๐ธ} = {๐œ”๐œ” โˆˆ ๐›บ๐›บ|๐‘…๐‘…(๐œ”๐œ”) โˆˆ ๐ธ๐ธ} = ๐‘…๐‘… โˆ’1 (๐ธ๐ธ)
๐œŽ๐œŽ(๐‘…๐‘…) = ๏ฟฝ{๐‘…๐‘… โˆˆ ๐ธ๐ธ} Borel in โ„๏ฟฝ
Where ๐‘…๐‘… โˆ’1 (๐ธ๐ธ) is a measurable function and ๐œŽ๐œŽ(๐‘…๐‘…) is the smallest ๐œŽ๐œŽ-algebra on ฮฉ that
makes ๐‘…๐‘… measurable.
๐œ‡๐œ‡(๐‘…๐‘… โˆˆ ๐ธ๐ธ) = ๐œ‡๐œ‡(๐‘…๐‘… โˆ’1 (๐ธ๐ธ))
is the probability that the values of ๐‘…๐‘… are in the set ๐ธ๐ธ and measurable ๐‘…๐‘… is a random
variable.
II.
With (๐›บ๐›บ, โ„ฑ, โ„™) as a measure space with total measure one, consider the following:
For all Borel sets ๐ธ๐ธ โІ โ„, we define the probability โ„™(๐ธ๐ธ) of ๐ธ๐ธ by
โ„™๐‘“๐‘“ (๐ธ๐ธ) โ‰ก โ„™(๐‘…๐‘… โˆˆ ๐ธ๐ธ) = โ„™(๐‘…๐‘… โˆ’1 (๐ธ๐ธ))
Here, we introduced ๐‘“๐‘“ as a function that take ๐‘…๐‘… from the measurable space to โ„ and the
โ„™๐‘“๐‘“ is a probability measure induced on โ„, hence โ„™๐‘“๐‘“ is the distribution of ๐‘…๐‘….
This means that the domain where ๐‘…๐‘… is define not important as value and specific nature
of ฮฉ space not important as the probability of the value ๐œ”๐œ” โˆˆ ฮฉ. Thus if ๐‘…๐‘… is a random
variable, then ๐‘…๐‘… induces a probability measure โ„™ on โ„ defined by taking the primage for
every Borel set of E.
47
โ„™๐‘“๐‘“ (๐ธ๐ธ) = โ„™{๐œ”๐œ” โˆˆ ฮฉ: ๐‘…๐‘…(๐œ”๐œ”) โˆˆ ๐ธ๐ธ} = โ„™{๐‘…๐‘… โˆˆ ๐ธ๐ธ} = โ„™{๐‘…๐‘… โˆ’1 (๐ธ๐ธ)}
Where the probability measure โ„™๐‘“๐‘“ is called the distribution of ๐‘…๐‘… or ๐œŽ๐œŽ(๐‘…๐‘…) as in (I):
๐‘…๐‘… = {โ„™(๐‘…๐‘… โˆˆ ๐ธ๐ธ), ๐ธ๐ธ Borel in โ„ }
and this distribution lists the probabilities of each Borel (output) set.
Briefly, the random variable transforms the probability spaces: (Michael Kozdron,2008).
๐‘“๐‘“
(๐›บ๐›บ, โ„ฑ, โ„™) โ†’ ๏ฟฝโ„, โ„ฌ, โ„™๐‘“๐‘“ ๏ฟฝ
and if we know the probability โ„™ of the value of every ๐‘…๐‘…, then we know the distribution.
(Roman Vershynin, 2008).
Example. let ๐‘“๐‘“ be a function that take ๐‘…๐‘… from the measurable space to the Borel line, ๐‘“๐‘“: ๐‘…๐‘… โ†’ โ„.
Let ๐‘“๐‘“ โˆ’1 be the inverse of the measurable function that map the event, ๐ธ๐ธ from the Borel line into
an arbitrary set ฮฉ. The probability that this event occurs given by
โ„™{๐‘“๐‘“ โˆˆ โ„ฌ} = โ„™(๐‘“๐‘“ โˆ’1 (โ„ฌ)) = the probability that the value of ๐‘“๐‘“ are in the set โ„ฌ
If ๐ธ๐ธ1 , ๐ธ๐ธ2 , โ€ฆ are pairwise disjoint Borel sets, then
โˆž
โˆž
โˆž
โˆž
๐‘›๐‘›=1
๐‘›๐‘›=1
๐‘›๐‘›=1
๐‘›๐‘›=1
โ„™๐‘“๐‘“ ๏ฟฝ๏ฟฝ ๐ธ๐ธ๐‘›๐‘› ๏ฟฝ = โ„™ ๏ฟฝ๏ฟฝ ๐‘“๐‘“ โˆ’1 (๐ธ๐ธ๐‘›๐‘› )๏ฟฝ = ๏ฟฝ โ„™ (๐‘“๐‘“ โˆ’1 (๐ธ๐ธ๐‘›๐‘› )) = ๏ฟฝ โ„™๐‘“๐‘“ (๐ธ๐ธ๐‘›๐‘› )
The measure โ„™๐‘“๐‘“ : โ„ฌ โ†’ [0,1] has the probabilistic behavior of the data that the function represents.
(adopted from.Paul Loya, 2013).
48
Figure 18 โ„™๐‘“๐‘“ is a probability measure on (โ„, โ„ฌ) such that for all Borel sets ๐ธ๐ธ โˆˆ โ„, the โ„™๐‘“๐‘“ (๐ธ๐ธ) =
probability that ๐‘“๐‘“ lies in the event set ๐ธ๐ธ.(adopted from Paul Loya, 2013).
notation
๐œ‡๐œ‡
X
โ„ณ
Measure Terminology
Lebesgure measure
sets of elements of real numbers, in
general has also been referred to
as โ„
Borel algebra of subset of ๐‘‹๐‘‹, in
general has also been referred to as
notation
โ„™
Equivalent Probability Terminology
Probability measure
ฮฉ
sets of elements of real numbers, in
โ„ฑ
Borel algebra of subset of ฮฉ, in general
โ„ฌ
general has also been referred to as โ„
has also been referred to as โ„ฌ
Table.6 Terminology for both measure space and the equivalent probability space.
11. Probability Space and the Distribution Function
Definition. If ๐‘…๐‘…: ฮฉ โ†’ โ„ is a random variable, the distribution function of ๐‘…๐‘… written ๐น๐น: โ„ โ†’ [0,1]
is defined by: (Michael Kozdron, 2008).
๐น๐น(๐‘ฅ๐‘ฅ) = โ„™๐‘“๐‘“ {(โˆ’โˆž, ๐‘ฅ๐‘ฅ])} = โ„™{๐œ”๐œ”|๐‘…๐‘…(๐œ”๐œ”) โ‰ค ๐œ”๐œ”} = โ„™{๐‘…๐‘… โ‰ค ๐‘ฅ๐‘ฅ}
49
For every ๐‘ฅ๐‘ฅ โˆˆ โ„.
๐‘…๐‘…(random variable) โ†ญ โ„™๐‘“๐‘“ (law of ๐‘…๐‘…) โ†ญ ๐น๐น(distribution function of ๐‘…๐‘…)
Theorem: If ๐น๐น is a nondecreasing, right-continuous function satisfying lim ๐น๐น(๐‘ฅ๐‘ฅ) = 1 and
๐‘ฅ๐‘ฅโ†’โˆž+
lim ๐น๐น(๐‘ฅ๐‘ฅ) = 0, then there exist on some probability space a random variable R for which
๐‘ฅ๐‘ฅโ†’โˆ’โˆžโˆ’
๐น๐น(๐‘ฅ๐‘ฅ) = โ„™[๐‘…๐‘… โ‰ค ๐‘ฅ๐‘ฅ]. (Patrick Billingsley, 1995)
Proof: (by Patrick Billingsley, 1995)
For the probability space, take (ฮฉ, โ„ฑ, โ„™) = (โ„, โ„ฌ, ๐œ‡๐œ‡), the open unit interval ฮฉ is (0,1), โ„ฑ consists
of the Borel subsets of (0,1), and โ„™(๐ธ๐ธ) = ๐œ‡๐œ‡(๐ธ๐ธ) is Lebesgue measure of ๐ธ๐ธ. To understand the
method, suppose at first that ๐น๐น is continuous and strictly increasing. Then ๐น๐น is a one-to-one
mapping of โ„ onto (0,1); let ๐œ‘๐œ‘: (0,1) โ†’ โ„, be the inverse mapping. For 0 < ๐œ”๐œ” < 1, let ๐‘…๐‘…(๐œ”๐œ”) =
๐œ‘๐œ‘(๐œ”๐œ”). Since ๐œ‘๐œ‘ is increasing, certainly ๐‘…๐‘… is measurable โ„ฑ. If 0 < ๐‘ข๐‘ข < 1, then ๐œ‘๐œ‘(๐‘ข๐‘ข) โ‰ค ๐‘ฅ๐‘ฅ if and
only if ๐‘ข๐‘ข โ‰ค ๐น๐น(๐‘ฅ๐‘ฅ). Since โ„™ is a Lebesgue measure, โ„™[๐‘…๐‘… โ‰ค ๐‘ฅ๐‘ฅ] = โ„™[๐œ”๐œ” โˆˆ (0,1)|๐œ‘๐œ‘(๐œ”๐œ”) โ‰ค ๐‘ฅ๐‘ฅ] =
โ„™[๐œ”๐œ” โˆˆ (0,1)|๐œ”๐œ” โ‰ค ๐น๐น(๐‘ฅ๐‘ฅ)] = ๐น๐น(๐‘ฅ๐‘ฅ) as required.
If ๐น๐น has discontinuities or is not strictly increasing, it is defined as follows:
๐œ‘๐œ‘(๐‘ข๐‘ข) = ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–[๐‘ฅ๐‘ฅ|๐‘ข๐‘ข โ‰ค ๐น๐น(๐‘ฅ๐‘ฅ)]
For 0 < ๐‘ข๐‘ข < 1. Since ๐น๐น is nondecreasing, [๐‘ฅ๐‘ฅ|๐‘ข๐‘ข โ‰ค ๐น๐น(๐‘ฅ๐‘ฅ)] is an interval stretching to โˆž; since ๐น๐น is
right continuous, this interval is closed on the left. For 0 < ๐‘ข๐‘ข < 1, therefore, [๐‘ฅ๐‘ฅ|๐‘ข๐‘ข โ‰ค ๐‘“๐‘“(๐‘ฅ๐‘ฅ)] =
[๐œ‘๐œ‘(๐‘ข๐‘ข), โˆž] and so ๐œ‘๐œ‘(๐‘ข๐‘ข) โ‰ค ๐‘ฅ๐‘ฅ if and only if ๐‘ข๐‘ข โ‰ค ๐น๐น(๐‘ฅ๐‘ฅ). If ๐‘…๐‘…(๐œ”๐œ”) = ๐œ‘๐œ‘(๐œ”๐œ”) for 0 < ๐œ”๐œ” < 1, then by
the same reasoning as before, ๐‘…๐‘… is a random variable and โ„™[๐‘…๐‘… โ‰ค ๐‘ฅ๐‘ฅ] = ๐น๐น(๐‘ฅ๐‘ฅ).
50
(adpoted from: Patrick Billingsley,1995)
This provides a simple proof for the probability distribution ๐น๐น.(Patrick Billingsley, 1995).
The constructed distribution ๐น๐น(๐‘ฅ๐‘ฅ) that defined by ๐œ‡๐œ‡(๐ธ๐ธ) = โ„™[๐‘…๐‘… โˆˆ ๐ธ๐ธ] for ๐ธ๐ธ โˆˆ โ„ฌ satisfies
๐œ‡๐œ‡(โˆ’โˆž,๐‘ฅ๐‘ฅ] = ๐น๐น(๐‘ฅ๐‘ฅ) and hence ๐œ‡๐œ‡(๐‘Ž๐‘Ž,๐‘๐‘] = ๐น๐น(๐‘๐‘) โˆ’ ๐น๐น(๐‘Ž๐‘Ž).
12. Lebesgue-Stieltjes Measure
Definition. Assume ๐œ‡๐œ‡ is a finite Borel measure on โ„ and let ๐น๐น(๐‘ฅ๐‘ฅ) = ๐œ‡๐œ‡๏ฟฝ(โˆ’โˆž, ๐‘ฅ๐‘ฅ]๏ฟฝ = ๐œ‡๐œ‡(๐ธ๐ธ), in
which ๐œ‡๐œ‡(๐ธ๐ธ) is the length of the interval (๐‘Ž๐‘Ž,๐‘๐‘] and therefore ๐œ‡๐œ‡ = Lebesgue measure on โ„ฌ, then ๐น๐น
is the distribution function of ๐œ‡๐œ‡. The measure ๐œ‡๐œ‡๐น๐น is called the Lebesgue-Stieltjes measure
associated with ๐น๐น. (adopted from Kyle Siegrist, 2015)
The Lebesgue Stieltjes measure ๐œ‡๐œ‡๐น๐น induced by a distribution function ๐น๐น is the measure defined
๐œ‡๐œ‡๐น๐น (๐‘Ž๐‘Ž,๐‘๐‘] = ๐น๐น(๐‘๐‘) โˆ’ ๐น๐น(๐‘Ž๐‘Ž) for interval (๐‘Ž๐‘Ž,๐‘๐‘] and for other Borel sets on the real line by the method
of measure extension. (A. K. Basu, 2012).
Definition. ๐’ซ๐’ซ(๐‘‹๐‘‹) denote the set of all subset of ๐‘‹๐‘‹ , and for ๐’œ๐’œ โІ โ„,
โˆž
โˆž
๐‘–๐‘–=1
๐‘–๐‘–=1
๐œ‡๐œ‡(๐’œ๐’œ) = inf ๏ฟฝ๏ฟฝ๏ฟฝ๐น๐น(๐‘๐‘๐‘–๐‘– โˆ’) โˆ’ ๐น๐น(๐‘Ž๐‘Ž๐‘–๐‘– +)๏ฟฝ๏ฟฝ ๐’œ๐’œ โІ ๏ฟฝ(๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– )๏ฟฝ
51
Which means, we look at all covering of ๐’œ๐’œ with open intervals and for each of these open
covering, we add the length of the individual open intervals and take the infimum of all such
numbers obtained. (Kuttler, 2014). The Lebesgue-Stieltjes measure is considered as a
generalization of one dimensional Lebesgue measure.
12.1 Lebesgue-Stieltjes Measure as a Model for Distributions
The measure ๐œ‡๐œ‡ that associates with the distribution function ๐น๐น on โ„ is Lebesgue-Stieltjes
measure and has the following properties:
i.
ii.
increasing [๐‘Ž๐‘Ž < ๐‘๐‘ ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– ๐น๐น(๐‘Ž๐‘Ž) โ‰ค ๐น๐น(๐‘๐‘)] and
right continuous ๏ฟฝlim๐‘ฅ๐‘ฅโ†’๐‘ฅ๐‘ฅ0+ ๐น๐น(๐‘ฅ๐‘ฅ) = ๐น๐น(๐‘ฅ๐‘ฅ0 )๏ฟฝ.
The Lebesgue-Stieltjes measure is a Borel measure on โ„ which assume finite values on
compact set (Rudi Weikard, 2016), and if the function ๐น๐น is to be defined as a Borel measure
we need
1
1
๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐œ‡๐œ‡๐น๐น ๏ฟฝ๏ฟฝ๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž + ๏ฟฝ๏ฟฝ = lim ๏ฟฝ๐น๐น ๏ฟฝ๐‘Ž๐‘Ž + ๏ฟฝ โˆ’ ๐น๐น(๐‘Ž๐‘Ž)๏ฟฝ = lim+ ๐น๐น(๐‘ฅ๐‘ฅ) โˆ’ ๐น๐น(๐‘Ž๐‘Ž) = 0
๐‘–๐‘–โ†’โˆž
๐‘–๐‘–โ†’โˆž
๐‘ฅ๐‘ฅโ†’๐‘Ž๐‘Ž
๐‘–๐‘–
๐‘–๐‘–
where ๐‘Ž๐‘Ž+ = limโˆ†โ†’0 (๐‘Ž๐‘Ž + โˆ†), that is ๐น๐น(๐‘ฅ๐‘ฅ) is continuous to the right.
The formula ๐œ‡๐œ‡๐น๐น (๐‘Ž๐‘Ž,๐‘๐‘] = ๐น๐น(๐‘๐‘) โˆ’ ๐น๐น(๐‘Ž๐‘Ž) sets up a one to one correspondence between Lebesgue-
Stieltjes measures and distribution functions, where two distribution functions that differ by a
constant are identified.
13. Properties of the Distribution Function
Theorem.The distribution function of ๐น๐น(๐‘ฅ๐‘ฅ) of a random variable ๐‘…๐‘… has the following properties:
(Roman Vershynin, 2008)
i.
๐น๐น is nondecreasing and 0 โ‰ค ๐น๐น โ‰ค 1
52
๐น๐น(๐‘ฅ๐‘ฅ) โ†’ 1 as ๐‘ฅ๐‘ฅ โ†’ โˆž, i.e., lim ๐น๐น(๐‘ฅ๐‘ฅ) = 1
๐‘ฅ๐‘ฅโ†’โˆž+
ii.
iii.
๐น๐น(๐‘ฅ๐‘ฅ) โ†’ 0 as ๐‘ฅ๐‘ฅ โ†’ โˆ’โˆž, i.e., lim ๐น๐น(๐‘ฅ๐‘ฅ) = 0
๐‘ฅ๐‘ฅโ†’โˆžโˆ’
๐น๐น(๐‘ฅ๐‘ฅ โˆ’) = โ„™(๐‘…๐‘… < ๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ โˆˆ โ„ and ๐น๐น has limit from the left
๐น๐น(๐‘ฅ๐‘ฅ +) = ๐น๐น(๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ โˆˆ โ„ and ๐น๐น is continuous from the right
F has left hand limits at all points (these are jumps on the distribution function, and
these jumps mean the probability that R takes this specific value).
Suppose ๐น๐น is the distribution function of a real-valued random variable, if ๐‘Ž๐‘Ž, ๐‘๐‘ โˆˆ โ„ and ๐‘Ž๐‘Ž < ๐‘๐‘
then: (adopted from Kyle Siegrist, 2015).
๐œ‡๐œ‡{๐‘Ž๐‘Ž} = โ„™(๐‘…๐‘… = ๐‘Ž๐‘Ž) = ๐น๐น(๐‘Ž๐‘Ž) โˆ’ ๐น๐น(๐‘Ž๐‘Žโˆ’)
๐œ‡๐œ‡(๐‘Ž๐‘Ž, ๐‘๐‘] = โ„™(๐‘Ž๐‘Ž < ๐‘…๐‘… โ‰ค ๐‘๐‘) = ๐น๐น(๐‘๐‘) โˆ’ ๐น๐น(๐‘Ž๐‘Ž)
๐œ‡๐œ‡(๐‘Ž๐‘Ž, ๐‘๐‘) = โ„™(๐‘Ž๐‘Ž < ๐‘…๐‘… < ๐‘๐‘) = ๐น๐น(๐‘๐‘ โˆ’) โˆ’ ๐น๐น(๐‘Ž๐‘Ž)
๐œ‡๐œ‡[๐‘Ž๐‘Ž. ๐‘๐‘] = โ„™(๐‘Ž๐‘Ž โ‰ค ๐‘…๐‘… โ‰ค ๐‘๐‘) = ๐น๐น(๐‘๐‘) โˆ’ ๐น๐น(๐‘Ž๐‘Žโˆ’)
๐œ‡๐œ‡[๐‘Ž๐‘Ž, ๐‘๐‘) = โ„™(๐‘Ž๐‘Ž โ‰ค ๐‘…๐‘… < ๐‘๐‘) = ๐น๐น(๐‘๐‘ โˆ’) โˆ’ ๐น๐น(๐‘Ž๐‘Žโˆ’)
Distribution function
(adopted from Kyle Siegrist, 2015)
๐น๐น(๐‘ฅ๐‘ฅ) has Left hand limit and right continuous
(adopted from Ali Hussien Muqaibel)
53
14. Relate the Measure ๐๐ to the Distribution Function, ๐‘ญ๐‘ญ
The distribution of ๐‘…๐‘… is determined by its value of the form โ„™(๐‘…๐‘… โˆˆ ๐ธ๐ธ), ๐ธ๐ธ = (โˆ’โˆž, ๐‘ฅ๐‘ฅ], ๐‘ฅ๐‘ฅ โˆˆ โ„
because such intervals form a generating collection of โ„ฑ and measure is uniquely determined by
its value on a collection of generators, ๐‘…๐‘… = ๐œŽ๐œŽ๏ฟฝ(โˆ’โˆž, ๐‘ฅ๐‘ฅ], ๐‘ฅ๐‘ฅ โˆˆ โ„๏ฟฝ .
Consider the probability space defined as (ฮฉ, โ„ฑ, ๐œ‡๐œ‡) where ฮฉ is a set, โ„ฑ is a Borel algebra of
subset of ฮฉ, and ๐œ‡๐œ‡: โ„ฑ โ†’ โ„ a probability measure. The law of a random variable is always a
probability measure on (โ„, โ„ฌ), thus the distribution function induced by ๐œ‡๐œ‡ is the function
๐น๐น: โ„ โ†’ [0,1] defined by:
and, since
๐น๐น(๐‘ฅ๐‘ฅ) = ๐œ‡๐œ‡{(โˆ’โˆž, ๐‘ฅ๐‘ฅ)} โˆ€ ๐‘ฅ๐‘ฅ โˆˆ โ„
โˆž
1
(โˆ’โˆž, ๐‘ฅ๐‘ฅ] = ๏ฟฝ ๏ฟฝโˆ’โˆž, ๐‘ฅ๐‘ฅ + ๏ฟฝ
๐‘›๐‘›
๐‘›๐‘›=1
is the countable intersection of open sets, we see that (โˆ’โˆž, ๐‘ฅ๐‘ฅ] โˆˆ โ„ฌ for every ๐‘ฅ๐‘ฅ โˆˆ โ„. Thus
๐œ‡๐œ‡{(โˆ’โˆž, ๐‘ฅ๐‘ฅ]} make sense. (Michael Kozdron, 2008).
15. Distribution Function on โ„๐’๐’
Proposition. If ๐‘…๐‘…1 , โ€ฆ , ๐‘…๐‘…๐‘›๐‘› are random variables, the (๐‘…๐‘…1 , โ€ฆ , ๐‘…๐‘…๐‘›๐‘› ) is a random vector.(Roman
Vershynin, 2008).
We can generalize the construction to many random variables ๐‘…๐‘…1 , โ€ฆ , ๐‘…๐‘…๐‘›๐‘› , once we know
๐น๐น(๐‘ฅ๐‘ฅ1 , โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘› ) = ๐œ‡๐œ‡๐น๐น (๐‘…๐‘…1 โ‰ค ๐‘ฅ๐‘ฅ1 , โ€ฆ , ๐‘…๐‘…๐‘›๐‘› โ‰ค ๐‘ฅ๐‘ฅ๐‘›๐‘› ). In this case ฮฉ = โ„๐‘›๐‘› , โ„ฑ = Borel algebra generated by
open sets of โ„๐‘›๐‘› . (Joseph G. Conlon, 2010).
Further generalized to countably infinite set of variables ๐‘…๐‘…1 , ๐‘…๐‘…2 , โ€ฆ, provided the distribution of
the variables satisfy an obvious consistency condition. Thus for
54
1 โ‰ค ๐‘—๐‘—1 < ๐‘—๐‘—2 < โ‹ฏ < ๐‘๐‘๐‘—๐‘—
Let ๐น๐น๐‘—๐‘—1 ,๐‘—๐‘—2 ,โ€ฆ,๐‘—๐‘—๐‘๐‘ (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ๐‘๐‘ ) be the distribution of ๐‘…๐‘…๐‘—๐‘—1 , ๐‘…๐‘…๐‘—๐‘—2 , โ€ฆ , ๐‘…๐‘…๐‘—๐‘—๐‘—๐‘— . Consistency then just means:
lim ๐น๐น๐‘—๐‘—1,๐‘—๐‘—2,โ€ฆ,๐‘—๐‘—๐‘—๐‘— (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜โˆ’1 , ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ , ๐‘ฅ๐‘ฅ๐‘˜๐‘˜+1 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘๐‘ )
๐‘ฅ๐‘ฅ๐‘˜๐‘˜ โ†’โˆž
= ๐น๐น๐‘—๐‘—1 ,๐‘—๐‘—2 ,โ€ฆ,๐‘—๐‘—๐‘˜๐‘˜โˆ’1 ,๐‘—๐‘—๐‘˜๐‘˜+1 ,โ€ฆ,๐‘—๐‘—๐‘๐‘ (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , โ€ฆ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜โˆ’1 , ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ , ๐‘ฅ๐‘ฅ๐‘˜๐‘˜+1 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘๐‘ )
for all possible choice of the ๐‘—๐‘—๐‘–๐‘– โ‰ฅ 1, ๐‘ฅ๐‘ฅ๐‘–๐‘– โˆˆ โ„. Here ๐›บ๐›บ = โ„โˆž and โ„ฑ is the ๐œŽ๐œŽ-field generated by
finite dimensional rectangles.
The notion of a distribution function on โ„๐‘›๐‘› , ๐‘›๐‘› โ‰ฅ 2, is more complicated than the one
dimensional case, and we may work with compact space โ„, that includes the (โˆ’โˆž, โˆž).
Let ๐‘›๐‘› = 3, and let ๐œ‡๐œ‡ be finite measure on โ„ฌ(โ„3 ), then
๐น๐น(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ3 ) = ๐œ‡๐œ‡{๐œ”๐œ” โˆˆ โ„3 : ๐œ”๐œ”1 โ‰ค ๐‘ฅ๐‘ฅ1 , ๐œ”๐œ”2 โ‰ค ๐‘ฅ๐‘ฅ2 , ๐œ”๐œ”3 โ‰ค ๐‘ฅ๐‘ฅ3 }, (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ3 ) โˆˆ โ„3
By analogy with the one-dimensional case, we expect that F is a distribution function
corresponding to ๐œ‡๐œ‡. The formula ๐œ‡๐œ‡๐น๐น (๐‘Ž๐‘Ž, ๐‘๐‘] = ๐น๐น(๐‘๐‘) โˆ’ ๐น๐น(๐‘Ž๐‘Ž) will be replaced by:
๐œ‡๐œ‡๐น๐น (๐‘Ž๐‘Ž, ๐‘๐‘] = โˆ†๐‘๐‘1๐‘Ž๐‘Ž1 โˆ†๐‘๐‘2 ๐‘Ž๐‘Ž2 โˆ†๐‘๐‘3 ๐‘Ž๐‘Ž3 ๐น๐น(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ3 )
where โˆ† is the difference operator,
Our operation is introduced as follows:
If ๐บ๐บ: โ„๐‘›๐‘› โ†’ โ„, โˆ†๐‘๐‘๐‘–๐‘– ๐‘Ž๐‘Ž๐‘–๐‘– ๐บ๐บ(๐‘ฅ๐‘ฅ1 , โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘› ) is defined as
๐บ๐บ(๐‘ฅ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘–๐‘–โˆ’1 , ๐‘๐‘๐‘–๐‘– , ๐‘ฅ๐‘ฅ๐‘–๐‘–+1 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› ) โˆ’ ๐บ๐บ(๐‘ฅ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘–๐‘–โˆ’1 , ๐‘Ž๐‘Ž๐‘–๐‘– , ๐‘ฅ๐‘ฅ๐‘–๐‘–+1 , โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘› )
Lemma. If ๐‘Ž๐‘Ž โ‰ค ๐‘๐‘, that is, ๐‘Ž๐‘Ž๐‘–๐‘– โ‰ค ๐‘๐‘๐‘–๐‘– , ๐‘–๐‘– = 1,2,3 then
Where
๐œ‡๐œ‡๐น๐น (๐‘Ž๐‘Ž, ๐‘๐‘] = โˆ†๐‘๐‘1๐‘Ž๐‘Ž1 โˆ†๐‘๐‘2 ๐‘Ž๐‘Ž2 โˆ†๐‘๐‘3 ๐‘Ž๐‘Ž3 ๐น๐น(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ3 )
55
โˆ†๐‘๐‘1๐‘Ž๐‘Ž1 โˆ†๐‘๐‘2 ๐‘Ž๐‘Ž2 โˆ†๐‘๐‘3 ๐‘Ž๐‘Ž3 ๐น๐น(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ3 )
= ๐น๐น(๐‘๐‘1 , ๐‘๐‘2 , ๐‘๐‘3 ) โˆ’ ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘๐‘2 , ๐‘๐‘3 ) โˆ’ ๐น๐น(๐‘๐‘1 , ๐‘Ž๐‘Ž2 , ๐‘๐‘3 ) โˆ’ ๐น๐น(๐‘๐‘1 , ๐‘๐‘2 , ๐‘Ž๐‘Ž3 ) + ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘Ž๐‘Ž2 , ๐‘๐‘3 )
+ ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘๐‘2 , ๐‘Ž๐‘Ž3 ) + ๐น๐น(๐‘๐‘1 , ๐‘Ž๐‘Ž2 , ๐‘Ž๐‘Ž3 ) โˆ’ ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘Ž๐‘Ž2 , ๐‘Ž๐‘Ž3 ) โ‰ฅ 0
Thus ๐œ‡๐œ‡๐น๐น (๐‘Ž๐‘Ž, ๐‘๐‘] is not simply ๐น๐น(๐‘๐‘) โˆ’ ๐น๐น(๐‘Ž๐‘Ž)
Figure 19 Cartesian product of ๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ]) .(source: A. K. BASU, 2012)
Non Example. (adopted from Rick Durrett, 2013)
Given ๐น๐น(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) as below:
1
๐‘–๐‘–๐‘–๐‘– ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ โ‰ฅ 1
2/3 ๐‘–๐‘–๐‘–๐‘– ๐‘ฅ๐‘ฅ โ‰ฅ 1 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž 0 โ‰ค ๐‘ฆ๐‘ฆ < 1
๐น๐น(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๏ฟฝ
2/3 ๐‘–๐‘–๐‘–๐‘– ๐‘ฆ๐‘ฆ โ‰ฅ 1 ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž 0 โ‰ค ๐‘ฅ๐‘ฅ < 1
0
๐‘œ๐‘œ๐‘œ๐‘œโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’
Figure 20 Non Example (adopted from Rick Durrett, 2013)
56
Suppose ๐น๐น gives rise to a measure ๐œ‡๐œ‡ on โ„2 , ๐น๐น: โ„2 โ†’ โ„ is right continuous, i.e.
๐น๐น(๐‘Ž๐‘Ž, ๐‘๐‘) = ๐œ‡๐œ‡((โˆ’โˆž , ๐‘Ž๐‘Ž] . (โˆ’โˆž , ๐‘๐‘])
F is increasing: if ๐‘ฅ๐‘ฅ โ‰ค ๐‘ฆ๐‘ฆ then ๐น๐น(๐‘ฅ๐‘ฅ) โ‰ค ๐น๐น(๐‘ฆ๐‘ฆ)
o ๐น๐น(๐‘ฅ๐‘ฅ +) = ๐น๐น(๐‘ฅ๐‘ฅ) ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ โˆˆ โ„ and ๐น๐น is continuous from the right
o ๐น๐น(๐‘ฅ๐‘ฅ โˆ’) = โ„™(๐‘‹๐‘‹ < ๐‘ฅ๐‘ฅ) ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘ฅ๐‘ฅ โˆˆ โ„ and F has limits from the left
o ๐น๐น(โˆ’โˆž) = 0
o ๐น๐น(โˆž) = 1
Figure 21 Solution for Non Example (Dr. Seshendra Pallekonda, 2015)
From the Cartesian product of ๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ]) we have.
Then
๐œ‡๐œ‡๐น๐น (๐‘Ž๐‘Ž, ๐‘๐‘] = ๐น๐น(๐‘๐‘1 , ๐‘๐‘2 ) โˆ’ ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘๐‘2 ) โˆ’ ๐น๐น(๐‘๐‘1 , ๐‘Ž๐‘Ž2 ) + ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘Ž๐‘Ž2 ) โ‰ฅ 0
57
๐œ‡๐œ‡๏ฟฝ(๐‘Ž๐‘Ž1 , ๐‘๐‘1 ] × (๐‘Ž๐‘Ž2 , ๐‘๐‘2 ])
= ๐œ‡๐œ‡๏ฟฝ(โˆ’โˆž, ๐‘๐‘1 ] × (โˆ’โˆž, ๐‘๐‘2 ]) โˆ’ ๐œ‡๐œ‡๏ฟฝ(โˆ’โˆž, ๐‘Ž๐‘Ž1 ]
× ๏ฟฝโˆ’โˆž, ๐‘๐‘2 ]) โˆ’ ๐œ‡๐œ‡๏ฟฝ(โˆ’โˆž, ๐‘๐‘1 ] × (โˆ’โˆž, ๐‘Ž๐‘Ž2 ]) +๐œ‡๐œ‡๏ฟฝ(โˆ’โˆž, ๐‘Ž๐‘Ž1 ] × (โˆ’โˆž, ๐‘Ž๐‘Ž2 ])
= ๐น๐น(๐‘๐‘1 , ๐‘๐‘2 ) โˆ’ ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘๐‘2 ) โˆ’ ๐น๐น(๐‘๐‘1 , ๐‘Ž๐‘Ž2 ) + ๐น๐น(๐‘Ž๐‘Ž1 , ๐‘Ž๐‘Ž2 )
Let ๐‘Ž๐‘Ž1 = ๐‘Ž๐‘Ž2 = 1 โˆ’ ๐œ€๐œ€ and ๐‘๐‘1 = ๐‘๐‘2 = 1 and letting ๐œ€๐œ€ โ†’ 0
lim ๐œ‡๐œ‡((1 โˆ’ ๐œ€๐œ€, 1] × (1 โˆ’ ๐œ€๐œ€, 1])
๐œ€๐œ€โ†’0
= lim ๐น๐น(1,1) โˆ’ lim ๐น๐น(1 โˆ’ ๐œ€๐œ€, 1) โˆ’ lim ๐น๐น(1,1 โˆ’ ๐œ€๐œ€) + lim ๐น๐น(1 โˆ’ ๐œ€๐œ€, 1 โˆ’ ๐œ€๐œ€)
๐œ€๐œ€โ†’0
๐œ€๐œ€โ†’0
๐œ€๐œ€โ†’0
๐œ€๐œ€โ†’0
Using ๐‘Ž๐‘Ž1 = ๐‘Ž๐‘Ž2 = 1 โˆ’ ๐œ€๐œ€ and ๐‘๐‘1 = ๐‘๐‘2 = 1 and letting ๐œ€๐œ€ โ†’ 0
๐œ‡๐œ‡({1,1}) = 1 โˆ’
1
๐œ‡๐œ‡({1,1}) = โˆ’ 3 < 0
2 2
1
โˆ’ + 0 = โˆ’ ๐‘ค๐‘คโ„Ž๐‘–๐‘–๐‘–๐‘–โ„Ž ๐‘–๐‘–๐‘–๐‘– < 0
3 3
3
๐œ‡๐œ‡({1,0}) = ๐œ‡๐œ‡({0,1}) =
2
3
58
CONCLUSION IN GENERAL
Measure theory is foundation of probability and probabilities are special sorts of measures. The
probability uses unlike terminology than that of measure but one can notice the similarity in the
definition of measurable functions, and the Borel measure, in both theory or spaces.
In fact learning the main concept of measure theory as probability theory is easier than
understanding this concept through real analysis. The reason is that probability is rich in applied
examples beside the description of the probability jargon noteworthy pictured the idea rather
than in real analysis or measure theory do. Thus most of the books about the measure theory
consider the probability thought with the measure analysis.
The study includes a list of the measure, probability and topology components (elements) and
examines the structure of their triple spaces in order to relate each one to the other. The measure
can be written in different ways and the idea of the triple space is the same thus it can be applied
to variety of fields of science, and it is not the matter if each one has driven from the other, it is
the matter of how to use and understand the component of the structure.
To complete the conclusion I should thank all the writers, who make their science resources
available online, that I used on forming this topic and hoping that this material has been
assembled with minor mistake.
59
REFERENCES
Auyang, S. Y. (1995). How is Quantum Field Theory Possible? Oxford university press.
Basu, A. K. (2012). Measure Theory and Probability. Delhi: Asoke K. Ghosh.
Billingsley, P. (1995). Probability and Measure, 3rd Edition, University of Chicago. John Wiley
& Sons.
Bradley, T.-D. (2015). The Borel-Cantelli Lemma. Retrieved from Mathema:
http://www.math3ma.com/mathema/2015/9/21/the-borel-cantelli-lemma
Cheng, S. (April 27, 2008). A crash Course on the Lebesgue Integral and Measure Theory.
Retrieved 2016, from http://www.gold-saucer.org/math/lebesgue/lebesgue.pdf
Chernov, N. (2012-2014). Teaching by Nikolai Chernov at University of Alabama at
Birmingham. Retrieved from Real Analysis, MA 646-2F :
http://people.cas.uab.edu/~mosya/teaching/teach.html
Durrett, R. ( April 21, 2013). Probability: Theory and Examples, Edition 4.1. Cambridge
University Press in 2010.
Epps, T. W. (2014). Probability and Statistical Theory for Appiled Researchers, university of
Virgina, USA. World Scientific.
Etnyre, J. B. (2014). Recollections from point set topology and overview of quotient spaces.
Retrieved 2016, from Georgia Institute of Technology:
http://people.math.gatech.edu/~etnyre/class/6452Fall14/TopologyReview.pdf
Folland, G. B. (1999). Real Analysis, Modern Techiques and Their Application, 2nd Edition.
John Wiley & Sons Inc.
G.Conlon, J. (2010, 12 17). Math 625, Probability and Random Processes. Retrieved 2016, from
University of Michigan: http://www.math.lsa.umich.edu/~conlon/math625/chapter1.pdf
Garside, B. (2014, Oct). functional analysis. Retrieved Sep 2015, from
https://www.youtube.com/playlist?list=PLAvgI3H-gclZa-DVTMyUIAxM-X8NSikwu
Garside, S. B. (2014, Sep 5). Introduction to Metric Spaces. Retrieved from
https://www.youtube.com/watch?v=etP21xln8iQ
Genovese, C. (2006, spring). Intermediate Probability. Retrieved from Carnegie Mellon
University: http://www.stat.cmu.edu/~genovese/class/iprob-S06/
60
Grigoryan, A. (2007-2008). Measure Theory and Probability. Retrieved from Lecture Notes,
University of Bielefeld: https://www.math.uni-bielefeld.de/~grigor/mwlect.pdf
Herzong, F. (2013). Probability Theory. Retrieved from
https://www.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-ncontrol/idsc-dam/Lectures/Stochastic-Systems/Probability.pdf
Hoffman-Jorgensen, J. (1994). Probability With a View Towards Statistics. Chapman & Hall.
Jayasumana, S. (2012, June 11). Sadeep's Tech Blog. Retrieved from Blogger:
http://sadeepj.blogspot.com/2012/06/understanding-riemannian-manifolds-part.html
Kannan, V. D. (n.d.). Measure Theory for Applied Research. Retrieved Oct 31, 2015, from
https://www.youtube.com/channel/UCFwohpuBUlR3gdkJq3bn6_Q
Kannan, V. D. (n.d.). Measure Theory for Applied Research. Retrieved 2015, from Measurable
Functions: https://www.youtube.com/watch?v=JoL0b6Az2CY
Kozdron, M. (winter 2008). University of British Columbia. Retrieved cited 2016, from Lecture
Notes: http://stat.math.uregina.ca/~kozdron/
Kuttler. (2014, 3 21). Real and Abstract Analysis. Retrieved 2016, from Lecture Notes:
https://www.math.byu.edu/~klkuttle/541book.pdf
Leadbetter, R., Cambanis , S., & Pipiras, V. (2014). A Basic Course in Measure and Probability:
Theory for Applications, 1st Ed. Cambridge university press.
Lebl, J. (2011, Fall). Basic Analysis: Introduction to Real Analysis. Retrieved 2015, from
University of Pittsburgh supplements: http://www.math.pitt.edu/~frank/pittanal2121.pdf
Loya, P. (2013). Lebesgue's Remarkable Theory of Measure and Integration with Probability.
Retrieved cited 2016, from Binghamton university:
http://www.math.binghamton.edu/loya/479-S13/Loyabook.pdf
MIT. (Fall 2008). Massachusetts Institute of Technology. Retrieved 2016, from Fundamentals of
Probability, 6.436J / 15.085J, Lecture2: http://ocw.mit.edu/courses/electricalengineering-and-computer-science/6-436j-fundamentals-of-probability-fall-2008/lecturenotes/
Morais, M. C. (2009-2010). Lecture Notes - Probability Theory. In I. S. Tecnico.
Muqaibel, A. H. (2016, Mar 6). SlideShare. Retrieved from Random Variables Dr. Ali Hussein
Muqaibel Ver. 2.3 1: http://www.slideshare.net/MuhannadSaleh/2-random-variablesnotes-2p3
61
Nagy, G. (FALL 2001). Notes in One File. Retrieved from REAL ANALYSIS, Kansas State
University: https://www.math.ksu.edu/~nagy/real-an/real-an-old/notes.pdf
Norris, J. (2010). Probability and Measure. Retrieved from
http://www.statslab.cam.ac.uk/~james/Lectures/pmall.pdf
Omer, P. (2012, Dec 3). Probability and Random Variables. Retrieved from
http://www.slideshare.net/pratomer/ch2-probability-and-random-variables-pg-81
Pallekonda, S. (2015, Dec). Senior Research Analyst . Idaho Department Of Labor.
Porter, F. (n.d.). The Jordan Measure. Retrieved cited 2016, from Physics 129a, Measure
Theory: http://www.hep.caltech.edu/~fcp/math/measureTheory/measureTheory.pdf
Pra, P. D. (cited 2016). Basic Measure Theory. Retrieved from University of Padua:
http://www.math.unipd.it/~daipra/didattica/galileiana-15/Parte-I.pdf
Quibb. (2013). Lebesgue Measure. Retrieved cited 2016, from Professor Quibb:
http://quibb.blogspot.com/2013/02/lebesgue-measure.html
RJS. (2012, 1 28). University of Texas at Dallas. Retrieved from Some Basic Classes of Subsets
of a Space X: http://www.utdallas.edu/~serfling/handouts/SomeBasicClassesOfSets.pdf
Royden, H. L. (1988). Real Anaylsis, 3rd Edition. Prentive-Hall, Inc.
Royden, H., & Fitzpatrick, P. M. (2010). Real Analysis, 4th Edition. Prentice Hall.
Saks, S. (2016). Home Page of Stefan Banach. Retrieved from Theory of the Integral, with
additional notes by Stefan Banach: http://kielich.amu.edu.pl/Stefan_Banach/e-saks.html
Satish, S., & Harkrishan, V. L. (2011). Multivariable Analysis. Springer-Verlag London Limited.
Shen, J. (2012). School of Economics, The University of New South Wales, Australia. Retrieved
from Mathematics for Economics and Finance, Lecture Notes (14/02/2012):
http://jianfeishen.weebly.com/uploads/4/7/2/6/4726705/math2012.pdf
Siegrist, K. (1997-2015). Probability Convergence. Retrieved from University Alabama:
http://www.math.uah.edu/stat/prob/Convergence.html#con
Susmel, R. (8/2015). Bauer College of Business. Retrieved from
http://www.bauer.uh.edu/rsusmel/phd/sR-0.pdf.
Swartz, C. (1994). Measure, Integration and function Space. World scientific publishing .
Tarantola, A. (2007). Mapping of Probabilities Theory for the Interpretation of Uncertain
Physical Measurements. Cambridge University Press.
62
Tarantola, A. (2007). Mapping of Probabilities Theory for the Interpretation of Uncertain
Physical Measurements .
Thomson, B. S., Bruchner, J. B., & Bruchner, A. M. (2008). Elementary Real Analysis. Prentice
Hall.
UF. (Fall 2012). University of Florida College of Liberal Arts and Sciences,. Retrieved from
MAA6616 Course Notes : http://people.clas.ufl.edu/mjury/files/6616notesshort.pdf
Valkó, B. (2015). Introduction to the Theory of Probability. Retrieved from Math/Stat 431:
http://www.math.wisc.edu/~valko/courses/431/431.html
Vershynin, R. (2007-2008). MAT 235A / 235B: Probability, UM Personal World Wide Web
Server . Retrieved 2016, from Lecture Notes in Probability Theory, Function of Random
Variables: http://www-personal.umich.edu/~romanv/teaching/2007-08/235B/lecturenotes.pdf
Weikard, R. (2016, Feb 29). Real Analysis. Retrieved from Lecture notes for MA 645/646:
http://people.cas.uab.edu/~weikard/teaching/reals.pdf
Weisstein, E. (2015). Vector Norm, (creator of MathWorld). Retrieved 2015, from Created,
developed, and nurtured by Eric Weisstein at Wolfram Research:
http://mathworld.wolfram.com/Norm.html
Wikipedia. (n.d.). Probability Measure. Retrieved 2014, from
https://en.wikipedia.org/wiki/Probability_measure
William, J. (2015). The Lebesgue Integral for Undergraduates. The Mathematical Association of
America.
63