Sunk Cost and Entry: Appendix Stephen Martin Department of Economics Krannert School of Management Purdue University 403 West State Street West Lafayette, Indiana 47907-2056 USA [email protected] November 2001 Contents 1 No depreciation, no resale 2 2 Depreciation, no resale 2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9 11 3 nB = nA + 1 3.1 nB = nA + 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Entrant’s value, nB = nA + 1 17 5 Infinite horizon, partial sunk cost 21 6 First solution 25 7 Second solution 34 1 1 No depreciation, no resale First (and highly stylized) example: Linear inverse demand curve: p=a−Q Stone-Geary production function: ¶ µ K −K L−L , q = min aK aL Capital does not depreciate and cannot be resold. Present-discounted value of a monopoly supplier (who, facing unchanging demand conditions, will produce the same output in each period): ∙ ¸ ¢ £ ¡ ¢¤ ¡ 1 1 k Vm = −p K + aK q + (a − q) q − w L + aL q + ... + 1 + r (1 + r)2 ¢ ¡ ¢ ¡ a − waL − rpk aK − q q − rpk K + wL = r (a − cH − q) q − FH = r Monopoly output: qm = ¢ 1 1¡ (a − cH ) = a − waL − rpk aK 2 2 If entry occurs, the entrant maximizes V2 = (a − cH − q1 − q2 ) q2 − FH r Taking into account the fact the equilibrium duopoly output of a single firm is less than monopoly output, the incumbent, with surplus and nondepreciating capital, maximizes V1 = (a − cL − q1 − q2 ) q2 − FL , r for cL = waL 2 FL = wL First-order conditions are 2q1 + q2 = a − cL q1 + 2q2 = a − cH and in the usual way, we find equilibrium outputs ¶µ ¶ µ ¶ µ q1 a − cL 2 1 = 1 2 q2 a − cH ¶ µ ¶µ ¶ µ 2 −1 a − cL q1 = 3 −1 2 q2 a − cH ¶ ¶ µ µ 1 a − 2cL + cH q1 = q2 3 a + cL − 2cH ¶ ¶ µ µ 1 a − 2waL + rpk aK + waL q1 = q2 3 a − 2rpk aK − 2waL + waL ¶ ¶ µ µ 1 a − waL + rpk aK q1 = . q2 3 a − waL − 2rpk aK The entrant’s equilibrium value is V2 = q22 − FH r ¸ ∙ ¢2 1 1¡ k a − waL − 2rp aK − FH = r 9 By analogy with the innovation literature, where a drastic innovation is one that makes the post-innovation equilibrium option of the successful innovator’s rivals to shut down, we can call sunk costs drastic if ¢2 1¡ a − waL − 2rpk aK < FH = rpk K + wL. 9 In this case, entry is blocked: not because of the impact the need to make its own investment in sunk cost has on the decision of the entrant, but because of the impact entry would have on the economic costs of the incumbent. Further, if ¢2 ¢2 1¡ 1¡ a − rpk aK − waL ≥ FH > a − 2rpk aK − waL , 9 9 entry is blocked because of the sunk nature of the investments made by the incumbent: if investments were not sunk, entry would be profitable. 3 2 Depreciation, no resale Second (and less stylized) example: let capital depreciate at rate δ per period, 0 ≤ δ ≤ 1. Monopoly: ¢ ¡ Vm = −pk K + aK q + ¢¤ ¡ 1 £ (a − q) q − w L + aL q 1+r ¾ ½ ¢ ¢¤ ¡ ¡ 1 1 £ k + −δp K + aK q + (a − q) q − w L + aL q 1+r 1+r ½ ¾ ¡ ¢ ¢¤ ¡ 1 £ 1 k −δp K + aK q + (a − q) q − w L + aL q + ... + 1+r (1 + r)2 (collecting terms that are multiplied by 1/ (1 + r), by 1/ (1 + r)2 , etc.) ¢ ¡ = −pk K + aK q + + ¢ ¢¤ ¡ ¡ 1 £ (a − q) q − w L + aL q − δpk K + aK q 1+r ¢ ¢¤ £ ¡ ¡ 1 k K + aK q + . . . 2 (a − q) − w L + aL q − δp (1 + r) (adding up the infinite series) ¢ ¢¤ ¡ £ ¡ k ¢ ¡ L + a q − δp K + a q a − q − w L K = −pk K + aK q + r ¢ ¢ ¡ ¡ (a − q) q − w L + aL q − (r + δ) pk K + aK q = r (separating out fixed costs) ¤ £ ¤ £ a − waL − (r + δ) pk aK − q q − wL + (r + δ) pk K = r = (a − cH − q) q − FH , r redefining cH = waL + (r + δ) pk aK and FH = wL + (r + δ) pk K. 4 Monopoly output is qm = ¤ 1 1£ (a − cH ) = a − waL − (r + δ) pk aK 2 2 and the incumbent purchases capital stock 1 Km = K + aK (a − cH ) 2 at the start of the first period. Entry occurs. Let μ1t be the Lagrangian multiplier associated with the identify that defines the incumbent’s period t capital stock, Kit = (1 − δ) K1,t−1 + I1t (where K10 = Km ). Let λ1t be the Lagrangian multiplier associated with the period t capital input constraint, K1t ≥ K + aK q1t . The Lagrangian that describes the incumbent’s constrained optimization problem, from the moment of entry, is V1 = + 1 1+r μ11 [(1 − δ) Km + I11 − K11 ] − pk I11 ¡ ¢ £ ¡ ¢¤ (a − q11 − q21 ) q11 − waL q11 + wL + λ11 K11 − K − aK q11 1 © μ [(1 − δ) K11 + I12 − K12 ] − pk I12 1 + r 12 ¾ ¡ ¢ £ ¡ ¢¤ (a − q12 − q22 ) q12 − waL q12 + wL + λ12 K12 − K − aK q12 + + 1 1+r + © 1 μ13 [(1 − δ) K12 + I13 − K13 ] − pk I13 (1 + r)2 ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q13 − q23 ) q13 − waL q13 + wL + λ13 K13 − K − aK q13 + +... 1+r 5 or, more compactly and writing K10 = Km , V1 = ∞ X t=1 © 1 k t−1 μ1t [(1 − δ) K1,t−1 + I1t − K1t ] − p I1t (1 + r) ¾ ¡ ¢¤ ¡ ¢ 1 £ + (a − q1t − q2t ) q1t − waL q1t + wL + λ1t K12 − K − aK q1t . 1+r Kuhn-Tucker first-order conditions for this constrained optimization problem are t = 1: ∂V1 = (1 − δ) Km + I11 − K11 = 0. ∂μ11 ¡ ¢ ∂V1 = μ11 − pk ≤ 0 I11 μ11 − pk ≡ 0 I11 ≥ 0. ∂I11 ∂V1 λ11 + (1 − δ) μ12 = −μ11 + = 0. ∂K11 1+r ∂V1 = a − waL − λ11 aK − 2q11 − q21 = 0. (1 + r) ∂q11 ¡ ¢ ∂V1 (1+r) = K11 −K −aK q11 ≥ 0 λ11 K11 − K − aK q11 λ11 ≥ 0. ∂λ11 t = 2: ∂V1 = (1 − δ) K11 + I12 − K12 = 0. (1 + r) ∂μ12 ¡ ¢ ∂V1 (1 + r) = μ12 − pk ≤ 0 I12 μ12 − pk ≡ 0 I12 ≥ 0. ∂I12 ∂V1 λ12 + (1 − δ) μ13 = 0. = −μ12 + ∂K12 1+r ∂V1 = a − waL − λ12 aK − 2q12 − q22 = 0. (1 + r)2 ∂q12 ¡ ¢ ∂V1 (1+r)2 = K12 −K−aK q12 ≥ 0 λ12 K12 − K − aK q12 ∂λ12 t = 3: ∂V1 = (1 − δ) K12 + I13 − K13 = 0. (1 + r)2 ∂μ13 (1 + r) 6 λ12 ≥ 0. ¡ ¢ ∂V1 = μ13 − pk ≤ 0 I13 μ13 − pk ≡ 0 I13 ≥ 0. ∂I13 ∂V1 λ13 + (1 − δ) μ14 (1 + r)2 = 0. = −μ13 + ∂K13 1+r ∂V1 = a − waL − λ13 aK − 2q13 − q23 = 0. (1 + r)3 ∂q13 ¡ ¢ ∂V1 (1+r)3 = K13 −K−aK q13 ≥ 0 λ13 K13 − K − aK q13 λ13 ≥ 0. ∂λ13 (And so on.) The entrant maximizes (1 + r)2 V2 = μ21 (I21 − K21 ) − pk I21 ¡ ¢ ¡ ¢¤ 1 £ (a − q11 − q12 ) q21 − waL q21 + wL + λ21 K21 − K − aK q21 1+r 1 © μ [(1 − δ) K21 + I22 − K22 ] − pk I22 + + 1 + r 22 ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q12 − q22 ) q22 − waL q22 + wL + λ22 K22 − K − aK q22 1+r © 1 μ23 [(1 − δ) K22 + I23 − K23 ] − pk I23 + (1 + r)2 ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q13 − q23 ) q23 − waL q23 + wL + λ23 K23 − K − aK q23 + +... 1+r + or, more compactly, with K20 = 0, V2 = ∞ X t=1 © 1 k t−1 μ2t [(1 − δ) K2,t−1 + I2t − K2t ] − p I2t (1 + r) ¾ ¡ ¢¤ ¡ ¢ 1 £ + (a − q1t − q2t ) q2t − waL q2t + wL + λ2t K2t − K − aK q2t . 1+r μ2t is the Lagrangian multiplier for the identify that defines the capital stock in period t. λ2t is the Lagrangian multiplier for the capital input constraint in period t. Kuhn-Tucker first-order conditions: 7 t = 1: ∂V2 = I21 − K21 = 0. ∂μ21 ¡ ¢ ∂V2 = μ21 − pk ≤ 0 I21 μ21 − pk = 0 I21 ≥ 0. ∂I21 λ21 + (1 − δ) μ22 ∂V2 = −μ21 + = 0. ∂K21 1+r ∂V2 (1 + r) = a − waL − λ21 aK − q11 − 2q21 = 0. ∂q21 ¡ ¢ ∂V2 (1 + r) = K21 −K−aK q21 ≥ 0 λ21 K21 − K − aK q21 = 0 λ21 ≥ 0. ∂λ21 t = 2: ∂V2 (1 + r) = (1 − δ) K21 + I22 − K22 = 0. ∂μ22 ¡ ¢ ∂V2 (1 + r) = μ22 − pk ≤ 0 I22 μ22 − pk = 0 I22 ≥ 0. ∂I22 λ22 + (1 − δ) μ23 ∂V2 = 0.. = −μ22 + (1 + r) ∂K22 1+r ∂V2 (1 + r)2 = a − waL − λ22 aK − q12 − 2q22 = 0. ∂q22 ¡ ¢ ∂V2 (1 + r)2 = K22 −K−aK q22 ≥ 0 λ22 K22 − K − aK q22 = 0 λ22 ≥ 0. ∂λ22 t = 3: ∂V2 (1 + r)2 = (1 − δ) K22 +I23 −K23 ≥ 0 μ23 (I23 − K23 ) = 0 μ23 ≥ 0. ∂μ23 ¡ ¢ ∂V2 (1 + r)2 = μ23 − pk ≤ 0 I23 μ23 − pk = 0 I23 ≥ 0. ∂I23 ∂V2 λ23 + (1 − δ) μ24 (1 + r)2 = −μ23 + = 0. ∂K23 1+r ∂V2 (1 + r)3 = a − waL − λ23 aK − q13 − 2q23 = 0. ∂q23 ¡ ¢ ∂V2 (1 + r)3 = K23 −K−aK q23 ≥ 0 λ23 K23 − K − aK q23 = 0 λ23 ≥ 0. ∂λ23 (And so on.) We need to distinguish up to three types of time periods (1 + r) 8 • the first nA £periods, when incumbent ¤ can produce its equilibrium out1 k put qH = 3 a − waL + (r + δ) p aK without purchasing capital; must purchase capital to • periods nB and after, when the incumbent £ ¤ produce its equilibrium output qD = 13 a − waL − (r + δ) pk aK ; • if nB > nA +1, then for periods nA +1, nA +2,. . . , nB −1 the incumbent produces just enough output to fully utilize the existing capital stock, but does not purchase capital. How many such capital-constrained periods exist, if any, depends on δ. nA is the greatest integer in the value n1 that satisfies ¡ ¢ (1 − δ)n1 K + aK qm = K + aK qH ¢ £ ¤ ¡ ln K + aK qH − ln K + aK qm . n1 = ln (1 − δ) nB is the least integer that is greater than the value n2 that satisfies ¡ ¢ (1 − δ)n2 K + aK qm = K + aK qD ¤ ¡ ¢ £ ln K + aK qD − ln K + aK qm . n2 = ln (1 − δ) Remark: n2 − n1 = ¤ ¡ ¢ ¢ £ ¤ £ ¡ ln K + aK qD − ln K + aK qm ln K + aK qH − ln K + aK qm − = ln (1 − δ) ln (1 − δ) ¢ £ ¤ ¡ ln K + aK qH − ln K + aK qD > 0, − ln (1 − δ) noting that ln (1 − δ) < 0. 2.1 Example Let w = aL = aK = pk = 1, r = δ = 1/10, K = 1, a = 100. ¶ µ 1 6 1 cH = 1 + + = 10 10 5 9 ¢ ¡ ¢¢ ¡ ¡ ln K + 13 aK a − waL + (r + δ) pk aK − ln K + 12 aK (a − cH ) = n bA = ln (1 − δ) ¡ ¡ ¡1 ¡ ¢ ¢¢ ¡ ¢¢ 1 ln 1 + 13 (1) 100 − (1) (1) + 10 + 10 (1) (1) − ln 1 + 12 (1) 100 − 65 ¡ ¢ = 3.7174 1 ln 1 − 10 ¤ £ ¤ £ ln K + 13 aK (a − cH ) − ln K + 12 aK (a − cH ) n bB = = ln (1 − δ) ¡ ¡ ¡ ¢¢ ¡ ¢¢ ln 1 + 13 (1) 100 − 65 − ln 1 + 12 (1) 100 − 65 ¡ ¢ = 3.7547 1 ln 1 − 10 Monopoly output and capital stock: µ ¶ 1 6 247 qm = 100 − = 2 5 5 252 247 = = 50.4. 5 5 Duopoly outputs in first phase: µ ¶ ¶ µ 1 q1t a − waL + (r + δ) pk aK = q2t 3 a − waL − 2 (r + δ) pk aK ¡1 ¢ ¶ ¶ µ µ ¶ µ 496 ¶ µ 1 1 33. 067 100 − 1 + ¡10 q1t + 10 (1) (1) 15 ¢ = = = 493 1 1 32. 867 q2t + 10 (1) (1) 3 100 − 1 − 2 10 15 µ 496 ¶ Km = 1 + 15 493 15 Capital stocks: ¶ µ ¶ µ µ 1 K1 = + 1 K2 496 15 493 15 ¶ = µ 511 15 508 15 ¶ = µ 34. 067 33. 867 ¶ . For firm 1, this is the minimum capital stock required to produce its equilibrium output. Duopoly outputs in second phase: µ µ ¶ ¶ 1 1 1 494 100 − 1 − + (1) = = 32.933. 3 10 10 15 Capital stocks in second phase: 10 1+ 494 509 = = 33.933 15 15 Incumbent’s capital stock 252 = 50.4 0 ¡ 5¢ 1 252 1 1 − 10 5 = 45.36 ¢ ¡ 1 2 252 = 40.824 2 1 − 10 ¢ 5 ¡ 1 3 252 = 36.742 3 1 − 10 ¢ 5 ¡ 1 4 252 = 33.067 4 1 − 10 5 For these parameters, there is no “capital constrained” transition phase. The incumbent has excess capital for periods 1, 2, and 3, and purchases capital in period 4. If there is a capital constrained case, then during those periods, the shadow value of a unit of capital is positive, but less than the cost of a unit of capital. 3 nB = nA + 1 Consider the case nB = nA + 1. Write out Kuhn-Tucker for periods nA and nB . Incumbent: nA : (1 + r)nA −1 (1 + r)nA −1 ∂V1 = (1 − δ) K1,nA −1 + I1nA − K1nA = 0. ∂μ1nA ¡ ¢ I1nA μ1nA − pk ≡ 0 ∂V1 = μ1nA − pk ≤ 0 ∂I1nA (1 + r)nA −1 I1nA ≥ 0. λ1nA + (1 − δ) μ1nB ∂V1 = −μ1nA + = 0. ∂K1nA 1+r ∂V1 = a − waL − λ1nA aK − 2q1nA − q2nA = 0. ∂q1nA ¡ ¢ = K1nA −K−aK q1nA ≥ 0 λ1nA K1nA − K − aK q1nA (1 + r)nA (1+r)nA ∂V1 ∂λ1nA 11 λ1nA ≥ 0. nB : (1 + r)nA (1 + r)nA ∂V1 = (1 − δ) K1nA + I1nB − K1nB = 0. ∂μ1nB ¡ ¢ I1nB μ1nB − pk ≡ 0 ∂V1 = μ1nB − pk ≤ 0 ∂I1nB (1 + r)nA −1 I1nB ≥ 0. λ1nB + (1 − δ) μ1,nB +1 ∂V1 = −μ1nB + = 0. ∂K1nB 1+r ∂V1 = a − waL − λ1nB aK − 2q1nB − q2nA = 0. ∂q1nB ¡ ¢ = K1nB −K−aK q1nB ≥ 0 λ1nB K1nB − K − aK q1nB (1 + r)nA (1+r)nA ∂V1 ∂λ1nB That firm 1’s investment in periods nB and nB + 1 is positive allows us to determine μ1nB and μ1nB +1 : I1nB > 0 ⇒ μ1nB = pk I1,nB +1 > 0 ⇒ μ1,nB +1 = pk . Knowing μ1nB and μ1,nB +1 gives λ1nB , and by the same sort of argument this is the value of λ1t for all t ≥ nB : −μ1nB + λ1nB + (1 − δ) μ1,nB +1 =0 1+r − (1 + r) pk + λ1nB + (1 − δ) pk = 0 λ1nB = (r + δ) pk . In period nA , capital is still in excess supply, K1nA − K − aK q1nA > 0 ⇒ λ1nA = 0; by the same argument, λ1t = 0 ∀t ≤ nA . We then have the first-order condition for the incumbent’s output for period nA , with corresponding expressions for all periods before nA : 2q1nA + q2nA = a − waL . 12 λ1nB ≥ 0. We also have the first-order condition for the incumbent’s output for period nB , with corresponding expressions for all periods after period nB : 2q1nB + q2nB = a − waL − (r + δ) pk aK . Knowing that λ1nA = 0 and μ1nB = pk , we are able to find μ1nA : μ1nA = λ1nA + (1 − δ) μ1nB 0 + (1 − δ) pk 1−δ k = = p . 1+r 1+r 1+r A consistency condition for this solution to be valid is 1−δ k p − pk ≤ 0 1+r 1≥ 1−δ 1+r and this condition evidently is met. The Kuhn-Tucker condition for firm 1’s capital stock for period nA − 1 is (1 + r)nA −2 λ1,nA −1 + (1 − δ) μ1nA ∂V1 = 0. = −μ1,nA −1 + ∂K1,nA −1 1+r We know that λ1,nA −1 = 0 and that μ1nA = (1 − δ) pk ; hence 0 + (1 − δ) 1−δ pk 1+r =0 1+r µ ¶2 1−δ pk . μ1,nA −1 = 1+r −μ1,nA −1 + In the same way, ¡ ¢2 k µ ¶3 p 0 + (1 − δ) 1−δ 1−δ 1+r μ1,nA −2 = = pk ... 1+r 1+r ¶nA µ 1−δ pk . μ11 = μ1,nA −(nA −1) = 1+r For periods t = 1, 2, ..., nA − 1, nA . ¶n +1−t µ 1−δ A μ1t = pk . 1+r 13 Entrant: nA : (1 + r)nA −1 (1 + r)nA −1 ∂V2 = (1 − δ) K2,nA −1 + I2nA − K2nA = 0. ∂μ2nA ¡ ¢ I2nA μ2nA − pk = 0 ∂V2 = μ2nA − pk ≤ 0 ∂I2nA (1 + r)nA −1 I2nA ≥ 0. λ2nA + (1 − δ) μ2nB ∂V2 = −μ2nA + = 0. ∂K2nA 1+r ∂V2 = a − waL − λ2nA aK − q1nA − 2q2nA = 0. ∂q2nA ¡ ¢ = K2nA −K−aK q2nA ≥ 0 λ2nA K2nA − K − aK q2nA = 0 (1 + r)nA (1 + r)nA ∂V2 ∂λ2nA nB : (1 + r)nA (1 + r)nA ∂V2 = (1 − δ) K2,nB −1 + I2nB − K2nB = 0. ∂μ2nB ¡ ¢ I2nB μ2nB − pk = 0 ∂V2 = μ2nB − pk ≤ 0 ∂I2nB (1 + r)nA λ2nA ≥ 0. I2nB ≥ 0. λ2nB + (1 − δ) μ2,nB +1 ∂V2 = −μ2nB + = 0. ∂K2nB 1+r ∂V2 = a − waL − λ2nB aK − q1nA − 2q2nB = 0. ∂q2nB ¡ ¢ = K2nB −K−aK q2nB ≥ 0 λ2nB K2nB − K − aK q2nB = 0 (1 + r)nB (1 + r)nB ∂V2 ∂λ2nB The solution for the entrant is more straightforward, since the entrant makes positive investment in every period. μ2t = pk ∀t. λ2t = (r + δ) pk ∀t. q1t + 2q2nB = a − waL − λ2t aK = a − waL − (r + δ) pk aK . 14 λ2nB ≥ 0. 3.1 nB = nA + 2 Consider briefly the case nB = nA + 2, so there is one period in which the incumbent is capital constrained. nA : (1 + r)nA −1 (1 + r)nA −1 ∂V1 = (1 − δ) K1,nA −1 + I1nA − K1nA = 0. ∂μ1nA ¡ ¢ I1nA μ1nA − pk ≡ 0 ∂V1 = μ1nA − pk ≤ 0 ∂I1nA (1 + r)nA −1 I1nA ≥ 0. λ1nA + (1 − δ) μ1nB ∂V1 = −μ1nA + = 0. ∂K1nA 1+r ∂V1 = a − waL − λ1nA aK − 2q1nA − q2nA = 0. ∂q1nA ¡ ¢ = K1nA −K−aK q1nA ≥ 0 λ1nA K1nA − K − aK q1nA (1 + r)nA (1+r)nA ∂V1 ∂λ1nA nA + 1: (1 + r)nA (1 + r)nA ∂V1 = (1 − δ) K1,nA + I1,nA +1 − K1,nA +1 = 0. ∂μ1,nA +1 ¡ ¢ I1,nA +1 μ1,nA +1 − pk ≡ 0 ∂V1 = μ1,nA +1 −pk ≤ 0 ∂I1,nA +1 (1 + r)nA (1 + r)nA +1 λ1nA ≥ 0. I1,nA +1 ≥ 0. λ1,nA +1 + (1 − δ) μ1,nA +2 ∂V1 = 0. = −μ1,nA +1 + ∂K1,nA +1 1+r ∂V1 = a − waL − λ1,nA +1 aK − 2q1,nA +1 − q2nA = 0. ∂q1,nA +1 ∂V1 = K1,nA +1 − K − aK q1,nA +1 ≥ 0. ∂λ1,nA +1 ¡ ¢ λ1,nA +1 K1,nA +1 − K − aK q1,nA +1 λ1,nA +1 ≥ 0. (1 + r)nA +1 In period nA + 1, the incumbent’s output is determined by its capital stock, i.e. (1 − δ)nA +1 Km − K q1,nA +1 = . aK 15 The first-order condition for the entrant’s output in period nA + 1 is q1,nA +1 + 2q2,nA +1 = a − waL − (r + δ) aK . Since we know the incumbent’s output, we can solve for the entrant’s output: ¸ ∙ 1 (1 − δ)nA Km − K . q2,nA +1 = a − waL − (r + δ) aK − 2 aK Knowing the entrant’s output, we can solve the first-order condition for the incumbent’s output for λ1,nA +1 . First evaluate 2q1,nA +1 + q2,nA +1 = 1 [a − waL − (r + δ) aK − q1,nA +1 ] = 2 3 1 q1,nA +1 + [a − waL − (r + δ) aK ] = 2 2 nA 3 (1 − δ) Km − K 1 + [a − waL − (r + δ) aK ] 2 aK 2 Then substitute in 2q1,nA +1 + a − waL − λ1,nA +1 aK − 2q1,nA +1 − q2,nA +1 = 0. λ1,nA +1 = a − waL − (2q1,nA +1 + q2,nA +1 ) ½ ¾ 3 (1 − δ)nA Km − K 1 = a − waL − + [a − waL − (r + δ) aK ] 2 aK 2 ¾ ½ 3 (1 − δ)nA Km − K 1 3 − (r + δ) aK = (a − waL ) − 2 2 aK 2 ¸ ∙ 3 1 (1 − δ)nA Km − K = + (r + δ) aK a − waL − 2 aK 2 A consistency condition for this solution to be valid is that this value of λ1,nA +1 must be positive. Knowing λ1,nA +1 and knowing that μ1nB = pk 16 we can solve the Kuhn-Tucker condition for K1,nA +1 (1 + r)nA λ1,nA +1 + (1 − δ) μ1,nA +2 ∂V1 =0 = −μ1,nA +1 + ∂K1,nA +1 1+r for μ1,nA +1 : λ1,nA +1 + (1 − δ) μ1,nA +2 1+r λ1,nA +1 + (1 − δ) pk . = 1+r Knowing equilibrium values for period nA + 1, we can solve backward and forward in time for equilibrium values in other periods. For the first nA periods, the incumbent does not purchase capital and is not capital constrained; its rental cost of capital services is zero. In and after period nB , the incumbent purchases capital and its rental cost of capital services is (r + δ) pk . If there is more than one period between periods nA and nB , solve first for equilibrium values in the capital constrained periods, beginning with period nB − 1 and working backward to period nA + 1. This will yield consistency conditions that must be satisfied for the solution to be valid, and it will permit finding the equilibrium values for earlier and later periods. μ1,nA +1 = 4 Entrant’s value, nB = nA + 1 Return to the case nB = nA + 1. The solution is that for the first nA periods, µ ¶ ¶ µ 1 q1t a − waL + (r + δ) pk aK = q2t 3 a − waL − 2 (r + δ) pk aK µ ¶ µ ¶ λ1t 0 = (r + δ) pk λ2t ¶ µ ¡ 1−δ ¢nA +1−t ¶ µ μ1t 1+r = pk μ2t 1 µ ¶ µ ¶ 0 I11 = I21 K + aK q20 ¶ ¶ µ µ 0 I1t ¡ ¢ , t = 2, 3, ..., nA ; = I2t δ K + aK q2t 17 after which 1 (a − cH ) 3 λ1t = λ2t = (r + δ) pk q1t = q2t = µ μ1t = μ2t = pk µ ¶ I1n = I2n ¤ £ ¶ K + 13 aK [a − waL − (r + δ) aK ] −£ (1 − δ)n ¡K + 12 aK (a − cH ) ¢¤ K + 13 aK [a − waL − (r + δ) aK ] − (1 − δ) K + 13 aK a − waL − 2 (r + δ) pk aK ¡ ¢ I1t = I2t = δ K + aK q2t , t = nA + 2, n + 3, ... Now find the entrant’s equilibrium value, noting that the expressions multiplied by Lagrangian multipliers drop out by the Kuhn-Tucker conditions: V2 = −pk I21 + ¤ 1 £ (a − waL − q11 − q21 ) q21 − wL 1+r ¾ ½ ¤ 1 £ 1 k −p I22 + (a − waL − q12 − q22 ) q22 − wL + 1+r 1+r ½ ¾ ¤ 1 1 £ k + −p I23 + (a − waL − q13 − q23 ) q23 − wL + ... 1+r (1 + r)2 ½ ¾ ¤ 1 £ 1 k −p I2,nA + (a − waL − q1,nA − q2,nA ) q2,nA − wL + + (1 + r)nA 1+r ½ ¾ ¤ 1 £ 1 k −p I2,nA +1 + (a − waL − q1,nA +1 − q2,nA +1 ) q2,nA +1 − wL + + 1+r (1 + r)nA +1 ½ ¾ ¤ 1 £ 1 k −p I2,nA +2 + + (a − waL − q1,nA +2 − q2,nA +2 ) q2,nA +2 − wL +... 1+r (1 + r)nA +2 (expressing investment in terms of the capital stock) £ ¤ = −pk K + aK qL + 1 + 1+r ¤ 1 £ (a − waL − q11 − q21 ) q21 − wL 1+r ½ £ ¤ −δpk K + aK qL + ¾ ¤ 1 £ (a − waL − q12 − q22 ) q22 − wL 1+r 18 1 + (1 + r)2 ½ £ ¤ −δpk K + aK qL + 1 + (1 + r)nA ¾ ¤ª 1 ©£ +... (a − waL − q13 − q23 ) q23 − wL 1+r ½ £ ¤ −δpk K + aK qL + ¾ ¤ª 1 ©£ (a − waL − q1,nA − q2,nA ) q2,nA − wL 1+r ¡ © k£ ¢¤ −p K + aK qH − (1 − δ) K + aK qL 1 (1 + r)nA +1 ¾ ¤ 1 £ + (a − waL − q1,nA +1 − q2,nA +1 ) q2,nA +1 − wL 1+r ½ ¾ ¤ª £ ¤ 1 1 ©£ k −δp K + aK qH + + +... (a − waL − q1,nA +2 − q2,nA +2 ) q2,nA +2 − wL 1+r (1 + r)nA +2 + (collecting terms multiplied by 1/ (1 + r), by 1/ (1 + r)2 , and so on) £ ¤ = −pk K + aK qL + ¤ ¢ 1 £¡ a − waL − δpk aK − qH − qL qL − wL − δpk K 1+r ¤ £¡ ¢ 1 a − waL − δpk aK − qH − qL qL − wL − δpk K + ... 2 (1 + r) ¤ £¡ ¢ 1 + a − waL − δpk aK − qH − qL qL − wL − δpk K nA +1 (1 + r) 1 + pk aK (qD − qL ) (1 + r)nA +1 ¤ £¡ ¢ 1 k k + − δp a − q − q − wL − δp K + a − wa q L K D D D (1 + r)nA +2 ¤ £¡ ¢ 1 k k − δp a − q − q − wL − δp K + ... + a − wa q L K D D D (1 + r)nA +3 + (factoring where possible) £ ¤ = −pk K + aK qL ∙ ¸ £¡ ¤ ¢ 1 1 + a − waL − δpk aK − qH − qL qL − wL − δpk K + ... + nA +1 1+r (1 + r) 1 + pk aK (qD − qL ) (1 + r)nA +1 19 ∙ ¸ £¡ ¤ ¢ 1 + a − waL − δpk aK − qD − qD qD − wL − δpk K nA +2 + ... (1 + r) (making summations) ¸ ∙ ¤ 1 k£ 1 1 = − rp K + aK qL 1 − + r (1 + r)nA +1 (1 + r)nA +1 ¸ ∙ £¡ ¤ ¢ 1 1 + 1− a − waL − δpk aK − qH − qL qL − wL − δpk K nA +1 r (1 + r) 1 k nA +1 p aK (qD − qL ) (1 + r) ¤ ¢ 1 1 £¡ + a − waL − δpk aK − qD − qD qD − wL − δpk K nA +1 r (1 + r) + (rearranging terms involving K) ¸ ∙ £¡ ¤ ¢ 1 1 = a − waL − (r + δ) pk aK − qH − qL qL − wL − (r + δ) pk K 1− nA +1 r (1 + r) + ¤ ¢ 1 1 £¡ k k a − wa − (r + δ) p a − q − q − wL − (r + δ) p K q L K D D D (1 + r)nA +1 r (using first-order conditions for output to express gross profit per period as the square of output) ¸ ¾ ½∙ £ 2 ¤ ¤ £ 2 1 1 1 k k qL − wL − (r + δ) p K + = 1− qD − wL − (r + δ) p K r (1 + r)nA +1 (1 + r)nA +1 (rearranging terms) ¸ ∙ ¡ 2 ¢ 1 2 1 2 k = q + q − qL − wL − (r + δ) p K . r L (1 + r)nA +1 D Then if qL2 + entry is blocked. ¡ 2 ¢ 1 2 k nA +1 qD − qL − wL − (r + δ) p K < 0, (1 + r) 20 5 Infinite horizon, partial sunk cost Linear inverse demand curve: p=a−Q Stone-Geary production function: µ ¶ K −K L−L q = min , aK aL Capital depreciate at rate δ, 0 ≤ δ ≤ 1. Monopoly: (a − cH ) q − FH , Vm = r For cH = waL + (r + δ) pk aK and FH = wL + (r + δ) pk K. Monopoly output is qm = ¤ 1 1£ (a − cH ) = a − waL − (r + δ) pk aK . 2 2 The incumbent’s capital stock is 1 Km = K + aK (a − cH ) , 2 and at the start of the first period after entry the incumbent inherits capital stock (1 − δ) Km from the past. Let μ1t be the Lagrangian multiplier associated with the identify that defines the incumbent’s period t capital stock, Kit = (1 − δ) K1,t−1 + I1t − Jit (where K10 = Km ). 21 Let λ1t be the Lagrangian multiplier associated with the period t capital input constraint, K1t ≥ K + aK q1t . The Lagrangian that describes the incumbent’s constrained optimization problem, from the moment of entry, is V1 = μ11 [(1 − δ) Km + I11 − J11 − K11 ] − pk I11 + αpk J11 ¡ ¢ ¡ ¢¤ 1 £ (a − q11 − q21 ) q11 − waL q11 + wL + λ11 K11 − K − aK q11 1+r 1 © μ12 [(1 − δ) K11 + I12 − J12 − K12 ] − pk I12 + αpk J12 + + 1+r ¾ ¡ ¢ ¡ ¢¤ 1 £ + (a − q12 − q22 ) q12 − waL q12 + wL + λ12 K12 − K − aK q12 + 1+r © 1 + μ13 [(1 − δ) K13 + I13 − J13 − K13 ] − pk I13 + αpk J13 + (1 + r)2 ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q13 − q23 ) q13 − waL q13 + wL + λ13 K13 − K − aK q13 + +... 1+r + or, with K10 = Km , V1 = ∞ X t=1 © 1 k t−1 μ1t [(1 − δ) K1,t−1 + I1t − J1t − K1t ] − p I1t (1 + r) ¾ ¡ ¢¤ ¡ ¢ 1 £ (a − q1t − q2t ) q1t − waL q1t + wL + λ1t K12 − K − aK q1t . + 1+r Kuhn-Tucker first-order conditions: Period 1: ∂V1 = (1 − δ) Km + I11 − J11 − K11 = 0. ∂μ11 ¡ ¢ ∂V1 = μ11 − pk ≤ 0 I11 μ11 − pk = 0 I11 ≥ 0 ∂I11 ¡ ¢ ∂V1 = −μ11 + αpk ≤ 0 J11 −μ11 + αpk = 0 J11 ≥ 0 ∂J11 ∂V1 = a − 2q11 − q21 − waL − λ11 aK = 0 (1 + r) ∂q11 22 ∂V1 λ11 + (1 − δ) μ12 =0 = −μ11 + ∂K11 1+r ¡ ¢ ∂V1 = K11 −K−aK q11 ≥ 0 λ11 K11 − K − aK q11 = 0 (1 + r) ∂λ11 Period t: (1 + r)t−1 (1 + r)t−1 (1 + r)t−1 λ11 ≥ 0 ∂V1 = (1 − δ) K1,t−1 + I1t − J1t − K1t = 0. ∂μ1t ¡ ¢ I1t μ1t − pk = 0 ∂V1 = μ1t − pk ≤ 0 ∂I1t I1t ≥ 0 ¡ ¢ ∂V1 = −μ1t + αpk ≤ 0 J11 −μ1t + αpk = 0 ∂J1t ∂V1 (1 + r)t = a − 2q11 − q21 − waL − λ1t aK = 0 ∂q1t λ1t + (1 − δ) μ1,t+1 ∂V1 = −μ1t + =0 ∂K1t 1+r ¡ ¢ ∂V1 = K1t −K−aK q1t ≥ 0 λ1t K1t − K − aK q1t = 0 (1 + r)t ∂λ1t The entrant maximizes J1t ≥ 0 (1 + r)t λ1t ≥ 0 V2 = μ21 (I21 − J21 + K21 ) − pk I21 + αpk J21 ¡ ¢ ¡ ¢¤ 1 £ (a − q11 − q12 ) q21 − waL q21 + wL + λ21 K21 − K − aK q21 1+r 1 © μ [(1 − δ) K21 + I22 − J22 − K22 ] − pk I22 + αpk J22 + 1 + r 22 ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q12 − q22 ) q22 − waL q22 + wL + λ22 K22 − K − aK q22 1+r © 1 k k + 2 μ23 [(1 − δ) K22 + I23 + J23 − K23 ] − p I23 + αp J23 (1 + r) ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q13 − q23 ) q23 − waL q23 + wL + λ23 K23 − K − aK q23 + +... 1+r + or, more compactly, with K20 = 0, (and taking note that J21 = 0) 23 ∞ X © 1 k k t−1 μ2t [(1 − δ) K2,t−1 + I2t − J2t − Ktt ] − p I2t + αp J2t (1 + r) t=1 ¾ ¡ ¢¤ ¡ ¢ 1 £ (a − q1t − q2t ) q1t − waL q1t + wL + λ1t K12 − K − aK q1t . + 1+r Kuhn-Tucker first-order conditions. Period 1: ∂V2 = I21 − J21 − K21 = 0. ∂μ21 ¡ ¢ ∂V2 = −pk + μ21 ≤ 0 I21 −pk + μ21 = 0 I21 ≥ 0. ∂I21 ¡ ¢ ∂V2 = αpk − μ21 ≤ 0 J21 αpk − μ21 = 0 J21 ≥ 0. ∂J21 ∂V2 (1 + r) = a − q11 − 2q21 − waL − λ21 aK = 0. ∂q21 λ21 + (1 − δ) μ22 ∂V2 = −μ21 + (1 + r) = 0. ∂K21 1+r £ ¤ ∂V2 (1 + r) = K21 −K−aK q21 ≥ 0 λ21 K21 − K − aK q21 = 0 λ21 ≥ 0. ∂λ21 Period t: V2 = (1 + r)t−1 ∂V2 = (1 − δ) K2,t−1 + I2t − J2t − K2t = 0. ∂μ2t ¡ ¢ ∂V2 = μ2t − pk ≤ 0 I2t μ2t − pk = 0 I2t ≥ 0. ∂I2t ¡ ¢ ∂V2 (1 + r)t−1 = αpk − μ2t ≤ 0 J2t αpk − μ2t = 0 J2t ≥ 0. ∂J2t ∂V2 = a − q1t − 2q2t − waL − λ2t aK = 0. (1 + r)t ∂q2t λ2t + (1 − δ) μ2,t+1 ∂V2 (1 + r)t = 0. = −μ2t + ∂K2t 1+r £ ¤ ∂V2 = K2t −K−aK q2t ≥ 0 λ2t K2t − K − aK q2t = 0 (1 + r)t λ2t ≥ 0. ∂λ2t (1 + r)t−1 24 6 First solution Incumbent sells capital in the first period, thereafter buys. J11 > 0 ⇒ μ11 = αpk . I12 > 0 ⇒ μ12 = pk . Then λ11 + (1 − δ) μ12 =0 1+r λ11 + (1 − δ) pk =0 −αpk + 1+r −μ11 + − (1 + r) αpk + λ11 + (1 − δ) pk = 0 λ11 = [(1 + r) α − (1 − δ)] pk Note that (1 + r) α − (1 − δ) = (r + δ) − (1 + r) (1 − α) ; thus λ11 can be rewritten as λ11 = [(r + δ) − (1 + r) (1 − α)] pk < (r + δ) pk . A consistency condition for this solution to apply is λ11 ≥ 0; this requires (1 + r) α − (1 − δ) ≥ 0 (1 + r) α ≥ (1 − δ) 1−δ . 1+r αpk is what the firm can sell a unit of excess capital for at the start of the period entry occurs, and after one period invested at interest rate r, this rises to (1 + r) αpk . If the firm does not sell a unit of excess capital at the start of the period, the value remaining at the end of the period is (1 − δ) pk . If α≥ (1 + r) αpk > (1 − δ) pk , the firm is better off selling excess capital at the start of the period than holding it and allowing it to depreciate. 25 λ11 > 0 ⇒ K11 = K + aK q11 . Provided α ≥ (1 − δ) / (1 + r), the incumbent sells unneeded capital at the moment of entry, and never carries excess capacity. Firm 1’s period 1 output first-order condition is 2q11 + q21 = a − [waL + λ11 aK ] . Firm 2 buys an initial capital stock in the first period, buys replacement capital each period thereafter. I21 > 0 ⇒ μ21 = pk I22 > 0 ⇒ μ22 = pk Then −μ21 + λ21 + (1 − δ) μ22 =0 1+r −pk + λ21 + (1 − δ) pk =0 1+r λ21 = (r + δ) pk . Firm 2’s period 1 output first-order condition is £ ¤ q11 + 2q21 = a − waL + (r + δ) pk aK . We have seen that λ11 = [(r + δ) − (1 + r) (1 − α)] pk < (r + δ) pk ; in the first period, the incumbent’s rental cost of capital services is less than the entrant’s rental cost of capital services, because in the first period the incumbent’s opportunity cost of capital is tied to the resale value of capital, while the entrant’s rental cost of capital services is tied to the purchase price of capital. Solve for equilibrium outputs in the first period: µ ¶µ ¶ µ ¶ µ ¶ £ ¤ª 2 1 q11 1 © 1 k = a − waL + (r + δ) p aK + (1 + r) (1 − α) pk 1 2 1 0 q21 26 3 µ q11 q21 ¶ = ¶µ ¶ ¶µ ¶ µ £ ¤ª 1 1 © 2 −1 2 −1 k (1 + r) (1 − α) pk aK a − waL + (r + δ) p aK + 0 1 −1 2 −1 2 ¶ µ ¶ µ µ ¶ £ ¤ª 1 © q11 2 k = a − waL + (r + δ) p aK + 3 (1 + r) (1 − α) pk aK 1 −1 q21 £ ¤ ª 1© a − waL + (r + δ) pk aK + 2 (1 + r) (1 − α) pk aK q11 = 3 © ªª 1© = a − waL + [(r + δ) − 2 (1 + r) (1 − α)] pk aK 3 £ ¤ ª 1© q21 = a − waL + (r + δ) pk aK − (1 + r) (1 − α) pk aK 3 © ªª 1© a − waL + [r + δ + (1 + r) (1 − α)] pk aK = 3 The amount of capital sold by the incumbent at the start of period 1 is ¡ ¢ ¡ ¢ J11 = (1 − δ) Km − K11 = (1 − δ) K + aK qm − K + aK q11 . µ In the second and later periods, both firms purchase replacement capital in each period: I1t > 0, I2t > 0. Then μ1t = μ2t = pk , t = 2, 3, ... This implies that J1t = J2t = 0, t = 2, 3, ... The first-order conditions for K1t and K2t imply λ1t = λ2t = (r + δ) pk , t = 2, 3, ... In and after period 2, the market is a Cournot duopoly in which firms have identical marginal costs; equilibrium output per period is qD = 1 (a − cH ) . 3 Note that q11 = ¤ 1£ a − cH + 2 (1 + r) (1 − α) pk aK 3 27 = qD + 2 (1 + r) (1 − α) pk aK 3 and © ªª 1© a − waL + [r + δ + (1 + r) (1 − α)] pk aK 3 © £ ¤ ª 1 = a − waL + (r + δ) pk aK − (1 + r) (1 − α) pk aK 3 1 = qD − (1 + r) (1 − α) pk aK . 3 The incumbent produces more, and the entrant less, in the first period than in later periods. Now evaluate firm 1’s equilibrium value. In equilibrium, the capital stock constraint terms in the expression for firm 1’s value (those multiplied by the Lagrangian multipliers μ1t ) drop out: q21 = V1 = ¡ ¢ ¡ ¢ª 1 © (a − q11 − q21 ) q11 − waL q11 + wL + λ11 K11 − K − aK q11 1+r 1 © k −p I12 + αpk J12 + + 1+r ¾ £ ¡ ¢ ¡ ¢¤ (a − q12 − q22 ) q12 − waL q12 + wL + λ12 K12 − K − aK q12 −pk I11 +αpk J11 + 1 1+r © k 1 k 2 −p I13 + αp J13 + (1 + r) ¾ £ ¡ ¢ ¡ ¢¤ (a − q13 − q23 ) q13 − waL q13 + wL + λ13 K13 − K − aK q13 + ... + 1 1+r Substitute I11 = J12 = J13 = ... = 0. V1 = αpk J11 + ¡ ¢ ¡ ¢ª 1 © (a − q11 − q21 ) q11 − waL q11 + wL + λ11 K11 − K − aK q11 1+r ½ −pk I12 + ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q12 − q22 ) q12 − waL q12 + wL + λ12 K12 − K − aK q12 1+r ½ ¾ ¡ ¢ ¡ ¢¤ 1 £ 1 k −p I13 + + (a − q13 − q23 ) q13 − waL q13 + wL + λ13 K13 − K − aK q13 1+r (1 + r)2 +... 1 + 1+r 28 Collect terms in q1t : V1 = αpk J11 + 1 + 1+r ¢¤ ¡ 1 £ (a − waL − λ11 aK − q11 − q21 ) q11 − wL + λ11 K11 − K 1+r ½ −pk I12 + 1 + (1 + r)2 ¾ ¢¤ ¡ 1 £ (a − waL − λ12 aK − q12 − q22 ) q12 − wL + λ12 K12 − K 1+r ½ −pk I13 + ¾ ¢¤ ¡ 1 £ (a − waL − λ13 aK − q13 − q23 ) q13 − wL + λ13 K13 − K 1+r +... Now substitute J11 = (1 − δ) Km − K11 I1t = K1t − (1 − δ)K1,t−1 , t = 2, 3, ... V1 = £ ¢¤ ¡ (a − waL − λ11 aK − q11 − q21 ) q11 − wL + λ11 K11 − K 1 1+r 1 © k −p [K12 − (1 − δ)K11 ] + + 1+r αpk [(1 − δ) Km − K11 ]+ ¾ ¢¤ ¡ 1 £ (a − waL − λ12 aK − q12 − q22 ) q12 − wL + λ12 K12 − K 1+r © k 1 + 2 −p [K13 − (1 − δ)K12 ] + (1 + r) ¾ ¢¤ ¡ 1 £ + ... (a − waL − λ13 aK − q13 − q23 ) q13 − wL + λ13 K13 − K 1+r Now collect terms in K1t : V1 = (1 − δ) αpk Km + £ ¤ ª 1 © (a − waL − λ11 aK − q11 − q21 ) q11 − wL − λ11 K + λ11 − (1 + r)αpk + (1 − δ)pk K11 1+r © 1 + (a − waL − λ12 aK − q12 − q22 ) q12 − wL − λ12 K (1 + r)2 £ ¤ ª + λ12 − (1 + r)pk + (1 − δ)pk K12 29 + © 1 (a − waL − λ13 aK − q13 − q23 ) q13 − wL − λ13 K (1 + r)3 £ ¤ ª + λ13 − (1 + r)pk + (1 − δ)pk K13 + ... Collect terms in pk in coefficients of K1t , t = 2, 3, 4...: V1 = (1 − δ) αpk Km + £ ¤ ª 1 © (a − waL − λ11 aK − q11 − q21 ) q11 − wL − λ11 K + λ11 − (1 + r)αpk + (1 − δ)pk K11 1+r £ © ¤ ª 1 k K12 + 2 (a − waL q12 − λ12 aK − q12 − q22 ) q12 − wL − λ12 K + λ12 − (r + δ)p (1 + r) £ © ¤ ª 1 k + K13 +... 3 (a − waL − λ13 aK − q13 − q23 ) q13 − wL − λ13 K + λ13 − (r + δ)p (1 + r) Using λ11 = (1 + r) αpk − (1 − δ) pk , λ1t = (r + δ) pk , t = 2, 3, ..., the terms multiplied by K1t drop out: V1 = (1 − δ) αpk Km + ¤ 1 £ (a − waL − λ11 aK − q11 − q21 ) q11 − wL − λ11 K 1+r ¤ £ 1 q − λ a − q − q ) q − wL − λ K (a − wa L 12 12 K 12 22 12 12 (1 + r)2 ¤ £ 1 − λ a − q − q ) q − wL − λ K + ... + (a − wa L 13 K 13 23 13 13 (1 + r)3 + Now use the Kuhn-Tucker first-order conditions for output to express gross profit in each period as the square of output: V1 = (1 − δ) αpk Km + + ¢ 1 ¡ 2 q11 − wL − λ11 K 1+r ¢ ¢ ¡ 2 ¡ 2 1 1 − wL − λ K + − wL − λ K + ... q q 12 13 12 13 (1 + r)2 (1 + r)3 Finally substituting equilibrium outputs: V1 = 30 ¢ ¡ 2 ¢ ¡ 2 ¢ 1 ¡ 2 1 1 q11 − wL − λ11 K + − F − F q + q +... H H D D 1+r (1 + r)2 (1 + r)3 ¢ ¤ 1 ¡ 2 1 £ 2 q11 − wL − λ11 K − qD − wL − (r + δ) pk K = (1 − δ) αpk Km + 1+r 1+r ¢ ¡ 2 ¢ ¡ 2 ¢ 1 1 1 ¡ 2 qD − FH + + 2 qD − FH + 3 qD − FH + ... 1+r (1 + r) (1 + r) £ ¤ ª 1¡ 2 ¢ 1 © 2 2 + (r + δ) pk − λ11 K + = (1 − δ) αpk Km + q11 − qD qD − FH 1+r r ¢ ª 1¡ 2 1 © 2 2 q11 − qD qD − FH + (1 + r) (1 − α) pk K + = (1 − δ) αpk Km + 1+r r ∙ ¸ ¢ ¢ 1 ¡ 2 1¡ 2 2 = (1 − δ) αpk Km + (1 − α) pk K + q11 − qD qD − FH . + 1+r r (1 − δ) αpk Km + The equilibrium value of the incumbent is the sum of three terms: • the resale value of capital inherited from the past that becomes excess in the post-entry market; • the extra economic profit the incumbent earns in the first period because its rental cost of capital services is λ11 < (r + δ)pk ; • the value of a firm in a Cournot duopoly where both firms have marginal cost cH and fixed cost FH in all periods. Proceeding in the same general way, find the entrant’s equilibrium value. The entrant maximizes V2 = μ21 (I21 − J21 + K21 ) − pk I21 + αpk J21 ¡ ¢ ¡ ¢¤ 1 £ (a − q11 − q12 ) q21 − waL q21 + wL + λ21 K21 − K − aK q21 1+r 1 © μ [(1 − δ) K21 + I22 − J22 − K22 ] − pk I22 + +αpk J22 + 1 + r 22 ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q12 − q22 ) q22 − waL q22 + wL + λ22 K22 − K − aK q22 1+r © 1 k k + 2 μ23 [(1 − δ) K22 + I23 + J23 − K23 ] − p I23 + αp J23 (1 + r) + 31 ¾ ¡ ¢ ¡ ¢¤ 1 £ + (a − q13 − q23 ) q23 − waL q23 + wL + λ23 K23 − K − aK q23 +... 1+r Terms multiplied by the μ2t drop out in equilibrium: V2 = −pk I21 + αpk J21 ¡ ¢ ¡ ¢¤ 1 £ (a − q11 − q12 ) q21 − waL q21 + wL + λ21 K21 − K − aK q21 1+r 1 © k + −p I22 + αpk J22 + 1+r ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q12 − q22 ) q22 − waL q22 + wL + λ22 K22 − K − aK q22 1+r © k 1 −p I23 + αpk J23 + + (1 + r)2 ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q13 − q23 ) q23 − waL q23 + wL + λ23 K23 − K − aK q23 + ... 1+r + Substitute J21 = J22 = J23 = ... = 0. V2 = −pk I21 + ¡ ¢ ¡ ¢¤ 1 £ (a − q11 − q12 ) q21 − waL q21 + wL + λ21 K21 − K − aK q21 1+r ½ −pk I22 + ¾ ¡ ¢ ¡ ¢¤ 1 £ (a − q12 − q22 ) q22 − waL q22 + wL + λ22 K22 − K − aK q22 1+r ½ ¾ ¡ ¢ ¡ ¢¤ 1 £ 1 k −p I23 + (a − q13 − q23 ) q23 − waL q23 + wL + λ23 K23 − K − aK q23 + 1+r (1 + r)2 +... 1 + 1+r Collect terms in q2t : V2 = −pk I21 + ¡ ¢¤ 1 £ (a − waL − λ21 aK − q11 − q12 ) q21 − wL + λ21 K21 − K 1+r ½ −pk I22 + ¾ ¡ ¢¤ 1 £ (a − waL − λ22 aK − q12 − q22 ) q22 − wL + λ22 K22 − K 1+r ½ ¾ ¢¤ ¡ 1 £ 1 k −p I23 + (a − waL − λ23 aK − q13 − q23 ) q23 − wL + λ23 K23 − K + 1+r (1 + r)2 +... 1 + 1+r 32 Now substitute I21 = K21 I2t = K2t − (1 − δ)K2,t−1 , t = 2, 3, ... ¢¤ ¡ 1 £ V2 = −pk K21 + (a − waL − λ21 aK − q11 − q12 ) q21 − wL + λ21 K21 − K 1+r 1 © k + −p [K22 − (1 − δ)K21 ] + 1+r ¾ ¢¤ ¡ 1 £ (a − waL − λ22 aK − q12 − q22 ) q22 − wL + λ22 K22 − K 1+r © k 1 + −p [K23 − (1 − δ)K22 ] + (1 + r)2 ¾ ¢¤ ¡ 1 £ (a − waL − λ23 aK − q13 − q23 ) q23 − wL + λ23 K23 − K + ... 1+r Now collect terms in K2t : V2 = £ ¤ ¤ 1 £ (a − waL − λ21 aK − q11 − q12 ) q21 − wL − λ21 K + λ21 − (r + δ)pk K21 1+r 1 (1 + r)2 1 + (1 + r)3 + £ © ¤ ª (a − waL − λ22 aK − q12 − q22 ) q22 − wL − λ22 K + λ22 − (r + δ)pk K22 £ £ ¤ ¤ (a − waL − λ23 aK − q13 − q23 ) q23 − wL − λ23 K + λ23 − (r + δ)pk K23 +... Use the definition of λ2t to eliminate the terms in K2t and use the KuhnTucker first-order conditions for output to express the entrant’s gross profit in each period as the square of its output: V2 = ¢ ¡ 2 ¢ ¡ 2 ¢ 1 1 1 ¡ 2 q21 − FH + 2 q22 − FH + 3 q23 − FH + ... 1+r (1 + r) (1 + r) 2 ¢ qD − FH 1 ¡ 2 2 qD − q21 . + 1+r r The entrant’s equilibrium value is the value it would have in a Cournot duopoly where both firms have marginal cost cH and fixed cost FH in all periods, minus the present value of the profit it does not earn at the end of V2 = − 33 the first period because the incumbent’s rental cost of capital services is less than (r + δ)pk . If 2 ¢ qD − FH 1 ¡ 2 2 − qD − q21 < 0, + 1+r r entry is blocked. If 2 ¢ qD − FH 1 ¡ 2 q 2 − FH 2 − qD − q21 , <0≤ D r 1+r r entry is blocked that would be profitable if the incumbent’s costs were not sunk. 7 Second solution The incumbent does not sell capital in the first period. Since capital is in excess supply, the incumbent lets capital depreciate until it is optimal to purchase capital. For convenience, repeat the incumbent’s first-order conditions: Period 1: ∂V1 = (1 − δ) Km + I11 − J11 − K11 = 0. ∂μ11 ¡ ¢ ∂V1 = μ11 − pk ≤ 0 I11 μ11 − pk = 0 I11 ≥ 0 ∂I11 ¡ ¢ ∂V1 = −μ11 + αpk ≤ 0 J11 −μ11 + αpk = 0 J11 ≥ 0 ∂J11 ∂V1 (1 + r) = a − 2q11 − q21 − waL − λ11 aK = 0 ∂q11 ∂V1 λ11 + (1 − δ) μ12 =0 = −μ11 + ∂K11 1+r £ ¤ ∂V1 = K11 −K−aK q11 ≥ 0 λ11 K11 − K − aK q11 = 0 (1 + r) ∂λ11 Period t: (1 + r)t−1 ∂V1 = (1 − δ) K1,t−1 + I1t − J1t − K1t = 0. ∂μ1t 34 λ11 ≥ 0 (1 + r)t−1 ¡ ¢ I1t μ1t − pk = 0 ∂V1 = μ1t − pk ≤ 0 ∂I1t ¡ ¢ ∂V1 = −μ1t + αpk ≤ 0 J11 −μ1t + αpk = 0 ∂J1t ∂V1 (1 + r)t = a − 2q11 − q21 − waL − λ1t aK = 0 ∂q1t λ1t + (1 − δ) μ1,t+1 ∂V1 =0 = −μ1t + (1 + r)t ∂K1t 1+r = J11 = 0; hence K11 = (1 − δ) Km . (1 + r)t−1 I11 I1t ≥ 0 J1t ≥ 0 Capital is in excess supply, K11 = (1 − δ) Km ≥ K + aK q11 , ⇒ λ11 = 0. The first-order condition for firm 1’s output is 2q11 + q21 = a − waL Suppose that the incumbent buys capital in period 2. Then μ12 = pk . Then from ∂V1 λ11 + (1 − δ) μ12 = −μ11 + =0 ∂K11 1+r we find λ11 + (1 − δ) μ12 0 + (1 − δ) pk 1−δ k = = p ; 1+r 1+r 1+r consistency conditions are μ11 = ∂V1 = μ11 − pk ≤ 0 or μ11 ≤ pk ∂I11 ∂V1 = αpk − μ11 ≤ 0 or μ11 ≥ αpk ∂J11 Thus for the incumbent to stand pat and let its capital depreciate in the first period, we must have αpk ≤ μ11 = 1−δ k p ≤ pk 1+r 35 1−δ ≤ 1. 1+r The right-hand inequality always holds, and also α ≤ 1. The left-hand inequality may or may not hold. If it does not, it is optimal for the incumbent to sell excess capital immediately if entry occurs; this is the first solution. If the incumbent buys capital in period 2, it buys capital in every period thereafter. λ12 = (r + δ) pk . α≤ The first-order condition for the incumbent’s period 2 output is 2q11 + q21 = a − cH . If the incumbent neither buys nor sells capital in the second period but does buy capital in the third period, K12 = (1 − δ)2 Km ≥ .K + aK q12 , ⇒ λ12 = 0. From (1 + r) λ12 + (1 − δ) μ13 ∂V1 = −μ12 + =0 ∂K12 1+r 0 + (1 − δ) pk 1+r At this point, knowing the incumbent’s rental cost of capital services, and knowing that the entrant buys capital, we can solve for equilibrium output and all other values that characterize period 2 equilibrium. Go forward in the same way. The entrant’s first-order conditions are as in the first solution: the entrant buys capital in every period, always has rental cost of capital (r + δ) pk , has in each period first-order condition for output μ12 = q1t + 2q2t = a − cH . This solution ends up replicating that of the case in which resale is impossible. 36
© Copyright 2026 Paperzz