Asymptotic Expansions of MM and ML Estimators for the First Order Moving Average with Mean Models Antonis Demos and Dimitra Kyriakopoulou1 Athens University of Economics and Business and University of Piraeus November 2006 Current Version: January 2008 are grateful to Stelios Arvanitis, Enrique Sentana, the participants at the 18th EC2 Conference, Faro Portugal and the seminar participants at the University of Piraeus. Of course the usual caveat applies. Address for correspondence: Dimitra Kyriakopoulou, University of Piraeus, Department of Banking and Financial Management, 80 Karaoli & Dimitriou St., Piraeus 185 34, Greece. Tel:+30-210-8203125, e-mail: [email protected]. 1 We Abstract The second order asymptotic expansions, of the Edgeworth type, of the MM and ML estimators for the MA(1) with mean model are given. We also derive the second order expansions of the sample autocorrelation and the autocorrelation based on the ML estimator of the MA parameter. By employing Nagar type expansions, the properties of the estimators in terms of bias and mean squared error are discussed and compared with the zero-mean case. The results presented here are important for deciding on the estimation method we choose, as well as for bias reduction and increasing the efficiency of the estimators. Keywords: Edgeworth expansion, moving average process, method of moments, maximum likelihood, autocorrelation, asymptotic properties. JEL: C10, C22 1 Introduction Techniques for approximating probability distributions like the Edgeworth expansion have a long history in econometrics.1 In time series models, starting with Phillips (1977a), there is a fair amount of papers dealing with Edgeworth expansions in autoregressive or mixed models (e.g. Tanaka 1983 and 1984, Bao and Ullah 2007, Kakizawa 1999a etc.). However, there are relatively few papers concerning the limiting distribution of estimators of the Moving Average (MA) parameters and their properties. Durbin (1959) proposes an estimator for the parameter of the MA(1) model that can reach the asymptotic efficiency of the Maximum Likelihood Estimator (MLE), Davis and Resnick (1986) discuss the limit distribution of the sample covariance and correlation for the MA(∞) model under the assumption of infinite variance of the errors. Bao and Ullah (2007) present the second order bias and Mean Squared Error of the MLE of the MA(1) under non-normality but without mean. Tanaka (1984) develops a technique for 1 the up to T − 2 order, T being the sample size, Edgeworth expansion of the MLEs for autoregressive moving-average (ARMA) models and presented the first order expansion of the MLE of the MA(1) model with and without mean.2 Here we develop and compare the second order asymptotic expansions of two estimators of the following MA(1) model with mean, MA(1|µ) say, yt = µ + ut + θut−1 , t = ..., −1, 0, 1, ..., |θ| < 1, iid ut v N(0, σ 2 ). (1) As the asymptotic distribution of the estimators of θ depends on whether the mean µ is estimated or it is known and not estimated, we set in this case µ = 0, without loss of generality. We denote the true value of the parameter θ for the MA(1|µ) model, and θ0 for the zero mean model, say MA(1) (see Tanaka 1983 for this notation). Traditionally, the parameters of the model have been estimated by the ML 1 principle, mainly due to efficiency considerations (see e.g. Durbin 1959). In this respect, we extend the results in Tanaka (1984) to include also terms of order T −1 . We denote the MLEs with a tilde, i.e. e θ and µ e for the MA(1|µ) model and θe0 when we consider the MA(1) one. On the other hand, the 1st order autocorrelation of the model, say ρ for the MA(1|µ) case and ρ0 for the zero mean case, is estimated by its sample equivalent. However, one could, in principal, employe e θ and θe0 to estimate ρ, i.e. e ρ= h θ 2 1+h θ and ρe0 = θh0 3 2. 1+θh0 We call these estimators the MLEs of ρ and ρ0 . We derive their second order expansion, as well. The expansions of e ρ and ρe0 are based on an extension of Sargan (1976). On the other hand, one could equate the sample 1st order autocorrelation, say b ρ or ρb0 when there is no mean, with the theoretical one, θ , 1+θ2 and solve for the unknown parameter. We call these the MM estimators of θ and θ0 , and denote them by b θ and θb0 , respectively (see also Davis and Resnick 1986 p.556). We derive ρ, and ρb0 , as well as the second order expansion of all four estimators, i.e. b θ, θb0 , b the expansion of µ b up to the same order.4 The analysis follows Phillps (1977), Sargan (1976) and Tanaka (1983).5 The second order expansions reveal that none of the estimators is uniformly superior in terms of bias. Furthermore, the asymptotic superiority of the MLEs, in terms of variance, does not hold for small number of observations. In Section 2, we present the expansions of the MM estimators, i.e. the expansions of b ρ, ρb0 , b θ, θb0 , and µ b. In Section 3 the expansions of the MLEs, e θ, θe0 , e ρ, ρe0 , and µ e, are presented. In Section 4 the estimators are compared in terms of bias and asymptotic efficiency, and Section 5 concludes. All proofs, rather lengthy and tedious, are collected in Appendices at the end. 2 2 The Expansions of the MM Estimators The following analysis is based on Tanaka (1983) and Phillips (1977). Given the observations y = (y0 , ..., yT )0 , the estimators of the first order autocorrelation coefficient and the mean are given by: b ρ = where: y 0 C1 y − y 0 C2 y µ b = q4 + µ4 , ⎛ ⎜ ⎜ ⎜ 1⎜ ⎜ C1 = ⎜ 2⎜ ⎜ ⎜ ⎝ 0 1 T (d03 y) (d04 y) − 1 T (d03 y)2 1 . 1 .. . 0 .. .. . . . . 0 0 ... ... ... ... ... 0 0 ··· 0 1 = q1 + µ1 − (q3 + µ3 ) (q4 + µ4 ) , q2 + µ2 − (q3 + µ3 )2 ⎛ ⎞ 0 ⎟ .. ⎟ . ⎟ ⎟ ⎟ 0 ⎟, ⎟ ⎟ 1 ⎟ ⎠ 0 ⎜ ⎜ ⎜ ⎜ ⎜ C2 = ⎜ ⎜ ⎜ ⎜ ⎝ are (T + 1) × (T + 1) symmetric matrices and 1 0 .. . .. . 0 (2) ⎞ ··· ··· 0 ⎟ . . . . . . .. ⎟ 1 . ⎟ ⎟ . . . . . . . . . .. ⎟ , . ⎟ ⎟ ⎟ ... ... 1 0 ⎟ ⎠ ··· ··· 0 0 0 d4 = (0, 1, ..., 1)0 (T + 1) × 1 vectors d3 = (1, ..., 1, 0)0 , y 0 Ci y − E (y 0 Ci y) d0i y − E (d0i y) , (i = 1, 2) , qi = , (i = 3, 4) , qi = T T 1 1 E (y 0 C1 y) = θσ 2 + µ2 , µ2 = E (y 0 C2 y) = (1 + θ2 )σ 2 + µ2 , µ1 = T T 1 1 0 0 E (d3 y) = µ, µ4 = E (d4 y) = µ. µ3 = T T Let e (q) = b ρ − ρ, where ρ is the true parameter value and q = (q1 , q2 , q3 , q4 )0 , so that: q1 + µ1 − (q3 + µ3 ) (q4 + µ4 ) − ρ, q2 + µ2 − (q3 + µ3 )2 √ − ρ = 0. Thus, we can develop T e (q) in a Taylor series e (q) = and e (0) = 0 as µ1 −µ3 µ4 µ2 −µ23 expansion as follows: ³ 3´ √ 1 1 T e (q) = ei q i + √ eij q i q j + eijk q i q j q k + O T − 2 , 6T 2 T 3 where q i = √ T qi . In order to derive the Edgeworth expansion of b ρ, we should define the char- acteristic function of q i 0s and the cumulant generating function, say ψ (t). The partial derivatives of e (q) and ψ (t) up to the third and fourth orders respectively determine the so-called Edgeworth coefficients. Let Σ denote the covariance matrix of y with (i, j)th element given by ⎧ ³ ´|i−j| θ ⎨ (1 + θ2 )σ 2 , f or |i − j| = 0, 1 2 1+θ Σij = ⎩ 0, for |i − j| ≥ 2, ... and m = (µ, ..., µ)0 the mean vector of y. Then it follows that y v N(m, Σ). / The characteristic function of the y 0 Ci y (i = 1, 2) and di y (i = 3, 4) and the cumulant generating function of q i are given in Phillips (1980) and Tanaka (1983). The derivatives of the cumulant generating function evaluated at zero are the cumulants of qi ; all first derivatives are zero, since q is standardized about its mean. The second, third and fourth order cumulants of q i and the derivatives of e (q) evaluated at 0 are presented in Appendix A1 [In Appendix A1 for Referees there are detailed calculations]. 2.1 The Expansion of the MM 1st Order Autocorrelation ³√ ´ The second order asymptotic expansion of P T (b ρ − ρ) < x is given by: ³x´µ ³ x ´2 ³ x ´3 ³ x ´5 ¶ x P (x) = Φ , −φ c0 + c1 + c2 + c3 + c5 ω ω ω ω ω ω ³x´ (3) where the coefficients ci , i = 0, ..., 5 are given in Appendix A1 (see also Sargan ³ 3´ 1976 and 1977, and Phillips 1977), and the error is O T − 2 . 4 Hence, we get [see Appendix A2 for Referees for calculations and the Edgeworth coefficients] θ2 + 4θ4 + θ6 + θ8 + 1 ω = ¢4 ¡ 2 θ +1 2 and c0 c1 c2 ¡ ¢ ¡ ¢ ¡ ¢ (1 + θ)2 1 + θ10 + 3θ3 1 + θ6 + 5θ4 1 + θ4 ¡ ¢ +7θ5 1 + θ2 + 2θ6 1 √ = ¢2 ¡ ¢ ¡ 2 ω T θ + 1 θ2 + 4θ4 + θ6 + θ8 + 1 ⎛ ¡ ¢ ¡ ¢ ¡ ¢ 1 + θ24 + 8θ 1 + θ22 + 11θ2 1 + θ20 + 20θ3 1 + θ18 ⎜ ¡ ¢ ¡ ¢ ¡ ¢ ⎜ ⎜ +49θ4 1 + θ16 + 72θ5 1 + θ14 + 36θ6 1 + θ12 ⎜ ¡ ¢ ¡ ¢ ¡ ¢ ⎜ ⎜ +132θ7 1 + θ10 + 213θ8 1 + θ8 + 228θ9 1 + θ6 ⎝ ¡ ¢ ¡ ¢ +97θ10 1 + θ4 + 308θ11 1 + θ2 + 338θ12 1 = − ¢3 ¡ 2 4T θ + 4θ4 + θ6 + θ8 + 1 ¡ ¢¡ ¢ θ θ4 + 1 6θ4 + θ8 + 1 1 √ ¡ = ¢ ¡ ¢, ω T θ2 + 1 3 θ2 + 4θ4 + θ6 + θ8 + 1 (4) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ¡ ¢ ¡ ¢ 24 3 22 1 + θ + 206θ − θ 1 + θ − 8θ 1 + θ ⎜ ¡ ¢ ¡ ¢ ¡ ¢ ⎟ ⎟ ⎜ 5 18 6 16 7 14 ⎟ ⎜ −52θ 1 + θ + 13θ 1 + θ − 84θ 1 + θ ⎟ ⎜ ¡ ¢ ¡ ¢ ¡ ¢ ⎟ ⎜ ⎜ −62θ8 1 + θ12 − 224θ9 1 + θ10 + 141θ10 1 + θ8 ⎟ ⎜ ¡ ¢ ¡ ¢ ¡ ¢ ⎟ ⎜ 11 6 13 2 12 4 ⎟ ⎜ −276θ 1 + θ − 376θ 1 + θ − 199θ 1 + θ ⎟ ⎠ ⎝ ¡ ¢¡ ¢ 3 23 −4θ 1 − θ 1 − θ 1 c3 = , ¢2 ¡ ¢3 ¡ 2 4T θ + 1 θ2 + 4θ4 + θ6 + θ8 + 1 ¢2 ¡ ¢2 ¡ 4 6θ + θ8 + 1 θ4 + 1 θ2 1 c5 = − . ¢14 ¡ 2 2T ω 6 θ +1 √ ρ − ρ) (see Fuller 1976). Notice that ω2 is the asymptotic variance of T (b ⎛ 28 14 , 2 (5) To evaluate the bias, Mean Squared Error (MSE) and the cumulants, needed in the sequel, we employ an alternative second order representation, deduced by a Taylor series expansion of the Edgeworth formula (see Sargan 1976 and Phillips 5 1977), i.e. ³x´ ³ x ´2 ³ x ´3 ¶ x + O(T −3/2 ), + d0 + d1 + d2 + d3 P (x) = Φ ω ω ω ω µ (6) where d0 = c0 , d1 d3 d2 = c2 , c2 = c1 + 0 ⎛2 ¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢ ⎞ 20 4 16 5 14 6 12 1 + θ + θ 1 + θ − 3θ 1 + θ + 8θ 1 + θ + 66θ 1 + θ ⎠ ⎝ ¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢ 8 8 9 6 10 4 11 2 12 1 + θ + 16θ 1 + θ + 173θ 1 + θ − 24θ 1 + θ + 26θ +5θ 1 , = ¢3 ¡ 2 4T θ + 4θ4 + θ6 + θ8 + 1 = c3 + c2 c0 ⎛ ⎞ ¡ ¢ ¡ ¢ ¢ ¡ 1 + θ2 + 17θ4 1 + θ16 + 6θ6 1 + θ12 ⎝ ⎠ 6θ2 + θ4 + 1 ¡ ¢ ¡ ¢ ¡ ¢ +81θ8 1 + θ8 + 25θ10 1 + θ4 + 122θ12 + θ22 1 + θ2 1 = . ¢2 ¡ ¢3 ¡ 2 4T θ + 1 θ2 + 4θ4 + θ6 + θ8 + 1 24 2 Setting z = d0 + (1 + d1 ) ³x´ ω + d2 ³ x ´2 ω + d3 ³ x ´3 ω + O(T −3/2 ) we find that ¡ ¡ ¢ ¢ x = −d0 + (1 − d1 + 2d0 d2 ) z − d2 z 2 + 2d22 − d3 z 3 + O T −3/2 , ω (7) where z can be considered as a standard normal variable. Consequently, E ³x´ ω and it follows that ¡ ¡ ¢ ¢ = (−d0 − d2 ) + O T −3/2 = −c0 − c2 + O T −3/2 ¢ ¡ a4 = − √ + O T −3/2 , 2ω T ¡ ¢¡ ¢ ³√ ´ ¡ ¢ 1 θ + θ2 + 1 2θ − 2θ2 + 2θ3 + θ4 + 1 k1 = E T (b ρ − ρ) = − √ + O T −3/2 ¢3 ¡ 2 T θ +1 6 and ¡ ¢ k2 = ω 2 + k2& + O T −3/2 ¡ ¢ ¡ ¢ ¡ ¢ 13θ4 1 + θ4 − 7θ2 1 + θ8 − 2θ 1 + θ10 ¡ ¢ −6θ5 1 + θ5 − 22θ6 + θ12 + 1 ¡ ¢ 2 = ω2 − + O T −3/2 . ¢6 ¡ 2 T θ +1 Employing equation (7), taking expectations, using the connection between moments and cumulants (see Kendal and Stuart 1969), and keeping terms up to order O (T −1 ) we get ¡ ¢¡ ¢ 1 θ θ4 + 1 6θ4 + θ8 + 1 k3 = −6 √ ¢7 ¡ 2 T θ +1 and ¡ ¢ ¡ ¢ ¡ ¢ ⎞ 16 4 12 6 8 1 − 10θ 1 + θ + 30θ 1 + θ − 106θ 1 + θ ⎠ ⎝ ¡ ¢ 8 4 10 20 +129θ 1 + θ − 216θ + θ −6 k4 = . ¢10 ¡ 2 T θ +1 ⎛ 2 In Figure 1 we present the difference between the exact cumulative distribution √ of T (b ρ − ρ), based on 20000 simulations for T = 30, θ = −0.3 and µ = 5, and the normal approximation (thick line) and between the exact and the T −1 approximation in equation (6).6 It is apparent that the approximation is much better than the asymptotic normal, although the normal is not far away from the exact. We should emphasize here that although the approximations are close to the exact one, this is not always the case with Edgeworth type expansions (see e.g. Ali 1984). In terms of MSE, squaring (7) and keeping terms up to order O (T −1 ), we 7 have that E 2.1.1 ´2 ³√ θ2 + 4θ4 + θ6 + θ8 + 1 T (b ρ − ρ) = ¢4 ¡ 2 θ +1 ⎞ ⎛ 3 2 4 5 6 6θ − 2θ − 12θ + θ − 36θ + θ ⎠ (θ + 1)2 ⎝ 7 8 9 10 +6θ − 2θ − 12θ + θ + 1 1 − . ¢6 ¡ 2 T θ +1 The Zero-Mean Expansion For the zero mean case, i.e. when µ = 0 or µ is known and one analyses the demeaned data, we have e (q) = q1 + µ1 − ρ0 , q2 + µ2 µ1 = θ0 σ 2 , The derivatives ei = ∂e(0) , ∂qi eij = ∂ 2 e(0) , ∂qi ∂qj µ1 − ρ0 = 0. µ2 ¡ ¢ µ2 = 1 + θ20 σ 2 . as eijk = ∂ 3 e(0) ∂qi ∂qj ∂qk and the cumulants of qi can be found from equations (24) and (25) and (21), (22) and (23), respectively, by setting µ = 0. Consequently, we could evaluate the Edgeworth coefficients and substituting into equation (26) (Appendix A1) we could get the expansion coefficients cj , j = 1, ..5. Notice that the summation now runs up to 2. However, we get that c2 and c5 are the same as in equations (4) and (5), respectively, the only difference is that now we denote θ0 the true value of the parameter. Furthermore, as expected, √ the asymptotic variance of T (ρb0 − ρ0 ), ω 2 , is the same as in the non-zero mean 8 case, i.e. ω 2 = θ20 +4θ40 +θ60 +θ80 +1 . The coefficients that differ are given: 4 (θ20 +1) ¡ 4 ¢2 θ0 + 1 θ0 1 ¢¡ ¢, √ ¡ = ω T θ20 + 4θ40 + θ60 + θ80 + 1 θ20 + 1 ¢¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢ ¡ 4 + 48θ60 1 + θ12 + 21θ80 1 + θ80 + 97θ10 1 + θ40 + 50θ12 θ0 − θ20 + 1 1 + θ20 0 0 0 0 = , ¡ 2 ¢4 ¡ 2 ¢2 4 6 8 4ω 2 T θ0 + 1 θ0 + 4θ0 + θ0 + θ0 + 1 ¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢ 1 + 3θ20 1 + θ24 + 16θ40 1 + θ20 + 69θ60 1 + θ16 + 62θ80 1 + θ12 0 0 0 0 ¡ ¢ ¡ ¢ 10 8 12 4 14 28 +393θ 1 + θ + 177θ 1 + θ 0 0 0 0 + 606θ 0 + θ 0 1 = , ¢6 ¡ ¢2 ¡ 2 4ω2 T θ0 + 1 θ20 + 4θ40 + θ60 + θ80 + 1 c0 c1 c3 Again, employing the representation in (7), it is worth noticing that the 1st cumulant, i.e. the bias, is this time ¡ ¢ ³√ ´ ³ 3´ 2 θ40 + 1 θ0 k1 = E T (ρb0 − ρ0 ) = − √ ¡ 2 + O T −2 , ¢3 T θ0 + 1 (8) which is different from the case of non-zero mean, i.e. when µ 6= 0. In fact, we can √ plot the absolute values of the two biases (multiplied by T ) against the common values of θ0 and θ (see Figure 2). For values of θ between −0.2 and 1 it is obvious that ρb0 is less biased than b ρ. In fact for θ = 0 the bias of b ρ is − T1 . However, for the interval (−1, −0.204) the opposite is true. Furthermore, the higher order cumulants are given by: 12 ¡ ¢ 2 17θ40 − 5θ20 − 18θ60 + 17θ80 − 5θ10 0 + θ0 + 1 + O T −3/2 ¢6 ¡ 2 T θ0 + 1 ¡ −3/2 ¢ 2 & = ω + k2 + O T ¡ ¢¡ ¢ ¡ ¢ 1 6θ40 + θ80 + 1 θ40 + 1 θ0 k3 = −6 √ + O T −3/2 . ¢7 ¡ 2 T θ0 + 1 k2 = ω 2 − and ¡ ¢ ¡ ¢ ¡ ¢ 1 + 30θ40 1 + θ12 − 10θ20 1 + θ16 − 106θ60 1 + θ80 0 0 ¡ ¢ 20 +129θ80 1 + θ40 − 216θ10 ¡ ¢ 0 + θ0 6 + O T −3/2 . k4 = − ¢10 ¡ 2 T θ0 + 1 9 Notice that the third cumulant in this case, is equal to the one for the non-zero µ one. Hence, the non-normality of the approximations is affected in the same way for both cases. However, the 4th order cumulant for the non-zero µ is much bigger than the one for the zero case, at least for positive values of θ. The MSE is given by ³√ ´2 θ20 + 4θ40 + θ60 + θ80 + 1 E T (ρb0 − ρ0 ) = ¢4 ¡ 2 θ0 + 1 ¢¡ ¢ ¢2 ¡ 4 ¡ ¡ ¢ θ0 − 4θ20 + 1 θ40 − θ20 + 1 2 1 − θ20 − + O T −3/2 . ¢6 ¡ 2 T θ0 + 1 This is different from the non-zero mean case. In fact, if we plot the two MSEs, for T = 10 and common values of θ and θ0 (Figure 3), we observe that there is an interval, when θ < −0.2, where the MSE of b ρ, the non-zero mean estimator of ρ, is less than the MSE of ρb0 . Of course, for bigger values of T the two MSEs collapse to the common asymptotic variance. 2.2 Expansion of Mean MM Estimator The asymptotic expansion for µ b can be done almost in the same way as that for the first order autocorrelation. We denote the error in the estimate µ b defined in (2) as e (q) = q4 + µ4 − µ. Now, all partial derivatives of e (q), ei (q), are zero apart from e4 (q) which is 1. Note that the partial derivatives of ψ (t) remain unchanged. Consequently, ω 2 = (1 + θ)2 σ 2 . √ µ − µ). Notice that, again, ω 2 is the variance of the asymptotic distribution of T (b ³√ ´ The asymptotic expansion of P T (b µ − µ) < x is obtained as in (3). Notice that all Edgeworth coefficients, aj j = 1, ..., 10, are zero. Consequently, we have that ¡ ¢ E (b µ) = µ + O T −2 , 10 and the second order Edgeworth expansion of P P (x) = Φ ³x´ ω ³√ ´ T (b µ − µ) < x is given: ³ 3´ + O T −2 , as the coefficients, cj for j = 1, ..., 5, in the expansion, are zero. Hence, the second order approximate distribution of µ is normal. 2.3 The Expansion of the MM MA Coefficient Estimator In this subsection we follow the method developed in Sargan (1976, 1977). Notice that in our case k1 is non zero. Furthermore, the second order cumulant of √ T (b ρ − ρ), apart from the O (1) term, includes a term of O (T −1 ). This term can not be ignored in the expansion (as it is ignored in Sargan 1976) (see Appendix A2 [Appendix A3 for Referees]). In these respects we can say that the method developed is an extension of Sargan (1976). The second order Edgeworth approximation of P h√ ³ ´ i T b θ − θ ≤ x is: ³x´ ∙ ³x´ ³ x ´2 ³ x ´3 ³ x ´5 ¸ , G(x) = Φ + c3 + c5 −φ c0 + c1 + c2 δ δ δ δ δ δ ³x´ (9) where c0 1 = √ 6 T c1 1 = 24T c2 c5 µ à 3b4 + 6b5 b1 + 3b3 − δ δ3 ¶ , 12b9 + 12b25 + 9b24 + 12b7 + 36b4 b5 + 12b8 (b1 + 3b3 )2 +ς +5 δ2 δ6 à ! (b1 + 3b3 )2 1 b1 + 3b3 1 10 = √ , c3 = − +ς , 72T δ3 δ6 6 T 1 (b1 + 3b3 )2 = , 72T δ6 ς = −3 b2 + 4b1 b5 + 4b6 + 12b3 b5 + 14b4 b1 + 18b3 b4 , δ4 11 (10) ! , δ 2 b2 b3 b5 ¢¡ ¢ ¡ θ θ4 + 1 6θ4 + θ8 + 1 θ2 + 4θ4 + θ6 + θ8 + 1 = , b1 = −6 ¡ 2 , ¢¡ ¡ ¢2 ¢3 1 − θ2 θ + 1 1 − θ2 ¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢ 1 + 30θ4 1 + θ12 − 10θ2 1 + θ16 − 106θ6 1 + θ8 + 129θ8 1 + θ4 (11) −216θ10 + θ20 = −6 , ¢2 ¡ ¡ 2 ¢4 θ + 1 1 − θ2 ¢2 ¢2 ¢¡ ¢ ¡ ¢2 ¡ ¡ ¡ 2θ 3 − θ2 θ2 + 4θ4 + θ6 + θ8 + 1 2θ 3 − θ2 θ2 1 + θ2 + θ4 + 1 ¢ ¡ 2 , b4 = ¡ , = ¢ ¡ ¢5 ¡ 2 ¢3 θ +1 1 − θ2 θ +1 1 − θ2 ¢h ¡ ¢ ¡ ¢i ¡ 2 2 2 2 θ + θ + 1 2θ 1 + θ + 1 − θ ¡ 2 ¢ ¢¡ , = − θ + 1 1 − θ2 b6 b7 b8 ¢ ¡ ¢3 ¡ 2 11θ − 5θ4 + θ6 + 1 θ4 θ2 + 4θ4 + θ6 + θ8 + 1 = 2 , ¢6 ¡ ¢8 ¡ 2 1 − θ2 θ +1 ¢ ¡ ¢2 ¡ 2 11θ − 5θ4 + θ6 + 1 θ4 θ2 + 4θ4 + θ6 + θ8 + 1 = 2 , ¢6 ¡ ¢6 ¡ 2 1 − θ2 θ +1 ¢¡ ¢ ¢ ¡ ¡ 12 3 − θ2 θ2 θ4 + 1 6θ4 + θ8 + 1 = − ¡ , and ¢2 ¢4 ¡ 2 1 − θ2 θ +1 13θ4 − 7θ2 − 2θ − 6θ5 − 22θ6 − 6θ7 + 13θ8 − 7θ10 − 2θ11 + θ12 + 1 b9 = −2 . ¢2 ¡ ¡ 2 ¢2 θ + 1 1 − θ2 Note that, as in Fuller (1976), δ 2 is the variance of the limiting distribution of ´ √ ³ T b θ − θ (see Appendix A2 [Appendix A3 for Referees]), which is also the ´ √ ³ b asymptotic variance of T θ0 − θ0 . In Figure 4 we present the difference between the exact cumulative distribution ´ √ ³ b of T θ − θ , based on 20000 simulations for T = 30 true θ = −0.3 and µ = 5, and the normal approximation (thick line) and between exact and the T −1 approximation in equation (9). It is apparent that the approximation is much better than the asymptotic normal, apart from values bigger than 1.77. Furthermore, keeping terms up to order O (T −1 ), we can find the bias of 12 ´ √ ³ T b θ − θ as E ³√ ³ ´´ ³ 3´ 1 T b θ−θ = − √ (b4 + 2b5 ) + O T − 2 2 T 1 2θ4 − 6θ3 − 2θ2 − 3θ5 − 2θ6 + θ8 + θ9 + 1 . = √ ¡ ¢3 T 1 − θ2 In terms of MSE we have that, keeping relevant terms ⎞ ⎛ 2 2 ³√ ³ ´´2 1 ⎝ 12b9 + 12b5 + 9b4 + 12b7 + 36b4 b5 + 12b8 ⎠ E T b θ−θ = δ2 − 2 3) 12T −10 (b1 +3b 4 δ 2 = 2.3.1 4 6 8 θ + 4θ + θ + θ + 1 ¡ ¢2 1 − θ2 ⎛ 6θ + 88θ2 + 36θ3 + 59θ4 + 84θ5 + 533θ6 + 84θ7 + 63θ8 ⎜ ⎜ ⎜ +132θ9 + 471θ10 + 60θ11 − 91θ12 − 12θ13 + 59θ14 ⎜ ⎜ +12θ15 − 32θ16 − 18θ17 + θ18 + 1 1⎜ ⎜ 4 2 + ⎜ (1−θ2 ) (θ2 +1) T⎜ 2 ⎜ (θ2 +4θ4 +θ6 +θ8 +1) (92θ2 +115θ4 +2θ6 −25θ8 −6θ10 +3θ12 +27)θ2 ⎜ − 6 6 ⎜ (θ2 +1) (1−θ2 ) ⎜ 2 ⎝ (2θ12 −12θ4 −23θ6 −13θ8 −11θ10 −5θ2 −θ14 +θ16 −2) θ2 +30 2 6 (θ2 +4θ4 +θ6 +θ8 +1) (1−θ2 ) The Zero-Mean Expansion For the µ = 0 case, we have that δ and bi for i = 1, 2, 3, 4, 6, 7, 8 are the same as in equation (11) (the only difference is that now θ0 denotes the true value of the parameter instead of θ). The other two coefficients are: ¢ ¡ 4 12 θ0 + 1 θ0 17θ40 − 5θ20 − 18θ60 + 17θ80 − 5θ10 0 + θ0 + 1 ¢¡ ¢ b5 = −2 ¡ 2 , and b = −2 . ¢2 ¡ ¡ 2 ¢2 9 θ0 + 1 1 − θ20 θ0 + 1 1 − θ20 Consequently, the 1st cumulant is given by ¡ 8 ¢ 4 6 2 ³√ ³ ´´ ³ 3´ θ − 2θ − θ − 5θ − 1 θ0 1 0 0 0 0 b E T θ0 − θ0 = √ + O T −2 . ¡ ¢3 2 T 1 − θ0 (12) √ Plotting, again, the absolute values of the two biases (multiplied by T ), i.e. ¯ ³ ³ ¯ ³ ³ ´´¯ ´´¯ ¯ ¯ ¯ ¯ b b ¯E T θ − θ ¯ and ¯E T θ0 − θ0 ¯, against the common values of θ and θ0 , 13 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟. ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ we can observe that for values of θ bigger than about 0.3 the bias of b θ is smaller than the one of θb0 (see Figure 5). Furthermore, for the zero mean case we have that the MSE of the estimator is E ³√ ³ ´´2 θ2 + 4θ40 + θ60 + θ80 + 1 T θb0 − θ0 = 0 ¡ ¢2 1 − θ20 ¢2 2 ¡ 4 6 8 10 2 14 16 θ0 30 2θ12 0 − 12θ 0 − 23θ 0 − 13θ 0 − 11θ 0 − 5θ 0 − θ 0 + θ 0 − 2 + ¢ ¡ 2 ¡ ¢ 2 6 T θ0 + 4θ40 + θ60 + θ80 + 1 1 − θ20 12 158θ60 − 36θ40 − 31θ20 + 952θ80 + 2672θ10 0 + 3928θ 0 16 18 20 22 +4001θ14 0 + 2216θ 0 + 463θ 0 − 546θ 0 − 346θ 0 26 28 30 −134θ24 0 − 8θ 0 + 22θ 0 + 3θ 0 − 2 ¢6 ¡ ¡ 2 ¢6 θ0 + 1 1 − θ20 1 − T We can plot the MSE for the non-zero and zero mean cases, for T = 10 (Figure 6). It is apparent that even for such a small number of observations, there is little difference between the two. Still, for values of θ < 0.1 the MSE of b θ, the estimator of θ in the non-zero mean case, is less than the one of the estimator in zero mean one. 3 The Expansion of the ML Estimators In this section we extend the analysis in Tanaka (1984) to include terms of order T −1 in the approximation of the MLE of the MA (1|µ) parameters, θ and µ, say e θ and µ e. These are the solutions to the following equations: ³ ´ ∂ e θ ∂ (e µ) = 0 and = 0, ∂µ ∂θ where 2 (θ) = − T X u2t T log(2πσ ) − t=1 2 2 2σ and 14 ut = yt − µ − θut−1 . The first order conditions are ³ ´ µ ¶¯¯ T ∂ e θ ∂ut−1 1 X ¯ ut θ = 0⇒ 2 + ut−1 ¯ ¯ ∂θ σ t=1 ∂θ and ¯ T ∂ (e µ) 1 X ∂ut ¯¯ ut = 0⇒ 2 ¯ ∂µ σ t=1 ∂µ ¯ =0 θ=h θ =0 µ=h µ In Appendix B1 we present the up to 4th order derivatives of the log-likelihood function and their expectations [in Appendix B1 for Referees there is analytic derivation of the results]. ³√ ³ ´ √ ´/ ¡ ¢/ Now let ϕ = θ1 , θ2 = T e θ − θ , T (e µ − µ) . Consider the Taylor ³ ³ ´/ ´/ ϕ) 1 ∂ (h e e √ e = θ1 , θ2 = e θ, µ e around the true value expansion for T ∂ϕ , where ϕ ϕ = (θ1 , θ2 )/ = (θ, µ)/ as: 2 X ∂ 3 (ϕ) 1 X ∂ 2 (ϕ) 1 θk + θk θl 0 = gj + T k=1 ∂θj ∂θk 2T 3/2 k,l=1,2 ∂θj ∂θl ∂θk + 1 6T 2 where j = 1, 2 and gj = ∂4 ∂θj ∂θn ∂θl ∂θk X ∂ 4 (ϕ∗ ) θn θk θl ∂θj ∂θn ∂θl ∂θk n,k,l=1,2 2 3 √1 ∂ , ∂ , ∂ T ∂θj ∂θj ∂θl ∂θj ∂θl ∂θk are evaluated at the true values and are evaluated at an intermediate point, say ϕ∗ , between the estimates and the true values. The above expression can be written as ¶ ¶ 2 µ 2 µ X wji 1 X qjik Aji + √ Kjik + √ θi + √ θi θk 0 = gj + T 2 T T i=1 k,i=1 (13) 2 ³ 3´ 1 X + Mjikl θl θi θk + Op T − 2 6T l,k,i=1 ³ 3´ ≡ fj (ϕ, h) + Op T − 2 j = 1, 2 ³ 2 ´ ³ 3 ³ ´ ´ ∂ (ϕ) ∂ (ϕ) ∂ 4 (ϕ) 1 1 1 where Aij = T E ∂θj ∂θi , Kjik = T E ∂θj ∂θi ∂θk , Mjikn = T E ∂θj ∂θi ∂θk ∂θn , µ 2 µ 3 ¶ ¶ ∂ (ϕ) ∂ (ϕ) 1 1 wij = √ − T Aij , qijk = √ − T Kjik , (14) T ∂θj ∂θi T ∂θj ∂θi ∂θk 15 for i, j, k = 1, 2. Let us define a vector h containing the non-zero elements of gi , wij , qijk , q112 for i, j, k = 1, 2. As however w22 = q122 = q222 = 0 we define h as h = (h1 , h2 , h3 , h4 , h5 , h6 )/ = (g1 , g2 , w11 , w12 , q111 , q112 )/ . Solving equation (13) for θj , and j = 1, 2, as continuously differentiable functions of h, gives: θj (h) = 6 X ∂θj (0) a=1 ≡ 6 X ∂ha ea(j) ha a=1 (j) where ea = ∂θj (0) , ∂ha 6 6 ³ 3´ 1 X ∂ 2 θj (0) 1 X ∂ 3 θj (0) ha + ha hb + ha hb hc + Op T − 2 2 a,b=1 ∂ha ∂hb 6 a,b,c=1 ∂ha ∂hb ∂hc 6 6 ³ 3´ 1 X (j) 1 X (j) + √ eab ha hb + eabc ha hb hc + Op T − 2 6T a,b,c=1 2 T a,b=1 (j) eab = √ ∂ 2 θj (0) T ∂ha ∂hb ∂ 3 θ (0) (j) and eabc = T ∂ha ∂hj b ∂hc . Now the derivatives can be found by solving the following system of equations, for j, k = 1, 2 and a, b, c = 1, ..., 6 (see Appendix B2) [Appendix B2 for Referees]: 0 = 0 = 2 X Ajk ea(k) + k=1 à 2 X k=1 ∂fj (0, 0) , ∂ha (15) 2 1 X ∂ 2 fj (0, 0) (l) √ Kjkl eb + T l=1 ∂hb ∂e θk ! ea(k) 2 1 X (k) Ajk eab , +√ T k=1 + 2 X ∂ 2 fj (0, 0) k=1 ∂ha ∂e θk (k) eb (16) and ⎛ 2 ⎜ X ⎜ ⎜ 0 = ⎜ k=1 ⎝ 1 T 2 X (l) (p) Mjlkp eb ec p,l=1 2 X ∂ 3 fj (0,0) (l) + e ∂hc ∂h θl ∂h θk b l=1 1 T (l) Kjkl ebc l=1 + 2 X p=1 ∂ 3 fj (0,0) (p) ec ∂h θp ∂hb ∂h θk ⎞ ⎟ ⎟ (k) ⎟ ea ⎟ ⎠ ! 3 ∂ f (0, 0) j (k) + eb Kjkl e(l) e(p) ac + c e e p=1 ∂ θ p ∂ θ k ∂ha k=1 l=1 à ! 2 2 2 X ∂ f (0, 0) 1X 1 j (k) eab + Kjkp e(p) c + √ e T T ∂hc ∂ θk p=1 k=1 2 X à + 2 X 1 T 2 X 2 X 2 2 2 1 X ∂ 2 fj (0, 0) (k) 1 X ∂ 2 fj (0, 0) (k) 1 X (k) +√ ebc + √ eac + Ajk eabc . T k=1 T k=1 ∂e T k=1 ∂hb ∂e θk ∂ha θk 16 (17) The derivatives for j = 1, 2 and the actual values of Ajk , Kljk and Mnljk for n, l, i, k = 1, 2 are presented in Appendix B2. To find the cumulants of h let us rewrite the Likelihood function of the model as ¢ 1 T ¡ 1 ln 2πσ 2 − ln |Σ| − 2 (y − µd)/ Σ−1 (y − µd) 2 2 2σ ³ ³ ´/ ´/ / E [(y−µd)(y−µd) ] where Σ = , y = and d = y1 y2 · · · yT 1 1 ··· 1 . σ2 (θ) = − Consequently, ha (a = 1, 3, 5) is of the form à ! / (y − µd) Ca (y − µd) 1 ha = √ − tr (Ca Σ) σ2 T and hb (b = 2, 4, 6) is of the form 1 hb = √ T à / cb (y − µd) σ2 ! where C1 C5 / c2 µ 2 ¶ 1 ∂ Σ ∂Σ −1 ∂Σ 1 −1 ∂Σ −1 −1 = − Σ Σ , C3 = Σ Σ Σ−1 , 2 ∂θ 2 ∂θ2 ∂θ ∂θ µ ¶ ∂Σ −1 ∂Σ −1 ∂Σ 1 ∂ 2 Σ −1 ∂Σ 1 ∂Σ −1 ∂ 2 Σ −1 Σ−1 , and Σ Σ − − Σ = 3Σ Σ ∂θ ∂θ ∂θ 2 ∂θ2 ∂θ 2 ∂θ ∂θ2 µ ¶ 2 / / / −1 / −1 ∂Σ −1 / −1 ∂Σ −1 ∂Σ −1 −1 ∂ Σ −1 . Σ , c6 = d 2Σ Σ Σ −Σ = d Σ , c4 = −d Σ Σ ∂θ ∂θ ∂θ ∂θ2 Now under our assumptions we have that (y − µd) ∼ N (0, Σ) σ and the characteristic function of (y−µd)/ Ca (y−µd) σ2 / (a = 1, 3, 5) and cb (y−µd) σ2 (b = 2, 4, 6) of the same form as in Phillips (1980). In Appendix B3 [Appendix B3 for Referees] the cumulants of h are presented. Now from Sargan (1976) and (1977), and Phillips (1977) we have for l = 1, 2 ³ x ´³ ´ ³ 3´ ³ x ´ (l) (l) (l) 2 (l) 3 (l) 5 P (x) = Φ (l) − φ (l) c0 + c1 x + c2 x + c3 x + c5 x + O T − 2 , ω ω 17 (l) (l) where c0 , ..., c5 are given by equation (26) and the Edgeworth coefficients are defined in the same way as in equations (27) and (28) (see Appendix A1), with the difference that the summations now run up to 6. 3.1 Expansion of the ML MA Coefficient Estimator ´ √ ³ e For l = 1, i.e. for T θ − θ , we get ¡ (1) ¢2 ¢ ¡ ω = 1 − θ2 , (1) = −1, γ1 (1) γ3 i 4i 5θ2 + 2 (1) (1) ¢, β 1 = − √ 6θ, β 3 = √ ¡ T T 1 − θ2 −4θ 3θ2 + 1 (1) (1) (1) (1) = , γ = −6 ¡ ¢2 , γ 2 = γ 4 = γ 6 = 0, 5 2 2 1−θ 1−θ 6θ i 4i 5θ2 + 2 (1) = −√ , δ 13 = √ ¡ ¢ , T 1 − θ2 T 1 − θ2 2 ¡ ¢ i 4 1 − θ2 = √ 2 , T σ (θ + 1)4 (1) δ 11 (1) δ 24 2i (1 − θ) (1) δ 22 = − √ , T σ 2 (1 + θ)2 and (1) a1 (1) a4 (1) a7 (1) a9 ¡ ¢ i = − √ 6θ 1 − θ2 , T ¢¡ ¡ ¢ ¢ 6¡ 2 (1) 7θ + 3 1 − θ2 , a3 = 2θ 1 − θ2 , T ¢ ¡ ¢ ¢¡ ¡ i (1) (1) = 2 (1 − 2θ) , a5 = 4 √ 20θ2 − 2θ + 5 , a6 = −6 1 − θ2 θ2 + 1 , T ¡ 2 ¢ ¡ ¢ ¢¡ (1) = 4 θ − 2θ + 6 , a8 = −2 1 − θ2 θ2 + 3 , ¡ ¢ ¢ ¢¡ 8i ¡ (1) = 4 θ2 − 2θ + 4 , a10 = − √ 1 − θ2 4θ2 + 1 . T (1) a2 = Hence we have that ¢ 1 1 ¡ 2 θ (1) √ , c(1) 8θ + 79θ2 + 17 , c2 = − √ 1 = − 2 4T ω ω ¡T Tω ¢ 2 θ2 1 8θ + 113θ − 3 2 (1) (1) ¡ ¢. c3 = , c = − 5 4T ω2 T 1 − θ2 ´ √ ³ th e Furthermore, we shall need in the sequel the j order cumulants of T θ − θ , (1) c0 = say kj for j = 1, ..., 4. Consequently, employing the representation in equation (7) 18 we get: (1) ³√ ³ ´´ ¢ ¡ a4 1 − 2θ e √ T θ−θ =− k1 = E =− √ + O T −3/2 , 2 T T as in Tanaka (1984), ¢ 2¡ 2θ + 37θ2 − 6 , k2 = ω 2 − T ¡ ¡ ¢ ¢ 12 (1) k3 = −6c2 ω 3 + O T −3/2 = √ θω2 + O T −3/2 T and ¢ ¡ ¢ ω2 ¡ 2 49θ − 3 + O T −3/2 . k4 = −6 T Notice that the first order approximation is given by (see Tanaka 1984 as well) ³ x ´2 ¶ ³x´µ ³x´ ¡ ¢ + O T −1 . −φ c0 + c2 P (x) = Φ ω ω ω Consequently, the closer to the boundary values θ is and the further away from zero x is, the greater the discrepancy between the two approximations. In Figure 7 we present the difference between the exact cumulative distribution ´ √ ³ θ − θ , based on 20000 simulations for T = 30 true θ = −0.3 and µ = 5, of T e and the normal approximation (thick line), the T −1 approximation in equation √ (6) (thin line), and the T approximation (dotted line). It is apparent that the T −1 approximation is much better than the asymptotic normal, apart from the √ interval (1.5, 2). However, the T approximation is better than both for the interval (−6.2, −1.8) and (0, 0.8), although for values smaller than −7 it behaves very badly. In terms of MSE we get ³√ ³ ´´2 ¡ ¢ ¢ 1¡ E 8θ + 70θ2 − 13 T e θ−θ = 1 − θ2 − T 3.1.1 The Zero-Mean Case Now for the case that µ = 0, we have that equation (13) is a function of only w11 , q111 , A11 , K111 and M1111 , which are as in (14) and (32). The only difference is 19 that the true θ is now denoted by θ0 , and all other coefficients of both equations are 0. Hence, the vector h is now h = (h1 , h2 , h3 )/ = (g1 , w11 , q111 )/ . Following the procedure of Section 3 and setting µ to 0 we find that the expansion coefficients are given by: c0 c3 ¢ ¡ 1 1 1 97θ20 + 7 θ0 , c1 = − = √ , 4T ω2 Tω 1 121θ20 − 3 2 θ20 = , c = − . 5 4T ω2 T ω2 2 θ0 , c2 = − √ T ω It follows that ´´ ³√ ³ ¢ ¢ ¡ ¡ θ0 a4 k1 = E T θe0 − θ0 = − √ + O T −3/2 = √ + O T −3/2 , 2 T T (18) the same result as in Tanaka (1984), and Bao and Ullah (2007), and ¡ ¢ ¡ ¢ k2 = ω 2 1 + 14c22 − 6c3 − 2c0 c2 − c20 − 2c1 + O T −3/2 ¢ ¡ ¢ 1¡ 2 37θ0 − 4 + O T −3/2 , = ω2 − 2 T ¡ ¡ ¢ ¢ 12 k3 = −6c2 ω 3 + O T −3/2 = √ θ0 ω2 + O T −3/2 , T ¢ ¡ ¡ ¢ ¡ −3/2 ¢ ¢ ω2 ¡ 2 4 2 49θ0 − 3 + O T −3/2 . = −6 k4 = ω −24c3 − 24c2 c0 + 96c2 + O T T Notice that the 3rd and 4th order cumulants are the same as the cumulants of the non-zero mean case, for common values of θ and θ0 . Furthermore, it is worth noticing that the absolute bias of e θ is greater than the one of θe0 for the interval ¡ ¢ ¡ ¢ −1, 13 and smaller for the interval 13 , 1 . In terms of MSE we have E ³√ ³ ´´2 ¡ ¢ ¡ ¢ 1¡ 2 ¢ 73θ0 − 8 + O T −3/2 T θe0 − θ0 = 1 − θ20 − T Plotting, in Figure 8, the MSEs for the non-zero and zero mean cases, for T = 10, we can see that for the interval that the MSEs are positive the non-zero 20 case estimator has a higher MSE. Furthermore, for θ > 0.48 both MSEs become negative! This of course is a peculiarity of the order of the approximation and of the small number of observations, i.e. for higher order approximations and/or bigger T this effect disappears. 3.2 Expansion of the Mean Coefficient MLE For l = 2 we get 6 X ¡ (2) ¢2 (2) (2) = − ψij ei ej = σ 2 (1 + θ)2 , ω (2) (2) (2) β2 = β4 = β6 = 0 i,j=1 (2) = −1, (2) = ψ112 e2 = 0, γ2 δ 11 (2) γ4 = (2) −6 (2) (2) (2) γ 1 = γ 3 = γ 5 = 0, 2, (θ + 1) 1 4 2i i (2) , δ 14 = √ = −√ . T (1 + θ) T (θ + 1)2 2 , (θ + 1) (2) δ 12 (2) γ6 = (2) It follows that all the Edgeworth coefficients, aj j = 1, ..., 10, are 0 and conse- quently, ³√ ³ 3´ ´ ³x´ P + O T −2 , T (e µ − µ) < x = Φ ω i.e. the second order approximation is normal (see Tanaka 1984 for the first order √ µ − µ). approximation), as it is for the MM estimator T (b 3.3 Expansion of ML 1st order Autocorrelation Let us define the MLE of ρ, e ρ say, as and e ρ= ³ ´ m e θ = e θ 2 1+e θ e θ , 2 − ρ, 1+e θ where ρ is the true value of the parameter. Then we have that ¢ ¢2 ¡ ¡ θ 3 − θ2 1 − θ2 − 4θ2 ∂m (θ) 1 − θ2 ∂ 2 m (θ) ∂ 3 m (θ) =¡ = −2 ¡ = −6 ¡ 2 ¢4 ¢2 , ¢3 , 2 3 ∂e θ 1 + θ2 1 + θ2 θ +1 ∂e θ ∂e θ 21 ³ ´ Again, employing equation (30), in Appendix A2, with the derivatives of m e θ instead of the derivatives of m (b ρ), we get ¢ ¢ ¢ ¡ ¡ ¡ 2 3 2 4 2 5 ¡ ¢ 1 − θ 1 − θ 1 − θ 2 δ2 = ¡ (19) ¢ , b1 = 12θ ¡ ¢ , b2 = −6 49θ − 3 ¡ ¢8 , 2 4 2 6 1+θ 1+θ 1 + θ2 ¢ ¢ ¡ ¡ ¢ ¢ θ 3 − θ2 ¡ θ 3 − θ2 ¡ 1 − θ2 2 4 2 b3 = −2 ¡ , b = −2 = − (1 − 2θ) 1 − θ 1 − θ , b ¢7 ¡ ¢3 ¡ ¢2 , 4 5 1 + θ2 1 + θ2 1 + θ2 ¢2 ¢2 ¡ ¡ ¢ ¢3 1 − θ2 − 4θ2 ¡ 1 − θ2 − 4θ2 ¡ 2 6 b6 = −6 ¡ 2 1 − θ , b7 = −6 ¡ 2 1 − θ2 , ¢10 ¢6 θ +1 θ +1 ¡ ¢ ¢2 ¡ 2 ¡ ¡ ¢ 1 − θ2 ¢ 2 1 − θ2 2 2 b8 = −24 3 − θ θ ¡ ¢5 , b9 = −2 2θ + 37θ − 6 ¡ ¢4 1 + θ2 1 + θ2 √ where δ2 is the Asymptotic Variance of T (e ρ − ρ). The second order Edgeworth √ approximation of the distribution function of T (e ρ − ρ) follows from equation 2 3 1−θ ) ( (10) where this time ω 2 = δ 2 = 4 and (1+θ2 ) ¡ ¢¡ ¢ ¡ ¢2 1 − θ2 1 1 8θ + 79θ2 + 17 1 − θ2 , c0 = − √ ¡ ¢4 ¢ , c1 = ¡ 2 4T δ 2 δ T 1 + θ2 2 θ +1 ¡ ¢ ¢ 1 θ 1 − θ2 ¡ 2 − 1 , 3θ c2 = √ ¡ ¢ 3 δ T 1 + θ2 ¢2 ¡ 2 3θ − 1 θ2 1 103θ2 − 4θ + 8θ3 + 171θ4 + 12θ5 + 133θ6 + 1 1 c3 = − , c5 = ¢2 ¢ . ¡ ¢¡ ¡ ¢¡ 4T 2T 1 − θ2 θ2 + 1 2 1 − θ2 θ2 + 1 In Figure 9 we present the difference between the exact cumulative distribution √ of T (e ρ − ρ), based on 20000 simulations for T = 30 true θ = −0.3 and µ = 5, and the normal approximation (thick line) and between exact and the T −1 approximation in equation (6). It is apparent that the approximation is much better than the asymptotic normal, although the normal is a better approximation for the interval (0.75, 2.7). √ The bias of T (e ρ − ρ) is ³√ ´ ¢ ¡ −3/2 ¢ 1 (1 − θ)2 ¡ 2 T (e ρ − ρ) = √ ¡ + 2θ + 1 + O T k1 = E 3θ ¢ T 1 + θ2 3 22 In terms of MSE, and keeping terms up to O (T −1 ), we get ¢3 ¡ ³√ ´2 1 − θ2 E T (e ρ − ρ) = ¡ ¢4 1 + θ2 ¢2 113θ2 − 10θ + 4θ3 + 79θ4 + 14θ5 + 295θ6 − 7 1¡ 1 − θ2 + . ¢6 ¡ 2 T θ +1 3.3.1 The Zero-Mean Case For the case µ = 0 we have that δ 2 , and the bi coefficients are the same as in (19) apart from b5 and b9 which are now given by: ¡ ¢ ¢2 ¡ ¡ 2 ¢ 1 − θ20 θ0 1 − θ20 b5 = ¡ ¢2 , and b9 = −2 37θ0 − 4 ¡ ¢4 . 1 + θ20 1 + θ20 Consequently, ¡ ¢2 ³√ ´ ¡ −3/2 ¢ 2 1 − θ20 θ0 k1 = E T (ρe0 − ρ0 ) = √ ¡ + O T (20) ¢ T 1 + θ20 3 ³√ ´ and recalling that in the case of non-zero mean, i.e. µ 6= 0, we have E T (e ρ − ρ) = √ (1−θ)2 (2θ+3θ2 +1) √1 , we can plot absolute value of the two biases (multiplied by T) 3 2 T (θ +1) against the common values of θ0 and θ (see Figure 10). It is obvious that ρe0 is less biased than e ρ for all θ ∈ (−1, 1). In fact for θ = 0 the bias of e ρ is − T1 . Furthermore, the 3rd and 4th order cumulants in this case, is equal to the one for the non-zero µ case. Hence the non-normality of the approximations is affected in the same way for both cases. In terms of MSE, and keeping terms up to O (T −1 ), we get ¢ ¡ 2 4 6 ´2 ¡1 − θ2 ¢3 ³√ ¡ ¢ + 39θ + 152θ − 1 54θ 2 2 0 0 0 0 1 − θ20 T (ρe0 − ρ0 ) = ¡ . E ¢6 ¢ + ¡ 2 2 4 T 1 + θ0 θ0 + 1 √ √ ρ − ρ) and T (ρe0 − ρ0 ) for T = 10, in Figure 11, Plotting the MSE of T (e we can observe that the second order approximate MSE of the estimator when 23 the mean is non zero is not higher from the zero mean MSE one over the whole interval (−1, 1). Of course, for higher values of T both MSEs tend to the common asymptotic variance. 4 Comparing the Estimators Let us start our comparisons by considering first the biases of the two estimators of θ and ρ. To facilitate the comparisons we consider the absolute values of the √ biases of the estimators multiplied by T . It is apparent that when µ is estimated there are areas of the admissible region of θ that the MM estimator of either θ or ρ is less biased than the MLE ones (see Figure 12 and Figure 13). For example, for −.3 ≤ θ ≤ 0, b θ and b ρ are less biased than e θ and e ρ, respectively. However, the opposite is true for θ ≥ 0. When µ is known the bias of the MLEs is less from the bias of the MM ones uniformly over the whole area of the admissible values of θ (compare equation 12 with 18 for θ0 and 8 with 20 for ρ0 ). In terms of second order approximate MSEs, we plot the ones of the two estimators of θ in Figure 14 and the corresponding for the estimators of ρ in Figure 15. Notice that in both graphs we set T = 10 and in both cases µ is estimated. It is apparent that there is not uniform superiority of neither the MLEs nor the MM ones, over the whole range of the admissible values of θ. The same applies when µ is not estimated (the graphs are not presented to conserve space). Of course for a large data set i.e., high values of T , the MSE of either b θ or e θ approaches their asymptotic variance and the MLE, e θ, is, as expected, uniformly superior to the MM one over the admissible interval (−1, 1) (see Kakizawa 1999b). The same applies for the estimators of θ0 , e ρ and ρe0 . Hence, to conclude this section, we can say that asymptotically the MLEs of either the MA parameter or the 1st order autocorrelation are more efficient than 24 the MM ones. However, for small samples and under the maintained assumption that µ is known, the MSE of MM is smaller for the estimation of θ0 and ρ0 , provided that the true value of θ0 is close to zero. Furthermore, when µ 6= 0, if the objective is less biased estimators, then for moderate negative values of θ, i.e. θ ∈ (−0.4, 0), the MM estimation should be employed for the estimation of either θ or ρ. For negative values of θ, i.e. θ ∈ (−1, −0.39), the ML method should be utilized for the estimation of θ and the MM one for the estimation of ρ, whereas for positive values of θ the ML method is preferred for both parameters. Finally, in terms of MSE and for as small T as 10, the ML method is more efficient for the estimation of both parameters only for the interval (−1.0, −0.6) ∪ (0.0, 1.0). 5 Conclusions This paper contributes to asymptotic expansions of the MM and ML estimators of the 1st order autocorrelation, the mean parameter and the MA parameter for the MA(1) model. First, the second order expansions of the MM estimators are derived and second, the first order expansions in Tanaka (1984) are extended to include terms of order T −1 for the ML ones. The results can be utilized to provide better approximation of the distributions of the estimators, as compared with the asymptotic ones. In fact the results on the bias of the estimators can be very useful for bias reductions along the lines of Linton (1997) and Iglesias and Linton (2007), as well as to provide more efficient estimators along the lines of Bao and Ullah (2007). As an example consider e θ, the h MLE of θ. Then it is easy to prove that θe∗ = e θ+ 1−2θ is second order unbiased and T has the same asymptotic variance as e θ. Finally, as e ρ and b θ are Indirect Inference estimators our results can be considered as applications of the results in Arvanitis and Demos (2006) on the MA(1) model. 25 The analysis presented here can be extended to any ARMA(p, q) or ARMA(p, q|µ) model. However, the algebra involved is becoming extremely tedious even for small values of p and q. Another interesting issue could be the expansion of the estimators as the parameter θ reaches the boundary of the admissible region, i.e. when θ → ±1. In this respect the work of Andrews (1999) as applied in Iglesias and Linton (2007) can be very useful. Furthermore, along the lines of Durbin (1959) and Gourieroux et al. (1993), the properties of the MM estimators can be improved by considering the expansions not only of the first order autocorrelation but higher order ones. Finally, one could consider asymptotic expansions of the estimators under the assumption of nonstandard, i.e. second moment infinite, or non-normal error distributions. We leave these issues for future research. Notes 1 Nagar (1959), Sargan (1974), Phillips (1977b) and Sargan and Satchell (1986), to quote only a few papers. Rothenberg (1986) gives a review on the asymptotic techniques employed in econometrics. For a book treatment of Edgeworth expansions, one may consult Hall (1992), Barndorff-Nielsen and Cox (1989) and Taniguchi and Kakizawa (2000). 2 1 From now on we will refer to the up to T − 2 order expansion as first order one and for the up to T −1 order as second order expansion. 3 In a general set-up for ARM A models, Ali (1984) presents the Edgeworth expansion of this autocorrelation but in the zero-mean case and does not provide explicit formulae. 4 Notice that e ρ is the Indirect estimators of ρ, when the true model is an AR(1) and the auxiliary is an M A(1) where the parameter θ is estimated by M M , or by M L in the Constraint Indirect estimation setup (see Canzelori, Fiorentini and Sentana 2004). On the other hand, b θ is an Indirect estimator of θ when the true model is an M A(1) and the auxiliary is an AR(1) one (see Gourieroux, Monfort and Renault 1993). 26 5 The validity of the expansions of either the M LEs or the M M Es is justified by our main- tained assumptions in equation (1) (see Magdalinos 1992, Phillips 1977, Sargan 1974 and 1976, and Sargan and Satchell 1986). 6 Throughout all simulations we set σ2 = 1 and we do not estimate this parameter. This does not affect the expansions of the parameters (see Tanaka 1984). 27 References ALI, M.M. (1984) Distributions of the sample autocorrelations when observations are from a stationary autoregressive-moving-average process. Journal of Business and Economic Statistics 2, 271-278. ANDREWS, D.W.K. (1999) Estimation when a parameter is on a boundary. Econometrica 67, 1341-1383. ARVANITIS, S. and DEMOS, A. (2006) Bias Properties of Three Indirect Inference Estimators, mimeo Athens University of Economics and Business. BARNDORFF-NIELSEN, O.E. and COX, D.R. (1989) Asymptotic Techniques for Use in Statistics. Chapman and Hall. BAO, Y. and ULLAH, A. (2007) The second-order bias and mean squared error of estimators in time-series models. Journal of Econometrics 140, 650-669. CANZELORI, G., FIORENTINI, G. and SENTANA, E. (2004) Constrained Indirect Estimation. Review of Economic Studies 71, 945-973. DAVIS, R. and RESNICK, S. (1986) Limit theory for the sample covariance and correlation functions of moving averages. Annals of Statistics 14, 533-558. DURBIN, J. (1959) Efficient estimation of parameters in Moving-Average models. Biometrika 46, 306-316. DURBIN, J. (1980) Approximations for densities of sufficient estimators. Biometrika 67, 311-333. FULLER, W. (1976) Introduction to Statistical Time Series. Wiley. GOURIEROUX, C., MONFORT, A. and RENAULT, E. (1993) Indirect Inference. Journal of Applied Econometrics 8, S85-S118. HALL, P (1992) The bootstrap and edgeworth expansion. Springer. IGLESIAS, E.M. and LINTON, O.B. (2007) Higher order asymptotic theory when a parameter is on a boundary with an application to GARCH models. Econometric Theory forthcoming 28 KAKIZAWA, Y. (1999a) Valid Edgeworth expansions of some estimators and bootstrap confidence intervals in first-order autoregression. Journal of Time Series Analysis 20, 343-359. KAKIZAWA, Y. (1999b) Note on the asymptotic efficiency of sample covariances in Gaussian vector stationary processes. Journal of Time Series Analysis 20, 551-558. KENDAL, M. G. and STUART, A. (1969) The Advanced Theory of Statistics. C. Griffin & Comapny LTD London. LINTON, O. (1997) An asymptotic expansion in the Garch(1,1) model. Econometric Theory 13, 558-581. MAGDALINOS, M. A. (1992) Stochastic expansions and asymptotic approximations, Econometric Theory 8, 343-367. PHILLIPS, P.C.B. (1977a) Approximations to some finite sample distributions associated with a first-order stochastic difference equation. Econometrica 45, 463485. PHILLIPS, P.C.B. (1977b) A general theorem in the theory of asymptotic expansions as approximations to the finite sample distributions of econometric estimators. Econometrica 45, 1517-1534. PHILLIPS, P.C.B. (1980) Finite sample theory and the distribution of alternative estimators of the marginal propensity to consume. Review of Economic Studies 47, 183-224. ROTHENBERG, T.J. (1986) Approximating the distributions of econometric estimators and test statistics, In The Handbook of Econometrics. vol. II, Amsterdam: North-Holland. SARGAN, J.D. (1974) Validity of Nagar’s expansion. Econometrica 42, 169176 SARGAN, J.D. (1976) Econometric estimators and the Edgeworth approxi- 29 mation. Econometrica 44, 421-448. SARGAN, J.D. (1977) Erratum ”Econometric estimators and the Edgeworth approximation”. Econometrica 45, 272. SARGAN, J.D. and SATCHELL, S.E. (1986) A theorem of validity for Edgeworth expansions. Econometrica 54, 189-213. TANAKA, K. (1983) Asymptotic expansions associated with the AR(1) model with unknown mean. Econometrica 51, 1221-1232. TANAKA, K. (1984) An asymptotic expansion associated with the maximum likelihood estimators in ARMA models. Journal of Royal Statistical Society B 46, 58-67. TANIGUCHI, M. and KAKIZAWA, Y. (2000) Asymptotic theory of statistical inference fo time series. Springer Series in Statistics 30 Appendix A1 The derivatives of the cumulant generating function evaluated at zero are the cumulants of q i ; all first derivatives are zero, since q is standardized about its mean. For a, b, c = 1, 2 and p, q, r = 3, 4, the second order are given by (see Phillips 1980, p.209-210) 2 4 ψab = − tr (Ca ΣCb Σ) − m0 Ca ΣCb m, T T 1 0 ψab = − db Σda , T 2 ψ ap = − d0p ΣCa m, T the third ones are ψabc = − ψabp = − 8i 3 2 T 8i T 3 2 tr (Cc ΣCb ΣCa Σ) − m0 Ca ΣCb Σdp , 24i T 3 2 m0 Ca ΣCb ΣCc m, ψ apq = − 2i T 3 2 d0p ΣCa Σdq , ψ pqr = 0, whereas the fourth order cumulants are 48 192 tr (Cd ΣCc ΣCb ΣCa Σ) + 2 m0 Cd ΣCc ΣCb ΣCa m, 2 T T 48 0 8 = m Cc ΣCb ΣCa Σdp , ψ abpq = 2 d0p ΣCb ΣCa Σdq , 2 T T = 0, and ψ abcd = 0. ψabcd = ψabcp ψapqr Hence we need to evaluate the following traces: tr (C1 Σ), tr (C1 Σ)2 , tr (C2 Σ), tr (C2 Σ)2 , tr (C1 ΣC2 Σ) etc., as well as the quadratics d03 Σd3 , m0 C1 ΣC1 m, etc. Here we present only tr (C1 Σ)2 and m0 C1 ΣC1 m, as the rest follow by the same method. 2 tr (C1 Σ) σ4T ∼ 2π Z π −π π ¯ ¯4 (cos λ)2 ¯1 + θeiλ ¯ dλ µ ¶2 ¢2 eiλ + e−iλ ¡ 1 + θeiλ + θe−iλ + θ2 dλ 2 −π µ ¶2 ¶2 µ Z 1 1 1 2 4 T = σ z+ 1 + θz + θ + θ dz 8π |z|<1 z z iz 2 ³ ¡ 2 ¢2 ´ d4 (z 2 + 1) (1 + θz)2 (θ + z)2 2 4T 1 4T lim 3θ + θ + 1 =σ = σ 4 24 z→0 dz 4 2 4 σ T = 2π Z 31 Furthermore, T 2 µ tr (m C1 ΣC1 m) = tr (mm C1 ΣC1 ) ∼ σ 2π 0 0 where g (λ) = 1 + 2 ∞ X 2 Z π −π ¯ ¯2 (cos λ)2 ¯1 + θeiλ ¯ g (λ) dλ cos kλ. Hence k=1 Z 2 (z 2 + 1) (1 + θz) (θ + z) dz z4 |z|<1 ¢¡ ¢ 2¡ ∞ Z X (z 2 + 1) z + θz 2 + θ + θ2 z z 2k + 1 2 T 2 +σ µ dz 8πi k=1 |z|<1 z k+4 # " 2 2 T + 1) (1 + θz) (θ + z) (z = σ 2 µ2 Re s 4 z4 " ¢ ¡ 2k ¢# 2¡ ∞ 2 2 2 X + 1) + θ + θ z z + 1 z + θz (z T Re s +σ 2 µ2 4 k=1 z k+4 T 2 µ tr (m C1 ΣC1 m) = σ 8πi 0 2 2 T 2 d3 (z 2 + 1) (1 + θz) (θ + z) = σ µ lim 24 z→0 dz 3 ¢¡ ¢ 2¡ ∞ X dk+3 (z 2 + 1) z + θz 2 + θ + θ2 z z 2k + 1 1 2T 2 lim +σ µ 4 k=1 (k + 3)! z→0 dz k+3 2 = µ2 σ 2 T (θ + 1)2 as limz→0 1 (k+3)! d3 dz 3 limz→0 ¡ ¢ 2 (z 2 + 1) (1 + θz) (θ + z) = 12 1 + θ2 , and 2 ¡ ¢ dk+3 (z 2 +1) (z+θz 2 +θ+θ2 z )(z 2k +1) 2 = 2 4θ + θ + 1 . k+3 dz Consequently, we get h ¡ ¢2 i − 4µ2 (1 + θ)2 σ 2 , ψ11 = −σ 4 3θ2 + θ2 + 1 ¡ ¢ ψ12 = −4θ 1 + θ2 σ 4 − 4µ2 (1 + θ)2 σ 2 , ¡ ¢ ψ22 = −2σ 4 θ4 + 1 + 4θ2 − 4µ2 (1 + θ)2 σ 2 , ψ13 = ψ14 = ψ23 = ψ24 = −2µ (1 + θ)2 σ 2 , ψ33 = ψ34 = ψ44 = − (1 + θ)2 σ 2 , 32 (21) the third ones are: and ¡ £ ¢ ¤ 2i ψ111 = − √ σ 4 σ 2 θ 9 + 28θ2 + 9θ4 + 12µ2 (θ + 1)4 T ¢ ¤ 4i 4 £ 2 ¡ 2 ψ121 = − √ σ σ 12θ + 12θ4 + θ6 + 1 + 6µ2 (θ + 1)4 , T ¢ ¤ 24i 4 £ 2 ¡ ψ122 = − √ σ σ θ 1 + 3θ2 + θ4 + µ2 (θ + 1)4 , T ¢ £ ¡ ¤ 8i ψ222 = − √ σ 4 σ 2 9θ2 + 9θ4 + θ6 + 1 + 3µ2 (θ + 1)4 . T (22) 8i 8i ψ113 = ψ114 = − √ σ 4 µ (θ + 1)4 ψ123 = ψ124 = − √ σ 4 µ (θ + 1)4 , T T ¢ 8i 4 ¡ ψ223 = ψ224 = − √ σ µ 4θ + 6θ2 + 4θ3 + θ4 + 1 , T 2i ψ314 = ψ413 = − √ σ 4 (θ + 1)4 , T ¢ ¡ 2i ψ234 = ψ233 = ψ244 = − √ σ 4 4θ + 6θ2 + 4θ3 + θ4 + 1 . T Finally, the fourth order cumulants are: ψ1111 = ψ1112 = ψ1122 = ψ1222 = ψ2222 = ¢ 192 2 6 6 8¡ 2 σ 72θ + 173θ4 + 72θ6 + 3θ8 + 3 + µ σ (θ + 1)6 T T ¢ 192 2 6 48 8 ¡ σ 3θ + 19θ3 + 19θ5 + 3θ7 + µ σ (θ + 1)6 T T ¢ 192 2 6 24 8 ¡ 2 σ 22θ + 52θ4 + 22θ6 + θ8 + 1 + µ σ (θ + 1)6 T T ¢¡ ¢ 192 2 6 192 8 ¡ 2 σ θ θ + 1 5θ2 + θ4 + 1 + µ σ (θ + 1)6 T T ¢ 192 2 6 48 8 ¡ 2 σ 16θ + 36θ4 + 16θ6 + θ8 + 1 + µ σ (θ + 1)6 T T ψ1113 = ψ1114 = 48 6 µσ (θ + 1)6 , T ψ1123 = ψ1124 = ψ1223 = ψ1224 = ψ2223 = ψ2224 = 8 6 σ (θ + 1)6 f or a, b = 1, 2 and p, q = 3, 4 T = 0, and ψ abcd = 0 for a, b, c = 1, 2 and p, q, r = 3, 4. ψabpq = ψapqr 48 6 µσ (θ + 1)6 T 33 (23) Furthermore, the derivatives of e (q) evaluated at 0 are: e1 = e4 = e22 = e33 = e11 = 1 −θ −µ (1 − θ)2 , e = , e = (24) ¡ ¢2 ¡ ¢2 , 2 3 (1 + θ2 )σ 2 1 + θ2 σ2 1 + θ2 σ 2 −µ 1 2µ , e = − , e = , 12 13 2 2 (1 + θ )σ 2 (1 + θ )2 σ 4 (1 + θ2 )2 σ 4 ¢¢ ¡ ¡ µ −4θ + 1 + θ2 2θ µ , e23 = , e24 = , ¡ ¢ ¡ ¢ 2 3 4 2 3 4 (1 + θ2 )2 σ 4 1+θ σ 1+θ σ ¡ ¢ ¢ ¡ θσ 2 1 + θ2 − 2µ2 (1 − θ)2 − 1 + θ2 σ 2 − 2µ2 2 , e34 = , ¡ ¢3 ¡ ¢2 1 + θ2 σ 4 1 + θ2 σ 4 e14 = e44 = 0, and (25) e111 = e112 = e113 = e114 = e124 = e134 = e144 = e244 = 0, ¢ ¡ 2 2 2 2 σ + 4µ + θ σ 2 µ , e122 = ¡ 2 ¢3 , e123 = −4 ¡ 2 ¢3 , e133 = 2 ¡ 2 ¢3 θ + 1 σ6 θ + 1 σ6 θ + 1 σ6 ¢ ¡ −2 θ2 − 6θ + 1 µ θ −2µ , e224 = ¡ 2 e222 = −6 ¡ 2 ¢4 , e223 = ¢4 ¢3 , ¡ 2 θ + 1 σ6 θ + 1 σ6 θ + 1 σ6 ¢ ¢ ¡ ¡ 2 4 2µ2 − θσ 2 − 6θµ2 − θ3 σ 2 + 2θ2 µ2 σ + 4µ2 + θ2 σ 2 e332 = , e432 = ¢4 ¢3 ¡ 2 ¡ 2 θ + 1 σ6 θ + 1 σ6 where ei = ∂e(0) , ∂qi eij = ∂ 2 e(0) , ∂qi ∂qj eijk = ∂ 3 e(0) ∂qi ∂qj ∂qk for i, j, k = 1, ..., 4. The expansion coefficients are: c0 = c1 = c2 = c3 = c5 = a4 a3 ia √ + 13 + √ , (26) 6ω 2ω T 2ω3 T µ µ ¶ ¶ a7 a23 ia5 1 a24 a9 15 a21 ia1 a3 3 √ + − 2 + + + 6 − √ − + 4 ζ, ω 2T 8T 4T ω 72 12 T 8T ω 2 T ¶ µ 1 ia1 a3 , − 3 + √ ω 6 2 T µ ¶ a23 1 10 a21 ia1 a3 − 4ζ − 6 − √ − , ω ω 72 12 T 8T µ ¶ ia1 a3 a2 ia10 a3 a4 a8 1 a21 a23 ia4 a1 a6 − √ − , ζ= − √ − √ − − − 6 ω 72 12 T 8T 24 2 T 6T 4T 2T 12 T 34 and the adapting the tensor summation convention, the so called Edgeworth coefficients are defined by: a1 = ψijk ei ej ek , a4 = ψab eab , a2 = ψijkl ei ej ek el , a5 = δ ab eab , a8 = γ a eab ψbc ecd γ d , a3 = γ a eab γ b , a6 = eabc γ a γ b γ c , a9 = ψad eab ψbc ecd , (27) a7 = eabc ψab γ c , a10 = γ a eab β b , where also we have: ω2 = −ψij ei ej , β a = ψaij ei ej , γ a = ψai ei , δab = ψabi ei . (28) Appendix A2 To write the explicit expression of b θ we solve this equation for θ and we choose the solution with the constraint |θ| ≤ 1 (see Fuller, 1976): p 1 − 4b ρ2 1 − b = f (b ρ) , if |b ρ| ≤ 0.5 θ = 2b ρ or p p 2 1 − 4ρ2 1 − 1 − 4b ρ 1 − b − = f (b ρ) − f (ρ) = m (ρ) , θ−θ = 2b ρ 2ρ where θ is the true parameter value. Notice that for − 12 ≤ ρ ≤ 1 2 the function is monotonic and one-to-one. Notice also that q (1 − 4ρ2 )3 − 1 + 6ρ2 ∂ f (ρ) q = , 3 ∂b ρ2 3 2 ρ (1 − 4ρ ) p ∂f (ρ) 1 1 − 1 − 4ρ2 p ≥ 0, = ∂b ρ 2 ρ2 1 − 4ρ2 2 5 (1 − 4ρ2 ) (1 − 2ρ2 ) − 4ρ2 (1 − 6ρ2 ) − (1 − 4ρ2 ) 2 ∂ 3 f (ρ) = 3 . 5 ∂b ρ3 (1 − 4ρ2 ) 2 We employ the following notation: ´ √ √ ³ √ θ= T b θ − θ = T m (b ρ) = T à 35 1− ! p p 1 − 4b ρ2 1 − 1 − 4ρ2 − 2b ρ 2ρ cfθ (s) = Z ¡ ¢ exp isθ dF (ρ) , which stands for the characteristic function of θ. Taking a Taylor series expansion about the correlation coefficient to get: ³ 3´ 1 ∂ 2 m (ρ) 2 ∂m (ρ) 1 ∂ 3 m (ρ) 3 y+ √ θ= y + y + O T −2 2 3 ∂b ρ 6T ∂b ρ ρ 2 T ∂b √ where y = T (b ρ − ρ0 ). In the characteristic function of θ, taking the Taylor expansion of exp ³ ´ is ∂ 3 m(ρ0 ) 3 and exp 6T and setting s ∂m(ρ) y = z we get ∂e ρ ∂e ρ3 ³ is ∂ 2 m(ρ0 ) 2 √ y ∂e ρ2 2 T is ∂ 2 m (ρ) d2 cfy (z) s ∂ 3 m (ρ) d3 cfy (z) cfθ (s) = cfy (z) − √ − dz 2 6T ∂b dz 3 ρ2 ρ3 2 T ∂b ¶2 µ ³ 3´ s2 ∂ 2 m (ρ) d4 cfy (z) − + O T −2 . 8T dz 4 ∂b ρ2 ´ (29) The last equation is the characteristic function of θ as a series involving the √ characteristic function of y = T (b ρ − ρ) and its subsequent derivatives, with coefficients depending on the derivatives of m (b ρ) evaluated at the the true ρ. Denoting by kr the rth degree cumulant of y, expanding, aroung z = 0, ³ ³ ´ ´ ³ 4´ 2 3 z exp −k2& z2 , exp (k1 iz), exp −k3 iz6 and exp k4 24 we get ¶µ ¶ µ ³ 3´ 2 2 6 iz 3 z 4 k12 z 2 z4 2z &z 2z cfy (z) = exp −ω 1 − k2 − k3 − k3 + k1 iz + k1 k3 − + k4 +O T − 2 . 2 2 6 72 6 2 24 Taking equation (29), substituting out the derivatives (evaluated by the above expression) and z = s ∂m(ρ) and collecting terms we get: ∂e ρ ⎛ is √ 2 T 3 is √ 6 T 1+ [b4 + 2b5 ] − [b1 + 3b3 ] ⎜ £ ¤ 2 µ 2 2¶⎜ − s2 T1 b9 + b25 + 34 b24 + b7 + 3b4 b5 + b8 sδ ⎜ ⎜ cfθ (s) = exp − ⎜ s4 2 ⎜ + 24T [b2 + 4b1 b5 + 4b6 + 12b3 b5 + 14b4 b1 + 18b3 b4 ] ⎝ s6 − 72T [6b3 b1 + b21 + 9b23 ] 36 ⎞ ⎟ ⎟ ³ ´ ⎟ ⎟+O T − 32 ⎟ ⎟ ⎠ where δ 2 = b3 = b6 = b8 = µ µ ¶2 ¶3 ¶4 √ ∂m (ρ) ∂m (ρ) ∂m (ρ) ω , b1 = T k3 , b2 = T k4 , (30) ∂b ρ ∂b ρ ∂b ρ µ ¶2 √ ∂m (ρ) ∂ 2 m (ρ) 4 ∂m (ρ) ∂ 2 m (ρ) 2 ω , b = ω , b = T k1 , 4 5 2 2 ∂b ρ ∂b ρ ∂b ρ ∂b ρ µ ¶3 ∂ 3 m (ρ) 6 ∂m (ρ) ∂ 3 m (ρ) 4 ∂m (ρ) , 4 ω , b = ω 7 ∂b ρ ∂b ρ ∂b ρ3 ∂b ρ3 µ ¶2 ∂m (ρ) ∂m (ρ) ∂ 2 m (ρ) √ & T k3 . , b9 = T k2 ∂b ρ ∂b ρ ∂b ρ2 2 µ Inverting the characteristic function of θ term by term, we deduce the corresponding asymptotic expansion of the density g(m) and the probability function h√ ³ ´ i G(m) = Pr T b θ − θ ≤ m as T → ∞. To do so, we use the next relations: Z ∞ 1 2 (it)n e−t /2 e−itz dt ⇒ (−1) φ (z) = 2π −∞ Z ∞ 1 2 (it)n e−t /2 e−itz dt Hn (z)φ(z) = 2π −∞ n (n) where φ(z) denotes the standard normal density function, and Hn (z) are the Hermite polynomials, for which we have: H0 (z) = 1, H1 (z) = z, H2 (z) = z 2 − 1, H3 (z) = z 3 − 3z, etc. and for z = δs we have: Z ³m´ ³m´ 1 ³x´ b4 + 2b5 1 ³ m ´ b1 + 3b3 1 G(m) = φ dx − √ φ − √ φ H2 δ δ δ δ 2 T δ 6 T δ3 −∞ δ 3 2 ³ ´ ³ ´ 2 b9 + b5 + 4 b4 + b7 + 3b4 b5 + b8 1 m m − φ 2 H1 2T δ δ δ ³m´ ³m´ b2 + 4b1 b5 + 4b6 + 12b3 b5 + 14b4 b1 + 18b3 b4 1 − H3 φ 24T δ δ δ4 ³m´ ³m´ ¡ −3/2 ¢ 6b1 b3 + b21 + 9b23 1 φ +O T H5 . − 72T δ δ δ6 m 37 and emplying the formulae of Hermite polynomials we get: ⎡ b4 +2b √ 5 1 − b1 +3b √ 3 1 2 T δ 6 T δ3 ⎢ ⎢ b +b2 + 3 b2 +b +3b b +b + 9 5 4 4 2T7 4 5 8 δ12 mδ ⎢ ⎢ ς m ³m´ ³m´ ⎢ ⎢ + 24T δ ⎢ G(m) = Φ −φ ¡ ¢2 2 +9b2 ⎢ 6b b +b 1 3 b1 +3b m 1 1 3 δ δ ⎢ +15 √ 3 13 m + 6 δ δ δ δ 6 T ´ ⎢ ³ 72T ¡ m ¢3 ⎢ 6b1 b3 +b21 +9b23 1 1 ς ⎢ − 3 24T + 10 72T δ δ6 ⎣ ¡ 2 2 6b1 b3 +b1 +9b3 1 m ¢5 + 72T δ6 δ ¡ −3/2 ¢ +O T , ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ where b2 + 4b1 b5 + 4b6 + 12b3 b5 + 14b4 b1 + 18b3 b4 . δ4 The last equation stands for the Edgeworth approximation of the distribution ´ √ ³ b function of T θ − θ , written conpactly in subsection 2.3. ς = −3 Appendix B1 The derivatives of the log-likelihood function, w.r.t. θ, are: à µ ¶2 ! T T ∂ (θ) ∂ 2 ut 1 X ∂ut 1 X ∂ut ∂ 2 (θ) ut 2 + ut =− 2 = − 2 , ∂θ σ t=1 ∂θ σ t=1 ∂θ ∂θ2 ∂θ ¶ µ ¶ T µ ∂ 3 ut ∂ 3 (θ) 1 X ∂ut ∂ 2 ut ut 3 + 3 = − 2 σ t=1 ∂θ ∂θ2 ∂θ3 ∂θ à ! µ 2 ¶2 T 4 4 3 X ∂ ut ∂ (θ) 1 ∂ ut ∂ut ∂ ut ut 4 + 3 . =− 2 +4 4 2 σ t=1 ∂θ ∂θ3 ∂θ ∂θ ∂θ Noting that X ∂ut =− (−θ)i ut−1−i , ∂θ i=0 ∞ and X ∂ 2 ut (i + 1) (−θ)i ut−2−i , 2 = 2 ∂θ i=0 ∞ X ∂ 3 ut = −3 (i + 1) (i + 2) (−θ)i ut−3−i 3 ∂θ i=0 ∞ 38 X ∂ 4 ut = 4 (i + 1) (i + 2) (i + 3) (−θ)i ut−4−i , 4 ∂θ i=0 ∞ it follows that ¶2 µ 2 ¶2 µ 2 σ2 ∂ ut ∂ut 2 1+θ = , E = 4σ E ¡ ¢3 , ∂θ 1 − θ2 ∂θ2 1 − θ2 ¶ ¶ µ 3 µ 2 2θσ 2 6θ2 σ 2 ∂ ut ∂ut ∂ ut ∂ut = ¡ =¡ E ¢2 and E ¢3 . ∂θ2 ∂θ ∂θ3 ∂θ 1 − θ2 1 − θ2 Hence the expectation of the derivatives of the log-likelihood function evalu- ated at the true θ µ ¶ ¶ µ 2 ∂ (θ) T ∂ L (θ) E =− = 0, E 2 ∂θ ∂θ 1 − θ2 ¶ ¶ µ 3 µ 4 Tθ 1 + 3θ2 ∂ (θ) ∂ (θ) = −6 ¡ = −12T ¡ E ¢2 , E ¢3 ∂θ3 ∂θ4 1 − θ2 1 − θ2 The derivatives of the log-likelihood function with respect to the parameter µ: "µ # ¶2 T T 2 2 X X 1 ∂ 1 ∂ut ∂ ut ∂ut ∂ = − 2 , ut =− 2 + ut 2 , 2 ∂µ σ t=1 ∂µ ∂µ σ t=1 ∂µ ∂µ " µ # ∙ ¸ ¶2 T T ∂3 ∂ 3 ut ∂ 4 ut ∂ 2 ut ∂4 1 X ∂ut ∂ 2 ut 1 X ∂ut ∂ 3 ut 3 3 = − 2 + ut 3 , =− 2 +4 + ut 4 ∂µ3 σ t=1 ∂µ ∂µ2 ∂µ ∂µ4 σ t=1 ∂µ2 ∂µ ∂µ3 ∂µ where ∂ut 1 =− , ∂µ 1+θ ∂ 2 ut ∂ 3 ut ∂ 4 ut = = = 0. ∂µ2 ∂µ3 ∂µ4 Hence their expectations at the true θ are: ¶ ¶ µ 4 ¶ ¶ µ 3 µ µ 2 T ∂ (θ) ∂ (θ) ∂ (θ) ∂ (θ) =− =E = 0. =E , E E ∂µ2 ∂µ ∂µ3 ∂µ4 (1 + θ)2 σ 2 Furthermore, à T ! T 1 X ∂ut ∂ut X ∂ 2 ut ∂2 ut = − 2 + , ∂µ∂θ σ ∂µ ∂θ ∂µ∂θ t=1 t=1 ¶ µ 2 ¶ µ 1 ∂ ∂ut = − , E = 0. E ∂µ 1+θ ∂µ∂θ and Furthermore, ∂ 2 ut 1 , = ∂µ∂θ (1 + θ)2 ∂ 3 ut 2 , 2 = − ∂µ∂θ (1 + θ)3 39 ∂ 3 ut = 0. ∂θ∂µ2 We also have ¶ T µ ∂3 1 X ∂ 2 ut ∂ut ∂ut ∂ 2 ut ∂ 3 ut = − 2 +2 + ut 2 , ∂µ2 ∂θ σ t=1 ∂µ2 ∂θ ∂µ ∂µ∂θ ∂µ ∂θ 2T 1 ∂3 = 2 2 ∂µ ∂θ σ (1 + θ)3 where So, its expected value is E µ ∂3 ∂µ2 ∂θ ¶ = 2T , (1 + θ)3 σ 2 as we have E µ ∂ 2 ut ∂ut ∂µ2 ∂θ ¶ = 0 and E µ ∂ut ∂ 2 ut ∂µ ∂µ∂θ ¶ =− 1 (1 + θ)3 Next ¶ T µ ∂ 3 ut ∂3 ∂ 2 ut ∂ut ∂ut ∂ 2 ut 1 X 2 , + = − 2 + ut σ t=1 ∂µ∂θ ∂θ ∂µ ∂θ2 ∂µ∂θ2 ∂µ∂θ2 µ 3 ¶ ∂ = 0 E ∂µ∂θ2 Moreover, ¶ T µ ∂ 4 ut ∂4 ∂ 3 ut ∂ut 1 X ∂ 2 ut ∂ 2 ut ∂ut ∂ 3 ut 3 , = − 2 + + ut +3 σ t=1 ∂µ∂θ ∂θ2 ∂µ ∂θ3 ∂µ∂θ3 ∂µ∂θ2 ∂θ ∂µ∂θ3 µ 4 ¶ ∂ 4 ut 1 ∂ = 0 as , E 3 3 = 6 ∂µ∂θ ∂µ∂θ (1 + θ)4 à ! µ 2 ¶2 T ∂ 3 ut ∂ut ∂ 2 ut ∂ 2 ut 1 X ∂ ut ∂ut ∂ 3 ut ∂4 ∂ 4 ut 2 2 = − 2 +2 +2 + ut 2 2 , + σ t=1 ∂µ ∂θ ∂θ ∂µ2 ∂θ2 ∂µ∂θ ∂µ ∂µ∂θ2 ∂µ2 ∂θ2 ∂µ ∂θ µ 4 ¶ T ∂ 4 ut ∂ = −6 as =0 E ∂µ2 ∂θ2 ∂µ2 ∂θ2 (1 + θ)4 σ 2 and ¶ T µ ∂4 ∂ 4 ut 1 X ∂ 3 ut ∂ut ∂ 2 ut ∂ 2 ut ∂ut ∂ 3 ut = − 2 +3 2 +3 + ut 3 , ∂µ3 ∂θ σ t=1 ∂µ3 ∂θ ∂µ ∂µ∂θ ∂µ ∂µ2 ∂θ ∂µ ∂θ µ 4 ¶ ∂ 4 ut ∂ = 0 as = 0. E ∂µ3 ∂θ ∂µ3 ∂θ 40 Appendix B2 The derivatives can be found by solving the system of equations (15), (16) and (17), which is coming from implicit differentiation of fj (ϕ (h) , h) in equation (13), i.e. for j = 1, 2 we have: u (ϕ (h) , h) = 2 X ∂fj (ϕ (h) , h) ∂θk (h) ∂ha ∂θk k=1 + ∂fj (ϕ (h) , h) = 0. ∂ha (k) = ea and Evaluating the above expression at 0, and noting that ∂θ∂hk (0) a ¯ w ¯ Ajk + √jkT ¯ = Ajk we get the result in equation (15). h=wjk =0 ∂fj (0,0) ∂h θk = By implicit differentiation of u (ϕ (h) , h) gives, again for j = 1, 2 v (ϕ (h) , h) = 2 X ∂u (ϕ (h) , h) ∂θl (h) l=1 Substituting out ∂u(ϕ(h),h) ∂h θl and ∂hb ∂θl ∂u(ϕ(h),h) ∂hb + ∂u (ϕ (h) , h) = 0. ∂hb (31) by ∂u (ϕ (h) , h) X ∂ 2 fj (ϕ (h) , h) ∂θk (h) ∂ 2 fj (ϕ (h) , h) = + ∂ha ∂θl ∂θk ∂e θl ∂e θl ∂ha 2 k=1 and ¶ 2 2 µ ∂u (ϕ (h) , h) X ∂ 2 fj (ϕ (h) , h) ∂θk (h) ∂fj (ϕ (h) , h) ∂ 2 θk (h) ∂ fj (ϕ (h) , h) + = + ∂hb ∂ha ∂hb ∂ha ∂hb ∂ha ∂hb ∂θk ∂θk k=1 collecting terms and evaluating at 0 we get à 2 ! 2 2 2 2 X X X ∂ fj (0, 0) (k) 1 ∂ fj (0, 0) (k) √ Kjkl e(l) ea eb + 0 = b + e T ∂hb ∂e θk k=1 ∂ θ k ∂ha k=1 l=1 2 1 X ∂ 2 fj (0, 0) (k) +√ Ajk eab + . ∂hb ∂ha T k=1 As now fj (ϕ, h) is linear in h we have that fj2 (ϕ,h) ∂hb ∂ha a, b = 1, ..., 4. and we get the result in equation (16). 41 = 0 for all j = 1, 2 and Finally, for the third derivatives, implicitly differentiating, with respect to hc , for c = 1, 2, ..., 6, of v (ϕ (h) , h) gives 2 X ∂v (ϕ (h) , h) ∂θp (h) p=1 ∂θp ∂hc + ∂v (ϕ (h) , h) = 0. ∂hc aand consequently, 2 2 X ∂ 3 fj (ϕ (h) , h) ∂θk (h) X ∂fj2 (ϕ (h) , h) ∂ 2 θk (h) ∂v (ϕ (h) , h) = + ∂hb ∂hb ∂ha ∂θp ∂θp ∂θk ∂ha ∂θp ∂θk k=1 k=1 à ! 2 2 X X ∂ 3 fj (ϕ (h) , h) ∂θl (h) ∂ 3 fj (ϕ (h) , h) ∂θk (h) + + ∂hb ∂ha ∂θp θl ∂θk ∂θp ∂hb ∂θk k=1 l=1 and ¶ 2 µ 3 X ∂v (ϕ (h) , h) ∂ fj (ϕ (h) , h) ∂θk (h) ∂ 2 fj (ϕ (h) , h) ∂ 2 θk (h) = + ∂hc ∂h ∂hc ∂hb ∂h ∂θ ∂h ∂θk ∂ha b c k a k=1 ¶ 2 µ 2 X ∂ fj (ϕ (h) , h) ∂ 2 θk (h) ∂fj (ϕ (h) , h) ∂ 3 θk (h) + + ∂h ∂hc ∂hb ∂ha ∂h ∂θ ∂θk b ∂ha c k k=1 à ! ⎡ 2 ³ ´ X 3 2 3 2 ∂ fj (ϕ(h),h) ∂θl (h) ∂ fj (ϕ(h),h) ∂ θl (h) ∂ f (ϕ(h),h) ∂θk (h) + ∂hj ∂h ∂θ + ∂θ 2 ⎢ ∂h ∂h ∂h ∂ha ∂h ∂θ ∂θ ∂θ c b b c c l k l k b k X ⎢ l=1 ⎢ ! à 2 + ⎢ X ∂ 2 f (ϕ(h),h) ∂θ (h) ∂ 2 f (ϕ(h),h) ∂ 2 θ (h) j j l k k=1 ⎣ + + ∂h ∂hb ∂hc ∂ha ∂θ ∂θ ∂θ l k b k l=1 Substituting in equation (31) the above expressions of ∂v(ϕ(h),h) ∂θp and ∂v(ϕ(h),h) , ∂hc collecting terms, evaluate at 0 and taking into account the linearity of fj (ϕ, h) we get equation (17). 1 1 A12 = 0, A22 = − , 2, 1−θ σ 2 (1 + θ)2 6θ 2 = −¡ , K = , K222 = K112 = 0 ¢ 122 2 (1 + θ)3 σ 2 1 − θ2 A11 = − K111 1 + 3θ2 M1111 = −12 ¡ ¢3 , 1 − θ2 M1122 = − 6 , (1 + θ)4 σ 2 42 (32) M1112 = M2222 = M1222 = 0. ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ To evaluate the derivatives, first consider j = 1 and observe that and ∂f1 (0,0) ∂ha ∂f1 (0,0) ∂h1 = 1, = 0 for a = 2, ..., 6. Hence, (1) e1 = 1 − θ2 , For j = 2 observe that ∂f2 (0,0) ∂h2 (2) (1) (1) (1) (1) (1) and e2 = e3 = e4 = e5 = e6 = 0 ∂f2 (0,0) ∂h1 = 1, and e2 = σ 2 (1 + θ)2 , (2) (2) = ... = (2) ∂f2 (0,0) ∂h6 (2) = 0. It follows that (2) e1 = e3 = e4 = e5 = e6 = 0 Applying the same logic we find that the non-zero second derivatives for j = 1 are (1) e11 (1) e22 ¡ ¡ ¢ ¢2 (1) = −6θ 1 − θ2 , e13 = 1 − θ2 , ¡ ¢ ¡ ¢ (1) = 2σ 2 (1 + θ) 1 − θ2 , and e24 = σ 2 (1 + θ)2 1 − θ2 , whereas for j = 2 we get ¡ ¢ (2) e12 = 2σ 2 (1 + θ) 1 − θ2 , ¡ ¢ (2) e14 = σ 2 (1 + θ)2 1 − θ2 . Finally, we have (1) ¡ ¡ ¡ ¢¡ ¢ ¢2 ¢3 (1) (1) −12 + 72θ2 1 − θ2 , e113 = −18θ 1 − θ2 , e115 = 1 − θ2 , ¡ ¢ ¡ ¢ ¡ ¢ (1) = 2σ 2 (1 − 7θ) (1 + θ) 1 − θ2 , e124 = 2σ 2 2 − 3θ − 5θ2 (1 + θ) 1 − θ2 , ¡ ¡ ¢2 ¢3 ¡ ¢2 (1) (1) = σ 2 (1 + θ)2 1 − θ2 , e133 = 2 1 − θ2 , e144 = 2σ 2 (1 + θ)2 1 − θ2 , ¡ ¡ ¢2 ¢2 (1) = σ 2 (1 + θ)2 1 − θ2 , e223 = 2σ 2 (1 + θ) 1 − θ2 , e111 = (1) e122 (1) e126 (1) e234 and ¢ ¡ (2) (2) e112 = −2 1 − θ2 (7θ − 1) (θ + 1) σ 2 , e114 = 2 (5θ − 2) (θ − 1) (θ + 1)3 σ 2 , ¡ ¢2 ¡ ¢2 ¡ ¢2 (2) (2) (2) e116 = σ 2 (1 + θ)2 1 − θ2 , e123 = 2σ 2 1 − θ2 (1 + θ) , e134 = σ 2 (1 + θ)2 1 − θ2 , ¡ ¢ ¡ ¢ ¡ ¢ (2) (2) (2) e222 = 12σ 4 1 − θ2 (1 + θ)2 , e224 = 6σ 4 1 − θ2 (1 + θ)3 e244 = 2σ 4 (1 + θ)4 1 − θ2 . Whereas all the other derivatives are 0. 43 Appendix B3 To get the expression for h notice that T T ¡ ¢ 1 1 ln (2π) − ln σ 2 − ln |Σ| − 2 (y − µd)/ Σ−1 (y − µd) 2 2 2σ µ ¶ 2 ∂ (θ) ∂Σ ∂Σ 1 = tr Σ−1 + 2 (y − µd)/ Σ−1 Σ−1 (y − µd) ∂θ ∂θ 2σ ∂θ ¶ µ 2 ∂ 2 (θ) −1 ∂Σ −1 ∂Σ −1 ∂ Σ Σ +Σ = tr −Σ ∂θ ∂θ ∂θ2 ∂θ2 µ 2 ¶ ∂ Σ ∂Σ −1 ∂Σ 1 / −1 Σ Σ−1 (y − µd) + 2 (y − µd) Σ 2 −2 2σ ∂θ ∂θ ∂θ ¶ µ ¶ µ 2 2 1 −1 ∂ 2 Σ ∂ (θ) −1 ∂Σ −1 ∂Σ −1 ∂ Σ −1 ∂Σ −1 ∂Σ = tr −Σ Σ +Σ Σ + Σ −Σ E ∂θ ∂θ 2 ∂θ ∂θ ∂θ2 ∂θ2 ∂θ2 (θ) = − and ∂ ⎛ −1 Σ (θ) = tr ⎝ 3 ∂θ 3 ³ ∂Σ −1 ∂Σ Σ ∂θ ∂θ ⎛ − ∂2Σ ∂θ2 ⎡ ´ Σ−1 ∂Σ ∂θ − Σ−1 ∂Σ ∂θ ³ ´ ⎞ −1 ∂Σ −1 ∂Σ −1 ∂ 2 Σ −Σ ∂θ Σ ∂θ + Σ ∂θ2 ⎠ 2 Σ−1 ∂∂θΣ2 −Σ−1 ∂Σ ∂θ Σ−1 ∂Σ Σ−1 ∂Σ −3 ∂Σ ∂θ ∂θ ∂θ + ∂ 2 Σ −1 ∂Σ Σ ∂θ ∂θ2 ⎤ ⎞ ⎦ Σ−1 ⎟ ⎜ Σ−1 ⎣ 1 2Σ ⎟ /⎜ ∂ ∂Σ −1 − 2 (y − µd) ⎜ ⎟ (y − µd) + ∂θ Σ ∂θ2 σ ⎝ ⎠ ³ ´ 1 −1 ∂Σ −1 ∂ 2 Σ ∂ 2 Σ −1 ∂Σ −1 +2Σ Σ ∂θ2 + ∂θ2 Σ ∂θ Σ ∂θ ´ ⎛ ³ ⎞ −1 ∂Σ −1 ∂Σ −1 ∂ 2 Σ −1 ∂Σ Σ ∂θ Σ ∂θ − Σ ∂θ2 Σ ∂θ µ 3 ¶ ⎜ ³ ´ ⎟ ∂ (θ) ⎜ ⎟ −1 ∂Σ −1 ∂Σ −1 ∂Σ −1 ∂ 2 Σ E = tr ⎜ ⎟ −Σ −Σ Σ + Σ 2 3 ∂θ ∂θ ∂θ ∂θ ⎝ ⎠ ∂θ −1 ∂Σ −1 ∂ 2 Σ −Σ ∂θ Σ ∂θ2 ⎛ i ⎞ h −1 ∂Σ −1 ∂Σ −1 ∂Σ −1 ∂ 2 Σ −1 ∂Σ −1 ∂Σ −1 ∂ 2 Σ Σ Σ + Σ Σ + Σ Σ −2 −3Σ 1 ∂θ ∂θ ∂θ ∂θ ∂θ ∂θ2 ∂θ2 ⎠ + tr ⎝ 2 2 2 −1 ∂Σ −1 ∂ Σ −1 ∂ Σ −1 ∂Σ Σ −Σ Σ −Σ ∂θ ∂θ2 ∂θ2 On the other hand µ ¶ 2 1 / ∂ 3 (θ) −1 ∂Σ −1 ∂Σ −1 −1 ∂ Σ −1 (y − µd) Σ Σ −Σ = 2 d 2Σ Σ σ ∂θ ∂θ ∂µ∂θ2 ∂θ2 Now under our assumptions we have that (y − µd) ∼ N (0, Σ) σ 44 ∂θ and the characteristic function of (y−µd)/ Ca (y−µd) σ2 / (a = 1, 3, 5) and cb (y−µd) σ2 (b = 2, 4, 6) of the same form as in Phillips (1980). Consequently, taking into account that C1 , C3 , C5 , and Σ are symmetric matrices we have for a, b, d, f = 1, 3, 5 and p, q, r, s = 2, 4, 6: ¡ ¢ 2 1 ψab = − tr (Ca ΣCb Σ) , ψ ap = 0, ψ pq = − 2 tr c/p Σcq T Tσ 8i 2i ψabd = − 3 tr (Cd ΣCb ΣCa Σ) , ψ abp = 0, ψ apq = − 3 c/p ΣCa Σcq T2 T2 48 tr (Cf ΣCd ΣCb ΣCa Σ) , ψabdf = T2 8 ψabdp = 0, ψ abpq = 2 c/p (ΣCb ΣCa Σ) cq , ψ apqr = 0, ψ pqrs = 0. T and ψ pqr = 0 We present the derivation of only ψ44 . All the other cumulants follow with the ∞ X cos kλ, we have same logic. As g (λ) = 1 + 2 k=1 ψ44 µ ¶ ´ ³ 1 1 / / −1 ∂Σ −1 ∂Σ −1 Σ Σ d = − 2 tr c4 Σc4 = − 2 tr d Σ Tσ Tσ ∂θ ∂θ ¢2 ¡ iλ Zπ Zπ e + e−iλ + 2θ 4 (cos λ + θ)2 g (λ) 1 1 dλ = − ∼ − ¡ ¢3 dλ 2πσ 2 2πσ 2 |1 + θeiλ |6 1 + θ2 + θeiλ + θe−iλ −π − 1 2πσ 2 Zπ ¢2 ¡ iλ e + e−iλ + 2θ −π = − ⎛ 1 1 1⎜ ⎝ σ 2 2π i Z |z|<1 k=1 −π ¡ ikλ ¢ e + e−ikλ ¡ ¢3 1 + θ2 + θeiλ + θe−iλ 2 ∞ X (z 2 + 1 + 2θz) dz + (zθ + 1)3 (z + θ)3 k=1 Z dλ |z|<1 ¢ ¡ (z + 1 + 2θz) z 2k + 1 2 2 zk 3 3 (zθ + 1) (z + θ) ⎞ ⎟ dz ⎠ ¢! 2¡ ∞ 2 X d2 (z 2 + 1 + 2θz) 1 dk−1 (z 2 + 1 + 2θz) z 2k + 1 1 + lim lim z→0 dz k−1 2 z→−θ dz 2 (k − 1)! (zθ + 1)3 (zθ + 1)3 (z + θ)3 k=1 ¢ 2¡ ∞ 1 X1 d2 (z 2 + 1 + 2θz) z 2k + 1 − 2 lim σ k=1 2 z→−θ dz 2 z k (zθ + 1)3 1 = − 2 σ à ∞ X 2 and notice that 1 2 2 d2 (z +1+2θz ) limz→−θ dz 2 (zθ+1)3 (2θ2 +1) = −2 (θ+1)3 (θ−1)3 and 45 2 2 2 4 2 2 2 2 2k 2 1 k(1−8θ +7θ )+k (1−θ ) +4θ (1+2θ ) d2 (z +1+2θz ) (z +1) limz→−θ dz = − 3 2 3 3 k 2 z k (zθ+1) (θ+1) (θ−1) (−θ) θ2 2 +4θ2 +8θ 4 +8kθ 2 −7kθ4 −2k2 θ 2 +k2 θ 4 (−θ)k −k+k ( ) − 12 (θ+1)3 (θ−1)3 θ2 1 2 2 Furthermore, 1 (k−1)! limz→0 2 2k dk−1 (z +1+2θz ) (z +1) 3 dz k−1 (zθ+1) (z+θ)3 = 1 (k−1)! limz→0 2 2 dk−1 (z +1+2θz ) , dz k−1 (zθ+1)3 (z+θ)3 2 (z2 +1+2θz) 2 1 1 1 2θ+4θ3 1 4θ2 +2 = 3θ2 −3θ + 1−4θ + 1 − 3θ2 −3θ − 4 4 +θ6 −1 (zθ+1) θ−2θ3 +θ5 (zθ+1)2 θ3 −θ (zθ+1)3 +θ6 −1 (z+θ) (zθ+1)3 (z+θ)3 1 1 3θ − θ21−1 (z+θ) 3. θ4 −2θ2 +1 (z+θ)2 ³ ´ k−1 dk−1 dk−1 1 1 1 1 Notice also that (k−1)! = limz→0 dz = (−θ) , lim z→0 dz k−1 (zθ+1)2 k−1 zθ+1 (k−1)! k−1 and , k (−θ) 1 1 1 dk−1 dk−1 = k(k+1) (−θ)k−1 , (k−1)! limz→0 dz k−1 (z+θ) 2 dz k−1 (zθ+1)3 1 1 dk−1 limz→0 dz = k θ12 (−θ)1k−1 , k−1 (k−1)! (z+θ)2 dk−1 1 1 1 1 and (k−1)! limz→0 dz = k(k+1) we get k−1 2 θ3 (−θ)k−1 (z+θ)3 1 (k−1)! limz→0 = 1 1 , θ (−θ)k−1 2 2 4 2 4 2 2 2 2 2 4 1 1 (k −k+4θ +8θ +8kθ −7kθ −2k θ +k θ ) dk−1 (z +1+2θz ) limz→0 dz 3 3 = 2 3 3 k−1 (k−1)! (zθ+1) (z+θ) (θ+1) (θ−1) θ 2 4 2 4 2 2 2 2 4 1 (k+k +4θ +8θ −8kθ +7kθ −2k θ +k θ ) 1 2 (θ+1)3 (θ−1)3 θ3 (−θ)k−1 (−θ)k−1 − Hence ψ44 ⎛ ¡ ¢ −2 2θ2 + 1 + 4θ2 (1+2θ2 ) θ ∞ X (−θ)k−1 ⎜ ⎜ 1 k=1 ⎜ ∼ − ∞ ∞ 2 4 X 2 2 −1+8θ −7θ 1−2θ +θ4 ) X 2 σ (θ + 1)3 (θ − 1)3 ⎜ ) ( ( k−1 ⎝ + k (−θ) + k (−θ)k−1 θ θ k=1 = − k=1 4 1 2 σ (θ + 1)4 and the result follows by collecting terms and as for |x| < 1 we have that: ∞ X x kx = (1 − x)2 k=1 k and ∞ X k=1 46 k2 xk = x2 + x . (1 − x)3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ Hence the cumulants of h are: ψ11 = − 1 , 1 − θ2 4θ ψ 13 = − ¡ ¢2 , 1 − θ2 3θ2 + 1 ψ 15 = −6 ¡ ¢3 , 1 − θ2 1 1 3 + 7θ2 1 2 , ψ = − , ψ = , ψ33 = −2 ¡ ¢ 22 24 3 2 σ 2 (1 + θ) σ 2 (θ + 1)3 1 − θ2 6 4 ψ26 = − , ψ 44 = − 4 σ 2 (θ + 1) σ 2 (θ + 1)4 1 6θ i 4i 5θ2 + 2 2i √ ψ111 = − √ ¡ , ψ = ¢ ¡ ¢3 , ψ 122 = − √ 2 113 2 2 2 T 1−θ T 1−θ T σ (1 + θ)3 ¢ ¡ 1 4i 6 7θ2 + 3 ψ124 = √ , ψ 1111 = ¡ ¢ . T 1 − θ2 3 T σ 2 (θ + 1)4 47 0.04 0.03 0.02 0.01 0 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -0.01 -0.02 True-Normal True-T Approximation Figure 1: Differences from Exact Distribution of √ T (b ρ − ρ). 1.5 1.25 1 0.75 0.5 0.25 0 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 Theta Figure 2: |E [T (b ρ − ρ)]| (thick line) and |E [T (ρb0 − ρ0 )]|. 48 4.5 1 0.875 0.75 0.625 -1 -0.75 -0.5 0.5 -0.25 0 0.25 0.5 0.75 1 Theta Figure 3: MSE of √ √ T (b ρ − ρ) (thick line) and T (ρb0 − ρ0 ), T = 10. 0.1 0.08 0.06 0.04 0.02 0 -5 -4 -3 -2 -1 0 1 2 3 4 -0.02 -0.04 True-T Approximation True-Normal Figure 4: Differences from Exact Distribution of 49 ´ √ ³ T b θ−θ . 5 10 7.5 5 2.5 0 -0.5 -0.25 0 0.25 0.5 Theta ¯ h ³ ¯ h ³ ´i¯ ´i¯ ¯ ¯ ¯ ¯ b b Figure 5: ¯E T θ − θ ¯ (thick line) and ¯E T θ0 − θ0 ¯ 4.5 4 3.5 3 2.5 2 1.5 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Theta Figure 6: MSE of ´ ´ √ ³ √ ³ T b θ − θ (thick line) and T θb0 − θ0 , T = 10. 50 0.2 0.1 -9 -7 -5 -3 0 -1 -0.1 1 3 5 7 9 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 True-T Approx. True-root T Approx. True-Normal Figure 7: Differences from Exact Distribution of ´ √ ³ T e θ−θ . 2 1.5 1 0.5 0 -0.5 -0.375 -0.25 -0.125 0 0.125 0.25 0.375 0.5 Theta Figure 8: MSE of ´ ´ √ ³ √ ³ T e θ − θ (thick line) and T θe0 − θ0 , for T = 10. 51 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 -0.5 -0.02 -1.5 0.5 1.5 2.5 3.5 4.5 -0.04 -0.06 True-T Approx. True-Normal Figure 9: Differences from Exact Distribution of √ T (e ρ − ρ). 1 0.75 0.5 0.25 0 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 Theta Figure 10: |E [T (e ρ − ρ)]| (thick line) and |E [T (ρe0 − ρ0 )]| 52 0.8 0.6 0.4 0.2 0 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 Theta Figure 11: MSE of √ √ T (e ρ − ρ) (thick line) and T (ρe0 − ρ0 ) for T = 10. 3 2.5 2 1.5 1 0.5 0 -0.5 -0.375 -0.25 -0.125 0 0.125 0.25 0.375 0.5 Theta ¯ h ³ ¯ h ³ ´i¯ ´i¯ ¯ ¯ ¯ ¯ Figure 12: ¯E T b θ − θ ¯ (thick line) and ¯E T e θ − θ ¯. 53 1.5 1.25 1 0.75 0.5 0.25 0 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 Theta Figure 13: |E [T (b ρ − ρ)]| (thick line) and |E [T (e ρ − ρ)]|. 4.5 4 3.5 3 2.5 2 1.5 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Theta ´ ´ √ ³ √ ³ b e Figure 14: MSE of T θ − θ (thick line) and T θ − θ for T = 10. 54 1 0.75 0.5 0.25 0 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 Theta Figure 15: MSE of √ √ T (b ρ − ρ) (thick line) and T (e ρ − ρ) for T=10. 55
© Copyright 2026 Paperzz