Mathematica Aeterna, Vol. 1, 2011, no. 07, 491 - 507 A Unique Common 3-tupled fixed point theorem for ψ − φ contractions in partial metric spaces K. P. R. Rao Department of Applied Mathematics, A.N.U.-Dr.M.R.Appa Row Campus, Nuzvid-521 201, Andhra Pradesh, India [email protected] G.N.V.Kishore Department of Mathematics, Swarnandhra Institute of Engineering and Technology, Seetharampuram, Narspur- 534 280 , West Godavari District, Andhra Pradesh, India [email protected] N.Srinivasa Rao Department of Applied Sciences and Humanities, Tirumala Engineering College,Jonnalgadda, Narasaraopeta-522601,A.P.,India. [email protected] Abstract In this paper, we obtain a unique common 3-tupled fixed point theorem in partial metric spaces and also mention an example to support our theorem . Mathematics Subject Classification: 54H25, 47H10. Keywords: partial metric, weakly compatible maps, 3-tupled fixed point, complete space. 1 Introduction The notion of partial metric space was introduced by Matthews [17] as a part of the study of denotational semantics of data flow networks. In fact, it is widely recognized that partial metric spaces play an important role in constructing 492 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao models in the theory of computation and domain theory in computer science (see e.g. [23, 26, 27, 8, 14, 20, 15, 21, 24]). Matthews [17, 18], Oltra and Valero [19] and Romaguera [22] and Altun et al. [2] proved some fixed point theorems in partial metric spaces for a single map (see also [1, 9, 10, 11, 12, 13, 3, 4, 5, 25, 20]). Recently, the concept of coupled fixed points was introduced by Bhaskar and Lakshmikantham [7]. In [4], Aydi proved some coupled fixed point theorems for the mappings satisfying contractive conditions in partial metric spaces. In this paper, we introduce a 3-tupled fixed point and obtain a unique common 3-tupled fixed point theorem for four self mappings satisfying a ψ − φ contractive condition in partial metric spaces. First we recall some basic definitions and lemmas which play crucial role in the theory of partial metric spaces. 2 Preliminary Notes Definition 2.1 (See [17, 18]) A partial metric on a nonempty set X is a function p : X × X → R+ such that for all x, y, z ∈ X: (p1 ) x = y ⇔ p(x, x) = p(x, y) = p(y, y), (p2 ) p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y), (p3 ) p(x, y) = p(y, x), (p4 ) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z). The pair (X, p) is called a partial metric space (PMS). If p is a partial metric on X, then the function ps : X × X → R+ given by ps (x, y) = 2p(x, y) − p(x, x) − p(y, y), (1) is a metric on X. Example 2.2 (See e.g. [18, 10, 11, 1]) Consider X = [0, ∞) with p(x, y) = max{x, y}. Then (X, p) is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case ps (x, y) = |x − y|. Example 2.3 (See [9]) Let X = {[a, b] : a, b, ∈ R, a ≤ b} and define p([a, b], [c, d]) = max{b, d} − min{a, c}. Then (X, p) is a partial metric space. A Unique Common 3-tupled fixed point theorem · · · in pms 493 Example 2.4 (See [9]) Let X := [0, 1]∪[2, 3] and define p : X ×X → [0, ∞) by p(x, y) = ( max{x, y} if {x, y} ∩ [2, 3] 6= ∅, |x − y| if {x, y} ⊂ [0, 1]. Then (X, p) is a complete partial metric space. Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open p-balls {Bp (x, ε), x ∈ X, ε > 0}, where Bp (x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0. We now state some basic topological notions (such as convergence, completeness, continuity) on partial metric spaces (see e.g. [17, 18, 2, 1, 10, 13].) Definition 2.5 1. A sequence {xn } in the PMS (X, p) converges to the limit x if and only if p(x, x) = n→∞ lim p(x, xn ). 2. A sequence {xn } in the PMS (X, p) is called a Cauchy sequence if lim p(xn , xm ) exists and is finite. n,m→∞ 3. A PMS (X, p) is called complete if every Cauchy sequence {xn } in X converges with respect to τp , to a point x ∈ X such that p(x, x) = lim p(xn , xm ). n,m→∞ 4. A mapping F : X → X is said to be continuous at x0 ∈ X if for every ǫ > 0, there exists δ > 0 such that F (Bp (x0 , δ)) ⊆ Bp (F x0 , ǫ). The following lemma is one of the basic results in PMS([17, 18, 1, 2, 10, 13]). Lemma 2.6 1. A sequence {xn } is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps ). 2. A PMS (X, p) is complete if and only if the metric space (X, ps ) is complete. Moreover lim ps (x, xn ) = 0 ⇔ p(x, x) = lim p(x, xn ) = lim p(xn , xm ) n→∞ n→∞ n,m→∞ (2) Next, we give two lemmas which will be used in the proof of our main result. For the proofs we refer to e.g. [1, 10, 11]. Lemma 2.7 Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = 0. Then limn→∞ p(xn , y) = p(z, y) for every y ∈ X. Lemma 2.8 Let (X, p) be a PMS. Then 494 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao (A) If p(x, y) = 0 then x = y, (B) If x 6= y, then p(x, y) > 0, (C) If x = y, p(x, y) may not be 0. Lemma 2.9 If {xn } is converges to x in (X, p), then limn→∞ p(xn , y) ≤ p(x, y) for all y ∈ X. Definition 2.10 [7]. An element (x, y) ∈ X × X is called a coupled fixed point of mapping F : X × X → X if x = F (x, y) and y = F (y, x). Very recently Berinde and Borcut [6] introduced the notion of tripled fixed point of a mapping as follows Definition 2.11 [6]. An element (x, y, z) ∈ X × X × X is called a tripled fixed point of mapping F : X × X × X → X if x = F (x, y, z), y = F (y, x, y) and z = F (z, y, x) . Based on these difinitions, we give the following definitions. Definition 2.12 An element (x, y, z) ∈ X ×X ×X is called a 3-tupled fixed point of the mapping T : X × X × X → X if x = T (x, y, z), y = T (y, z, x) and z = T (z, y, x). Definition 2.13 An element (x, y, z) ∈ X × X × X is called (i) a 3-tupled coincident point of mappings T : X ×X ×X → X and f : X → X if f x = T (x, y, z), f y = T (y, z, x) and f z = T (z, x, y); (ii) a common 3-tupled fixed point of mappings T : X × X × X → X and f : X → X if x = f x = T (x, y, z), y = f y = T (y, z, x) and z = f z = T (z, x, y). Definition 2.14 The mappings T : X × X × X → X and f : X → X are called w - compatible if f (T (x, y, z)) = T (f x, f y, f z), f (T (y, z, x)) = T (f y, f z, f x) and f (T (z, x, y)) = T (f z, f x, f y) whenever f x = T (x, y, z), f y = T (y, z, x) and f z = T (z, x, y). Now we prove our main result. A Unique Common 3-tupled fixed point theorem · · · in pms 3 495 Main Results Let Ψ denotes the set of all functions ψ : [0, ∞) → [0, ∞) satisfying (ψ1 ) ψ is continuous and non-decreasing, (ψ2 ) ψ(t) = 0 if and only if t = 0, (ψ3 ) ψ(t + s) ≤ ψ(t) + ψ(s), for all t, s ∈ [0, ∞), while Φ denotes the set of all functions φ : [0, ∞) → [0, ∞) satisfying (φ1 ) φ is continuous, (φ2 ) φ(t) = 0 if and only if t = 0. Theorem 3.1 Let (X, p) be a partial metric space and let S, T : X × X × X → X and f, g : X → X be mappings satisfying (i) ψ(p (S(x, y, z), T (u, v, w))) ≤ 13 ψ(p(f x, gu) + p(f y, gv) + p(f z, gw)) −φ(p(f x, gu) + p(f y, gv) + p(f z, gw)) ∀x, y, z, u, v, w ∈ X where ψ ∈ Ψ and φ ∈ Φ, (ii) S(X × X × X) ⊆ g(X), T (X × X × X) ⊆ f (X), (iii) either f (X) or g(X) is a complete subspace of X, (iv) the pairs (f, S) and (g, T ) are w - compatible. Then S, T, f and g have a unique common 3-tupled fixed point in X × X × X of the form (α, α, α). Proof 3.2 Let x0 , y0 , z0 be arbitrary points in X. From (ii), there exist sequences {xn }, {yn }, {zn }, {un }, {vn } and {wn } in X such that u2n = gx2n+1 = S(x2n , y2n , z2n ), v2n = gy2n+1 = S(y2n , z2n , x2n ), w2n = gz2n+1 = S(z2n , x2n , y2n ), u2n+1 = f x2n+2 = T (x2n+1 , y2n+1, z2n+1 ), v2n+1 = f y2n+2 = T (y2n+1 , z2n+1 , x2n+1 ), w2n+1 = f z2n+2 = T (z2n+1 , x2n+1 , y2n+1 ), (3) n = 0, 1, 2, · · · Then by (i), we have ψ(p(u2 , u1 )) = ψ(p(S(x2 , y2, z2 ), T (x1 , y1 , z1 ))) ≤ 31 ψ(p(f x2 , gx1 ) + p(f y2 , gy1) + p(f z2 , gz1 )) −φ(p(f x2 , gx1) + p(f y2 , gy1) + p(f z2 , gz1)) 1 = 3 ψ(p(u1 , u0 ) + p(v1 , v0 ) + p(w1 , w0 )) −φ(p(u1 , u0 ) + p(v1 , v0 ) + p(w1 , w0)). ψ(p(v2 , v1 )) = ψ(p(S(y2, z2 , x2 ), T (y1 , z1 , x1 ))) ≤ 31 ψ(p(f y2, gy1) + p(f z2 , gz1) + p(f x2 , gx1 )) −φ(p(f y2, gy1) + p(f z2 , gz1 ) + p(f x2 , gx1 )) 1 = 3 ψ(p(u1 , u0 ) + p(v1 , v0 ) + p(w1 , w0)) −φ(p(u1 , u0) + p(v1 , v0 ) + p(w1 , w0 )). 496 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao And ψ(p(w2 , w1 )) = ψ(p(S(z2 , x2 , y2 ), T (z1 , x1 , y1))) ≤ 31 ψ(p(f z2 , gz1) + p(f x2 , gx1 ) + p(f y2, gy1)) −φ(p(f z2 , gz1) + p(f x2 , gx1 ) + p(f y2 , gy1)) 1 = 3 ψ(p(u1, u0 ) + p(v1 , v0 ) + p(w1 , w0 )) −φ(p(u1 , u0 ) + p(v1 , v0 ) + p(w1 , w0 )). By definition of ψ, we have ψ(p(u2 , u1) + p(v2 , v1 ) + p(w2 , w1 )) ≤ ψ(p(u2 , u1 )) + ψ(p(v2 , v1 )) + ψ(p(w2 , w1 )) ≤ ψ(p(u1 , u0 ) + p(v1 , v0 ) + p(w1 , w0)) −3φ(p(u1 , u0 ) + p(v1 , v0 ) + p(w1 , w0 )) ≤ ψ(p(u1 , u0 ) + p(v1 , v0 ) + p(w1 , w0)). Since ψ is non - decreasing, we have p(u2 , u1 ) + p(v2 , v1 ) + p(w2 , w1 ) ≤ p(u1, u0 ) + p(v1 , v0 ) + p(w1 , w0 ). Similarly ψ(p(u3 , u2) + p(v3 , v2 ) + p(w3 , w2 )) ≤ ψ(p(u2 , u1 ) + p(v2 , v1 ) + p(w2 , w1)) −3φ(p(u2 , u1 ) + p(v2 , v1 ) + p(w2 , w1 )). Hence by induction, we have p(un , un+1) ψ +p(vn , vn+1 ) ≤ ψ (p(un , un−1) + p(vn , vn−1 ) + p(wn , wn−1 )) +p(wn , wn+1) −3φ (p(un , un−1) + p(vn , vn−1 ) + p(wn , wn−1 )) (4) ≤ ψ(p(un , un−1 ) + p(vn , vn−1 ) + p(wn , wn−1)). Since ψ is non - decreasing, we have p(un , un+1)+p(vn , vn+1 )+p(wn , wn+1 ) ≤ p(un , un−1)+p(vn , vn−1 )+p(wn , wn−1). Put Rn = p(un , un+1) + p(vn , vn+1 ) + p(wn , wn+1 ). Then {Rn } is a non increasing sequence of real numbers and must converge to r ≥ 0. Suppose r > 0. Letting n → ∞ in (4), we have that ψ(r) ≤ ψ(r) − φ(r) < ψ(r). It is a contradiction. Hence r = 0. Thus lim [p(un , un+1) + p(vn , vn+1 ) + p(wn , wn+1 )] = 0. n→∞ A Unique Common 3-tupled fixed point theorem · · · in pms 497 It follows that lim p(un , un+1) = lim p(vn , vn+1 ) = lim p(wn , wn+1 ) = 0. n→∞ n→∞ n→∞ (5) From (p2 ), we have lim p(un , un ) = n→∞ lim p(vn , vn ) = n→∞ lim p(wn , wn ) = 0. n→∞ (6) From definition of ps , (2.3) and (2.4), we have lim ps (un , un+1 ) = 0. (7) lim ps (vn , vn+1 ) = 0 (8) lim ps (wn , wn+1 ) = 0. (9) n→∞ Similarly n→∞ and n→∞ Now we prove that {u2n }, {v2n } and {w2n } are Cauchy sequences. On contrary, suppose that {u2n } or {v2n } or {w2n } is not Cauchy. Then there exists an ǫ > 0 and monotone increasing sequences of natural numbers {2mk } and {2nk } such that nk > mk , ps (u2mk , u2nk ) + ps (v2mk , v2nk ) + ps (w2mk , w2nk ) ≥ ǫ (10) ps (u2mk , u2nk −2 ) + ps (v2mk , v2nk −2 ) + ps (w2m , w2nk −2 ) < ǫ. (11) and From (10) and (11), we have ǫ ≤ ps (u2mk , u2nk ) + ps (v2mk , v2nk ) + ps (w2mk , w2nk ) ≤ ps (u2mk , u2nk −2 ) + ps (v2mk , v2nk −2 ) + ps (w2mk , w2nk −2 ) +ps (u2nk −2 , u2nk −1 ) + ps (v2nk −2 , v2nk −1 ) + ps (w2nk −2 , w2nk −1 ) +ps (u2nk −1 , u2nk ) + ps (v2nk −1 , v2nk ) + ps (w2nk −1 , w2nk ) < ǫ + ps (u2nk −2 , u2nk −1 ) + ps (v2nk −2 , v2nk −1 ) + ps (w2nk −2 , w2nk −1 ) +ps (u2nk −1 , u2nk ) + ps (v2nk −1 , v2nk ) + ps (w2nk −1 , w2nk ). Letting k → ∞ and using (7), (8) and (9) we have lim [ps (u2mk , u2nk ) + ps (v2mk , v2nk ) + ps (w2mk , w2nk )] = ǫ. k→∞ (12) By definition of ps and (6), we have ǫ lim [p(u2mk , u2nk ) + p(v2mk , v2nk ) + p(w2mk , w2nk )] = . k→∞ 2 (13) 498 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao Also, ǫ ≤ ps (u2mk , u2nk ) + ps (v2mk , v2nk ) + ps (w2mk , w2nk ) ≤ ps (u2mk , u2mk −1 ) + ps (v2mk , v2mk −1 ) + ps (w2mk , w2mk −1 ) +ps (u2mk −1 , u2nk ) + ps (v2mk −1 , v2nk ) + ps (w2mk −1 , w2nk ) ≤ 2[ps (u2mk , u2mk −1 ) + ps (v2mk , v2mk −1 ) + ps (w2mk , w2mk −1 )] +[ps (u2mk , u2nk ) + ps (v2mk , v2nk ) + ps (w2mk , w2nk )]. (14) Letting k → ∞ and using (7),(8), (9), (12) and (14), we have lim [ps (u2mk −1 , u2nk ) + ps (v2mk −1 , v2nk ) + ps (w2mk −1 , w2nk )] = ǫ. (15) k→∞ By definition of ps and (6), we have ǫ lim [p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )] = . k→∞ 2 (16) On other hand we have ps (u2mk , u2nk ) + ps (v2mk , v2nk ) + ps (w2mk , w2nk ) ≤ ps (u2mk , u2nk +1 ) + ps (v2mk , v2nk +1 ) + ps (w2mk , w2nk +1 ) +ps (u2nk +1 , u2nk ) + ps (v2nk +1 , v2nk ) + ps (w2nk +1 , w2nk ). Letting k → ∞ and using (6), (7),(8)(9) and (12), we have ǫ ≤ lim [ps (u2mk , u2nk +1 ) + ps (v2mk , v2nk +1 ) + ps (w2mk , w2nk +1 )] + 0 k→∞ = 2 lim [p(u2mk , u2nk +1 ) + p(v2mk , v2nk +1 ) + p(w2mk , w2nk +1 )]. k→∞ Thus, ǫ ≤ lim [p(u2mk , u2nk +1 ) + p(v2mk , v2nk +1 ) + p(w2mk , w2nk +1 )]. 2 k→∞ By the properties of ψ, we have ψ ǫ 2 ≤ ψ ≤ lim [p(u2mk , u2nk +1 ) + p(v2mk , v2nk +1 ) + p(w2mk , w2nk +1 )] k→∞ lim k→∞ ψ(p(u2mk , u2nk +1 )) + ψ(p(v2mk , v2nk +1 )) +ψ(p(w2mk , w2nk +1 )) ! . (17) Now ψ(p(u2mk , u2nk +1 )) = ψ (p(S(x2mk , y2mk , z2mk ), T (x2nk +1 , y2nk +1 , z2nk +1 ))) ≤ 31 ψ (p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) −φ (p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) . Similarly ψ(p(v2mk , v2nk +1 )) ≤ 13 ψ (p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) −φ (p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) A Unique Common 3-tupled fixed point theorem · · · in pms 499 and ψ(p(w2mk , w2nk +1 )) ≤ 13 ψ (p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) −φ (p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) . Hence from (16) and (17), we have ψ ǫ 2 ψ (p(u2mk −1 , u2nk ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) ≤ lim −3φ (p(u , u ) + p(v2mk −1 , v2nk ) + p(w2mk −1 , w2nk )) k→∞ 2mk −1 2nk ǫ ǫ = ψ 2 − 3φ 2 < ψ 2ǫ . ! It is a contradiction. Hence {u2n }, {v2n } and {w2n } are Cauchy sequences in the metric space (X, ps ). Letting n, m → ∞ in |ps (u2n+1 , u2m+1 ) − ps (u2n , u2m )| ≤ ps (u2n+1 , u2n ) + ps (u2m+1 , u2m ) we get lim ps (u2n+1 , u2m+1 ) = 0. n,m→∞ Letting n, m → ∞ in |ps (v2n+1 , v2m+1 ) − ps (v2n , v2m )| ≤ ps (v2n+1 , v2n ) + ps (v2m+1 , v2m ) we get lim ps (v2n+1 , v2m+1 ) = 0. n,m→∞ Letting n, m → ∞ in |ps (w2n+1 , w2m+1 ) − ps (w2n , w2m )| ≤ ps (w2n+1 , w2n ) + ps (w2m+1 , w2m ) we get lim ps (w2n+1 , w2m+1 ) = 0. n,m→∞ Thus {u2n+1 }, {v2n+1 } and {w2n+1 } are Cauchy sequences in the metric space (X, ps ). Hence {un }, {vn } and {wn } are Cauchy sequences in the metric space (X, ps ). Hence we have that lim ps (um , un ) = lim ps (vm , vn ) = lim ps (wm , wn ) = 0. n,m→∞ n,m→∞ n,m→∞ (18) Now from definition of ps and from (6), we have lim p(um , un ) = lim p(vm , vn ) = lim p(wm , wn ) = 0. n,m→∞ n,m→∞ n,m→∞ (19) Suppose f (X) is complete. Since {u2n+1 } ⊆ f (X), {v2n+1} ⊆ f (X) and {w2n+1 } ⊆ f (X) are Cauchy sequences in the complete metric space (f (X), ps ), it follows that the sequences {u2n+1 }, {v2n+1 } and {w2n+1 } are convergent in (f (X), ps). Thus lim ps (u2n+1 , α) = 0, lim ps (v2n+1 , β) = 0 and lim ps (w2n+1 , γ) = 0 for n→∞ n→∞ n→∞ some α, β and γ in f (X). There exist x, y, z ∈ X such that α = f x, β = f y and γ = f z. 500 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao Since {un }, {vn } and {wn } are Cauchy sequences in X and {u2n+1 } → α, {v2n+1 } → β and {w2n+1 } → γ , it follows that {u2n } → α, {v2n } → β and {w2n } → γ. From Lemma 2.6(2), we have p(α, α) = lim p(u2n , α) = lim p(u2n+1 , α) = n→∞ n→∞ p(β, β) = lim p(v2n , β) = lim p(v2n+1 , β) = n→∞ n→∞ lim n, m→∞ lim p(un , um ). n, m→∞ p(vn , vm ) (20) (21) and p(γ, γ) = n→∞ lim p(w2n , γ) = n→∞ lim p(w2n+1 , γ) = n, lim p(wn , wm ). m→∞ (22) From (19), (20), (21) and (22) we have p(α, α) = lim p(u2n , α) = lim p(u2n+1 , α) = 0. (23) p(β, β) = lim p(v2n , β) = lim p(v2n+1 , β) = 0 (24) p(γ, γ) = lim p(w2n , γ) = lim p(w2n+1 , γ) = 0. (25) n→∞ n→∞ n→∞ n→∞ and n→∞ n→∞ Now p(S(x, y, z), α) ≤ p(S(x, y, z), u2n+1) + p(u2n+1 , α) − p(u2n+1 , u2n+1 ) ≤ p(S(x, y, z), T (x2n+1 , y2n+1 , z2n+1 )) + p(u2n+1 , α). Letting n → ∞, we have p(S(x, y, z), α) ≤ lim p(S(x, y, z), T (x2n+1, y2n+1 , z2n+1 )) + 0. n→∞ Since by the property of ψ, we have ψ(p(S(x, y, z), α)) ≤ lim ψ(p(S(x, y, z), T (x2n+1, y2n+1 , z2n+1 )) n→∞ ( ) 1 ψ(p(f x, gx ) + p(f y, gy ) + p(f z, gz )) 2n+1 2n+1 2n+1 3 ≤ n→∞ lim −φ(p(f x, gx2n+1 ) + p(f y, gy2n+1) + p(f z,)gz2n+1 )) ( 1 ψ(p(α, u2n ) + p(β, v2n ) + p(γ, w2n )) 3 = n→∞ lim −φ(p(α, u2n ) + p(β, v2n ) + p(γ, w2n )) = ψ(0) − φ(0) = 0. It follows that S(x, y, z) = α. Similarly S(y, z, x) = β and S(z, x, y) = γ. Thus α = f x = S(x, y, z), β = f y = S(y, z, x) and γ = f z = S(z, x, y). A Unique Common 3-tupled fixed point theorem · · · in pms 501 Since (f, S) is w-compatible we have S(α, β, γ) = f α, S(β, γ, α) = f β and S(γ, α, β) = f γ. By definition ps (f α, u2n ) = 2p(f α, u2n ) − p(f α, f α) − p(u2n , u2n ). Letting n → ∞, we get ps (f α, α) = 2 lim p(f α, u2n ) − p(f α, f α) − 0. n→∞ Thus we have 2p(f α, α) − p(f α, f α) − p(α, α) = 2 lim p(f α, u2n ) − p(f α, f α) − 0. n→∞ Hence lim p(f α, u2n ) = p(f α, α). By the same analogy, we have n→∞ lim p(f β, v2n ) = p(f β, β) and n→∞ lim p(f γ, w2n ) = p(f γ, γ). n→∞ Now, we shall prove that f α = α, f β = β and f γ = γ. By the triangle inequality (p4 ), we have p(f α, α) ≤ p(f α, u2n+1) + p(u2n+1 , α) − p(u2n+1 , u2n+1) ≤ p(S(α, β, γ), T (x2n+1, y2n+1 , z2n+1 )) + p(u2n+1 , α). Letting n → ∞ in the equality above , we get p(f α, α) ≤ lim p(S(α, β, γ), T (x2n+1, y2n+1, z2n+1 )) + 0. n→∞ Since ψ is continuous and non - decreasing, we have ψ(p(f α, α)) ≤ lim ψ(p(S(α, β, γ), T (x2n+1, y2n+1 , z2n+1 ))) n→∞ ! 1 ψ(p(f α, gx ) + p(f β, gy ) + p(f γ, gz )) 2n+1 2n+1 2n+1 3 ≤ lim n→∞ −φ(p(f α, gx2n+1) + p(f β, gy2n+1) + p(f γ, gz! 2n+1 )) 1 ψ(p(f α, u2n ) + p(f β, v2n ) + p(f γ, w2n )) 3 = lim n→∞ −φ(p(f α, u2n ) + p(f β, v2n ) + p(f γ, w2n )) = 31 ψ(p(f α, α) + p(f β, β) + p(f γ, γ)) − φ(p(f α, α) + p(f β, β) + p(f γ, γ)). Similarly ψ(p(f β, β)) ≤ 13 ψ(p(f α, α) + p(f β, β) + p(f γ, γ)) − φ(p(f α, α) + p(f β, β) + p(f γ, γ)) and ψ(p(f γ, γ)) ≤ 31 ψ(p(f α, α) + p(f β, β) + p(f γ, γ)) − φ(p(f α, α) + p(f β, β) + p(f γ, γ)). 502 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao By definition of ψ, we have ψ(p(f α, α) + p(f β, β) + p(f γ, γ)) ≤ ψ(p(f α, α)) + ψ(p(f β, β)) + ψ(p(f γ, γ)) ≤ ψ(p(f α, α) + p(f β, β) + p(f γ, γ)) − 3φ(p(f α, α) + p(f β, β) + p(f γ, γ)). It follows that φ(p(f α, α) + p(f β, β) + p(f γ, γ)) = 0. Thus f α = α, f β = β and f γ = γ. Hence α = f α = S(α, β, γ), β = f β = S(β, γ, α) and γ = f γ = S(γ, α, β). (26) Since S(X × X × X) ⊆ g(X), there exist r, s, t ∈ X such that α = S(α, β, γ) = gr, β = S(β, γ, α) = gs and γ = S(γ, α, β) = gt. Consider ψ(α, T (r, s, t)) = ψ(S(α, β, γ), T (r, s, t))) ≤ 31 ψ(p(f α, gr) + p(f β, gs) + p(f γ, gt)) −φ(p(f α, gr) + p(f β, gs) + p(f γ, gt)) = ψ(p(α, α) + p(β, β) + p(γ, γ)) −φ(p(α, α) + p(β, β) + p(γ, γ)) = ψ(0) − φ(0) = 0, from (23), (24) and (25). It follows that T (r, s, t) = α = gr. Similarly T (s, t, r) = β = gs and T (t, r, s) = γ = gt. Since (g, T ) is w - compatible, we have T (α, β, γ) = gα, T (β, γ, α) = gβ and T (γ, α, β) = gγ. Now ψ(p(α, gα)) = ψ(p(S(α, β, γ), T (α, β, γ))) ≤ 31 ψ(p(f α, gα) + p(f β, gβ) + p(f γ, gγ)) −φ(p(f α, gα) + p(f β, gβ) + p(f γ, gγ)) 1 ≤ 3 ψ(p(α, gα) + p(β, gβ) + p(γ, gγ)) − φ(p(α, gα) + p(β, gβ) + p(γ, gγ)). Similarly ψ(p(β, gβ)) ≤ 13 ψ(p(α, gα) + p(β, gβ) + p(γ, gγ)) − φ(p(α, gα) + p(β, gβ) + p(γ, gγ)) and ψ(p(γ, gγ)) ≤ 13 ψ(p(α, gα) + p(β, gβ) + p(γ, gγ)) − φ(p(α, gα) + p(β, gβ) + p(γ, gγ)). A Unique Common 3-tupled fixed point theorem · · · in pms 503 By definition of ψ, we have ψ(p(α, gα) + p(β, gβ) + p(γ, gγ)) ≤ ψ(p(α, gα)) + ψ(p(β, gβ)) + ψ(p(γ, gγ)) ≤ ψ(p(α, gα) + p(β, gβ) + p(γ, gγ)) − 3φ(p(α, gα) + p(β, gβ) + p(γ, gγ)). It follows that α = gα, β = gβ and γ = gγ. Thus α = gα = T (α, β, γ), β = gβ = T (β, γ, α) and γ = gγ = T (γ, α, β). (27) Hence from (26) and (27), (α, β, γ) is common 3-tupled fixed point of S, T, f and g. To prove uniqueness, let (α∗ , β ∗ , γ ∗ ) is another common 3-tupled fixed point of S, T, f and g. Consider ψ(p(α, α∗)) = ψ(p(S(α, β, γ), T (α∗, β ∗ , γ ∗ ))) ≤ 13 ψ(p(f α, gα∗) + p(f β, gβ ∗) + p(f γ, gγ ∗)) −φ(p(f α, gα∗) + p(f β, gβ ∗) + p(f γ, gγ ∗)) 1 ≤ 3 ψ(p(α, α∗ ) + p(β, β ∗) + p(γ, γ ∗ )) − φ(p(α, α∗) + p(β, β ∗) + p(γ, γ ∗ )). Similarly ψ(p(β, β ∗)) ≤ 31 ψ(p(α, α∗) + p(β, β ∗) + p(γ, γ ∗ )) − φ(p(α, α∗) + p(β, β ∗ ) + p(γ, γ ∗ )) and ψ(p(γ, γ ∗ )) ≤ 31 ψ(p(α, α∗) + p(β, β ∗) + p(γ, γ ∗ )) − φ(p(α, α∗) + p(β, β ∗) + p(γ, γ ∗ )). By definition of ψ, we have ψ(p(α, α∗) + p(β, β ∗) + p(γ, γ ∗ )) ≤ ψ(p(α, α∗)) + ψ(p(β, β ∗)) + ψ(p(γ, γ ∗ )) ≤ ψ(p(α, α∗) + p(β, β ∗) + p(γ, γ ∗ )) − 3φ(p(α, α∗) + p(β, β ∗) + p(γ, γ ∗ )). It follows that α = α∗ , β = β ∗ and γ = γ ∗ . Therfore (α, β, γ) is unique common 3-tupled fixed point of S, T, f and g. Now we claim that α = β = γ. ψ(p(α, β)) = ψ(p(S(α, β, γ), T (β, γ, α))) ≤ 13 ψ(p(f α, gβ) + p(f β, gγ) + p(f γ, gα)) −φ(p(f α, gβ) + p(f β, gγ) + p(f γ, gα)) 1 = 3 ψ(p(α, β) + p(β, γ) + p(γ, α)) −φ(p(α, β) + p(β, γ) + p(γ, α)). 504 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao ψ(p(β, γ)) = ψ(p(S(β, γ, α), T (γ, α, β))) ≤ 31 ψ(p(f β, gγ) + p(f γ, gα) + p(f α, gβ)) −φ(p(f β, gγ) + p(f γ, gα) + p(f α, gβ)) = 31 ψ(p(α, β) + p(β, γ) + p(γ, α)) −φ(p(α, β) + p(β, γ) + p(γ, α)) and ψ(p(γ, α)) = ψ(p(S(γ, α, β), T (α, β, γ))) ≤ 31 ψ(p(f γ, gα) + p(f α, gβ) + p(f β, gγ)) −φ(p(f γ, gα) + p(f α, gβ) + p(f β, gγ)) = 13 ψ(p(α, β) + p(β, γ) + p(γ, α)) −φ(p(α, β) + p(β, γ) + p(γ, α)). By definition of ψ, we have ψ(p(α, β) + p(β, γ) + p(γ, α)) ≤ ψ(p(α, β)) + ψ(p(β, γ)) + ψ(p(γ, α)) = ψ(p(α, β) + p(β, γ) + p(γ, α)) − 3φ(p(α, β) + p(β, γ) + p(γ, α)). It follows that α = β = γ. Thus S, T, f and g have unique common 3-tupled fixed point of the form (α, α, α) in X × X × X. Example 3.3 Let X = [0, 1], the mappings S, T : X × X × X → X 2 2 2 and f, g : X → X be defined by S(x, y, z) = x +y6 +z , T (x, y, z) = x+y+z , 12 x 2 f (x) = x and g(x) = 2 respectively and p : X × X → [0, ∞) by p(x, y) = max{x, y}. Let ψ, φ : [0, ∞) → [0, ∞) be defined by ψ(x) = x and φ(x) = x6 . Clearly the conditions (ii),(iii) and (iv) are satisfied. Now n 2 2 2 o p(S(x, y, z), T (u, v, w)) = max x +y6 +z , u+v+w 12 n 2 2 2 u = max x6 + y6 + z6 , 12 + ≤ = = = = o v + w n 2 o n 2 12 o 12 n 2 o u v w max x6 , 12 + max y6 , 12 + max z6 , 12 h n o n o n oi 1 max x2 , u2 + max y 2, v2 + max z 2 , w2 6 1 [p(f x, gu) + p(f y, gv) + p(f z, gw)] 6 1 [p(f x, gu) + p(f y, gv) + p(f z, gw)] 3 − 16 [p(f x, gu) + p(f y, gv) + p(f z, gw)] 1 ψ(p(f x, gu) + p(f y, gv) + p(f z, gw)) 3 −φ(p(f x, gu) + p(f y, gv) + p(f z, gw)). Hence all conditions of Theorem 3.1 are satisfied and (0, 0, 0) is unique common 3-tupled fixed point of S, T, f and g. A Unique Common 3-tupled fixed point theorem · · · in pms 505 References [1] T. Abdeljawad, E. Karapınar, K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., (2011) 24 (11),1894–1899. [2] I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topology and its Applications, (2010) 157 (18), 2778-2785. [3] I. Altun and A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications, Volume 2011, Article ID 508730, 10 pages, doi:10.1155/2011/508730. [4] H. Aydi, Some coupled fixed point results on partial metric spaces, International Journal of Mathematics and Mathematical Sciences, Volume 2011, Article ID 647091, 11 pages, doi:10.1155/2011/647091. [5] H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces, Journal of Advanced Mathematical and Studies,(2011) Volume 4, Number 2. [6] V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis, (2011) 74(15), 4889-4897. [7] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, (2006) 65, 1379-1393. [8] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures,(1999) no.1-2, 7, 71-83. [9] D. Ilić, V. Pavlović, V. Rakočević, Some new extensions of Banach’s contraction principle to partial metric spaces, Appl. Math. Letters, doi:10.1016/j.aml.2011.02.025. [10] E. Karapınar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Applied Mathematics Letters, (2011) 24 (11),1900-1904, 10.1016/j.aml.2011.05.013. [11] E. Karapınar, Weak φ-contraction on partial contraction, J. Comput. Anal. Appl. (in press). [12] E. Karapınar, Weak φ-contraction on partial contraction and existence of fixed points in partially ordered sets, Mathematica Aeterna, (2011) 1(4)237-244. 506 K.P.R.Rao, G.N.V.Kishore and N.Srinivasa Rao [13] E. Karapınar, Generalizations of Caristi Kirk’s Theorem on Partial metric Spaces, Fixed Point Theory and. Appl., 2011:4, doi:10.1186/1687-18122011-4. [14] R. Kopperman, S.G. Matthews, and H. Pajoohesh, What do partial metrics represent?, Spatial representation: discrete vs. continuous computational models, Dagstuhl Seminar Proceedings, (2005) No. 04351, Internationales Begegnungs- und Forschungszentrum fr Informatik (IBFI), Schloss Dagstuhl, Germany. MR 2005j:54007. [15] H.P.A. Künzi, H. Pajoohesh, and M.P. Schellekens, Partial quasi-metrics, Theoret. Comput. Sci., (2006) 365 no.3 237-246. MR 2007f:54048. [16] V. Lakshmikantham and Lj. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis, (2009) 70, 4341-4349. [17] S.G. Matthews. Partial metric topology. Research Report 212. Dept. of Computer Science, (1992) University of Warwick . [18] S.G. Matthews, Partial metric topology, in Proceedings of the 8th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences, (1994), vol. 728, pp. 183-197. [19] S. Oltra and O. Valero, Banach’s fixed point theorem for partial metric spaces, Rendiconti dell’Istituto di Matematica dell’Università di Trieste, (2004) 36 (1-2), 17-26. [20] S.J. ONeill, Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK, (1995), http://www.dcs.warwick.ac.uk/reports/283.html. [21] S. Romaguera and M. Schellekens, Weightable quasi-metric semigroup and semilattices, Electronic Notes of Theoretical computer science, Proceedings of MFCSIT, (2003), 40, Elsevier. [22] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and Applications,(2010) Volume 2010, Article ID 493298, 6 pages. [23] M.Schellekens, The Smtth comletion: a common foundation for denotational semantics and complexity analysis, Electronic Notes in Theoretical Computer Science,1995, vol. 1, 535 - 556. [24] M.P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Topology in computer science (Schlo Dagstuhl, 2000), Theoretical Computer Science (2003) 305 no. 1-3 , 409-432. MR 2004i:54037. A Unique Common 3-tupled fixed point theorem · · · in pms 507 [25] O. Valero, On Banach fixed point theorems for partial metric spaces, Applied General Topology, (2005) 6 (2), 229-240. [26] P.Waszkiewicz, Quantitative continuous domains, Applied Categorical Structures, 2003, vol. 11, no. 1, 41 - 67. [27] P.Waszkiewicz, Partial metrizebility of continuous posets, Mathematical Structures in Computer Sciences, 2006, vol. 16, no. 2, 359 - 372. Received: October 21, 2011
© Copyright 2026 Paperzz