Probing Halogen Bonds with NMR One- and Two-Bond Spin-Spin Coupling Constants Halogen bonds: 1J(F-Cl) 19F-35Cl…15N 1XJ(Cl-N) Janet E. Del Bene 2XJ(F-N) Methods for structure optimization and the calculation of spin-spin coupling constants 1. Structure optimization: (Gaussian 03) F-Cl…N: MP2/aug’-cc-pVTZ 2. Coupling constants: a. Method: Equation-of-motion coupled cluster singles and doubles (EOM-CCSD) (ACES II) b. Basis set: Ahlrichs (qzp,qz2p) c. J Terms: paramagnetic spin-orbit (PSO), diamagnetic orbit (DSO), Fermi contact (FC), and spin dipole (SD) spin- Cl-N distances (Å) and binding energies (kcal/mol) for complexes with F-Cl…N halogen bonds Legon (gas-phase)a MP2/aug’-cc-pVTZ Complex Ro(Cl-N), Å Re(Cl-N) FCl…NCH 2.69 2.54 5.8 FCl…NC-CH3 2.56 2.47 7.1 FCl…NH3 2.37 (“little ion-pair”) 2.24 11.7 FCl…N(CH3)3 2.09 (“70% ion-pair”) 2.04 23.9 ΔEe a) A. C. Legon, “The interaction of dihalogens and hydrogen halides with Lewis bases in the gas-phase” Struct. Bond. (2008) 126, 17. Binding energies for complexes with halogen bonds vs. binding energies for complexes with hydrogen bonds ΔEX (kcal/mol) 25 20 15 10 5 0 0 5 10 ΔEH (kcal/mol) 15 20 F-Cl…N halogen-bonded complexes Nitrogen bases sp2 sp3 N≡N Z-HN=NH NH2F F-C≡N H2C=NH NH3 sp H-C≡N NH(CH2)2 cyc H3C-C≡N NH2(CH3) Li-C≡N R(F-N) and R(F-Cl) vs. R(Cl-N) (Å) in complexes with F-Cl…N halogen bonds 4.5 1.8 4.4 1.76 4.2 1.72 4.1 1.68 4 3.9 1.64 3.8 ← R(F-N) R(F-Cl) → 3.7 1.6 2 Strong base 2.1 2.2 2.3 2.4 2.5 R(Cl-N), Å 2.6 2.7 2.8 2.9 Weak base Å Å 4.3 2hJ(F-N) vs. R(F-N) for complexes with F-H…N hydrogen bonds -80 R2 = 0.97 2hJ(F-N), Hz -60 -40 -20 0 2.5 2.6 2.7 2.8 R(F-N), Å 2.9 3.0 3.1 2XJ(F-N) and 1XJ(Cl-N) vs. the F-N distance for F-Cl…N halogen bonds -90 2XJ(F-N); R2 = 0.99 1XJ(Cl-N); R2 = 0.95 -80 -70 Hz -60 -50 -40 -30 -20 -10 0 _________________ │ │ │ │ │ 3.8 3.9 4 4.1 R(F-N), Å 4.2 4.3 4.4 4.5 1J(F-Cl) as a function of the F-Cl distance (Å) for complexes with F-Cl…N halogen bonds Monomer 800 R2 = 0.93 1J(F-Cl), Hz 780 760 740 NCLi 720 700 NH2F 680 Z-N2H2 660 1.62 1.64 1.66 1.68 1.7 R(F-Cl), Å 1.72 1.74 1.76 Across the proton-transfer coordinate for F-H…NH3 2hJ(F-N) 450 → -70 -60 350 -50 250 Hz 150 ← 1hJ(H-N) 1J(F-H) → -30 -20 50 -10 -50 0 -150 0.95 1.05 1.15 1.25 R(F-H), Å 1.35 1.45 10 1.55 Hz -40 Across the Cl-transfer coordinate for F-Cl…NH3 700 -120 680 -100 ← 1J(F-Cl) 2XJ(F-N) → 660 -80 Hz Hz 640 1XJ(Cl-N) -60 → 620 -40 600 -20 580 0 2.3 2.2 2.1 2 R(Cl-N), Å 1.9 1.8 1.7 Why doesn’t 1XJ(Cl-N) in the complex approach 1J(Cl-N) in the isolated ion? F-……+Cl-NH3 -31 Hz Complex: Ion: +Cl-NH 3 +9 Hz F(-0.41e) Cl(+0.25e) N(-0.49e) Cl(+0.32e) N(-0.04e) Conclusions 1. Coupling constants across halogen bonds can be used to characterize complexes with F-Cl…N halogen bonds. Both 2hJ(F-N) for hydrogen bonds and 2XJ(F-N) for halogen bonds increase in absolute value with decreasing F-N distance. 2. Changes in coupling constants along the Cl transfer are quite different from changes in corresponding coupling constants across the proton-transfer coordinate. 3. Complexes of F-Cl with the stronger N bases are more stable than corresponding complexes of F-H, and should be amenable to experimental investigations of coupling constants at low temperatures. Acknowledgments José Elguero and Ibon Alkorta, CSIC, Madrid US National Science Foundation CHE-9873815 Ohio Supercomputer Center Congratulations, Russ Pitzer, on a long and productive scientific career as a University Professor teacher and researcher in quantum chemistry. Wishing you continued success and enjoyment! EOM-CCSD and SOPPA (Second-order Polarization Propagator Approximation) vs. Experimental 1J(X-Y), Hz 700 HmX-YHn and F-substituted derivatives 500 300 100 -700.00 -500.00 -300.00 -100.00 -100 100.00 300.00 500.00 700.00 -300 -500 J(exp) = 1.007J(EOM) – 2.123 R2 = 0.997 J(exp) = 1.201J(SOP) – 17.48 R2 = 0.962 Del Bene, Alkorta, Elguero, JCTC, 2008, 4, 967. -700
© Copyright 2026 Paperzz