NCERT SOLUTIONS BOOK I DETERMINANTS & MATRICES EXERCISE 3.2 13. cos x sin x 0 cos y sin y 0 F x F y sin x cos x 0 sin y cos y 0 0 1 0 0 1 0 cos x cos y sin x sin y 0 0 cos x sin y sin x cos y 0 0 0 0 sin x cos y cos x sin y 0 sin x sin y cos x cos y 0 0 0 0 000 000 0 0 1 cos x y sin x y 0 sin x y cos x y 0 F x y 0 0 1 16. We can directly calculate, A2 , A3 ,7 A etc. by using A2 AA, A3 A2 . A A. A2 and prove A3 6 A2 7 A 2 I 0 At an advanced level we will study that every square matrix satisfies its characteristic equation (or characteristic polynomial equation). The characteristic equation of a square matrix A is given by det A I 0 which will be a polynomial in . The values of are called eigen values. Let us observe in this case 1 0 2 0 0 Indeed A I 0 2 1 0 0 2 0 3 0 0 1 0 2 2 2 1 0 3 0 det A I 1 2 3 0 2 2 2 2 1 3 4 2 2 4 1 3 6 2 7 2 Thus the characteristic equation is 3 6 2 7 2 0 Replacing by matrix A and attaching I to constant term 2 we get A3 6 A2 7 A 2 0 From characteristic equation all other powers (including 1, related to A1 ) of A can be found. For instance if we multiply by A we get A4 6 A3 7 A2 2 A 0 1 6 6 A2 7 A 2 I 7 A2 2 A 29 A2 44 A 12 I A4 6 A3 7 A2 2 A If we pre multiply by A1 we get A1 A3 6 A1 A2 7 A1 A 2 A1 I A1 0 0 A2 6 A 7 I 2 A1 0 A1 1 A2 6 A 7 I 2 Note that if one of the given values is zero A1 will not exist. Equivalently if det A 0, one of the given values will be 0 . 17. 3 2 3 2 A2 4 2 4 2 3k kA 2 I 4k 1 2 4 4 2k 2 0 2k 0 2 If A2 kA 2 I we must have, 2k 3k 2 2k 2 4k 3k 2 1, 2k 2 4k 4, 2k 2 4 Since values of k coming out from all the equations is same k 1 such a k exists equals 1 . 18. 0 A tan 2 1 2 , I A tan 0 2 tan cos Now RHS I A sin cos tan 2 sin cos tan sin 2 Now cos tan 2 tan 2 1 1 sin cos tan 2 tan 2 cos sin 1 cos 2 tan sin cos 2 sin tan sin cos sin 2 .2sin cos 2 2 cos 2 2 sin cos and cos 2sin 2 cos 1 cos 1 2 Again sin tan 2 cos 2sin cos sin 2 cos 2 2 cos 2 2 cos 2 2 cos 2 .cos 2 2 2cos 2 cos sin 2 2 2 2 cos 2 2 cos 2 1 sin 2 cos sin cos tan 2 2 1 We can similarly show cos tan sin tan .Thus RHS 2 2 tan 2 19. 2 1 Let the trust decide to invest amount x on first type of bond, and 30000 x on the second type of bond. Let us write amount invested as a row vector, and interest as a then we must have x 30000 x 20. tan 5 100 7 100 1800 5 7 30000 x 1800 100 100 x 5x 210000 7 x 180000 Amount invested on two types of bonds must be equal. Subject CHEM PHY. 10 12 Price column vector 80 2x 30000 ECO 8 12 60 10 12 40 Total amount received 3 x 15000 80 120 96 120 60 40 21. 120 80 96 60 120 40 9600 5760 4800 20160 PY will be defined if number of columns in P is equal to number of rows in Y p 3 . k can be any integer. WY will be defined for all n and k . But PY and WY must have same order p n, k 3 . 22. If n p then 7X and 5Z will be of order 2 n and p k we must have p 2, k n Order of 7 X 5Z will be 2 n ( B ) is correct. EXERCISE 3.3 11. If A and B are symmetric matrices of the same order then A A, B B Let C AB BA, then C AB BA AB BA BA AB BA AB AB BA C C is skew symmetric. 12. If A A I then 2cos 1 or cos Among the given choices only 3 1 2 satisfies. NOTE:- A full solution shall require more conditions on which must be satisfied in order that A A I cos sin Indeed A sin cos 2cos A A 0 We must have 2 cos 1, 2 cos 1 0 0, 0 0 etc. EXERCISE 3.4 Instructions for solving 1 to 16. 2 2 matrix 4 1 0 2cos 0 1 0 a b by elementary row transformations write c d To find the inverse of 2 2 matrix a b 1 0 a b c d 0 1 c d We have to apply elementary row operations on matrix on the left to convert it to 1 0 0 1 . The same row operation will be applied to identity matrix on RHS . Step I:- To make a unity either apply R1 1 R1 or interchange with some other row or a apply R1 R1 k R2 Step II:- Apply New R2 New R2 (New a ) c . Thus we will get 0 at a21 position . Repeat the same for a12 Step III:- Make a22 unity by R2 kR2 . EXERCISE 3-4 5. 2 1 2 1 1 0 2 1 , Write A 7 4 7 4 0 1 7 4 Apply R1 1 1 R1 we get 2 7 1 1 0 2 1 2 2 7 4 4 0 1 Apply R2 R2 7 R1 1 1 0 1 1 2 1 2 2 we get or 0 4 7 0 7 1 7 0 2 4 0 2 2 1 1 0 2 1 2 2 1 7 7 4 1 2 2 Apply R1 R1 R2 (may not be equally convenient in other cases) we get 1 0 4 0 1 7 2 2 1 2 1 1 7 4 5 1 0 4 1 2 1 Finally applying R2 2 R2 . 0 1 7 2 7 4 1 2 1 4 1 7 4 7 2 INVERSE IN 3x3 CASE STEP I:- Some how try to make a11 1 STEP II:- Create zeros at a21 , a31 positions STEP III;- Create zeros at a12 , a13 positions STEP IV:- Some how try to make a22 1 STEP V:- Create 0 at a32 and a23 positions STEP VI:- Make a33 as 1 NOTE:- It is advisable to apply transformation on one side only . Later repeat them on matrix on RHS : Q.15 2 3 3 2 3 3 1 0 0 2 3 3 A 2 2 3 Write 2 2 3 0 1 0 2 2 3 3 2 2 0 0 1 3 2 2 3 2 2 Advised rough work 2 3 3 2 3 2 3 2 1 A 2 2 3 2 2 3 R1 R1 2 3 2 2 3 2 2 1 3 2 0 5 9 0 2 2 32 0 9 2 2 1 3 2 3 2 0 5 0 0 5 2 5 2 Now fresh a21 and a32 R2 R2 2 R1 R3 R3 3R1 1 3 2 3 2 1 0 1 0 R2 R2 5 0 5 2 5 2 3 3 which will become zero by R1 R1 R2 2 2 5 5 which will become zero by R3 R3 R2 2 2 6 1 0 3 2 0 Applying these row operations LHS 0 1 0 0 5 2 1 0 3 2 2 0 1 0 R3 R3 5 0 0 1 1 0 0 3 Now a13 3 2 . To make it zero. Apply R1 R1 R3 , LHS 0 1 0 2 0 0 1 Let us now list down all above operations and their effect on Identity matrix on RHS Operation R1 Effect on I 1 2 0 0 0 1 0 0 0 1 1 R1 2 1 0 0 2 1 1 0 3 2 0 1 R2 R2 2 R1 R3 R3 3R1 1 R2 R2 5 0 0 12 1 5 1 5 0 3 2 0 1 3 R1 R1 R2 2 5 R3 R3 R2 2 1 3 2 10 1 5 3 1 2 2 3 0 10 15 0 1 0 1 2 0 3 1 0 5 10 1 5 1 5 0 1 1 1 2 7 3 1 0 5 10 1 5 1 5 0 2 1 2 5 5 5 2 R3 R3 5 3 2 1 3 2 3 3 0 . 5 2 5 10 10 2 5 15 0 1 5 2 1 2 5 5 5 3 R1 R1 R3 2 35 2 5 0 = 1 5 1 5 0 2 5 1 5 2 5 Now in the fair work apply all the eight operations in succession simultaneously Finally write 3 2 1 0 35 2 3 3 2 5 0 1 0 0 5 5 2 3 3 0 1 0 1 5 1 5 0 0 2 2 3 2 2 3 1 5 1 5 0 0 1 2 5 1 5 2 5 3 2 2 3 2 2 2 5 1 5 2 5 MISCELLANEOUS EXERCISE 1. 0 1 2 0 1 0 1 0 0 A , A 0 0 0 0 0 0 0 0 We will prove by induction aI bA a n I na n 1bA n The result is true for n 1 k k 1 Let the result be true for n k then aI bA a I ka bA k To prove the result for n k 1 We try to show aI bA k 1 a k 1 I k 1 a k bA LHS aI bA aI bA k 8 a k I ka k 1bA aI bA a k .I aI a k I bA ka k 1bA aI ka k 1bA bA a k 1 I 2 a k bA ka k bA 0 AI IA A, A2 0, I commutes with A, I 2 I etc. ak 1I k 1 ak bA 2. 1 1 1 1 1 1 3 3 3 A 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 3 3 3 2 Thus result is true for n 2 . 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 1 1 1 Let Ak 3k 1 3k 1 3k 1 then Ak 1 3k 1 3k 1 3k 1 1 1 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 1 1 1 3k 1 3k 1 3k 1 5. 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 1 3k 3k 3k 3k The result is true for n k 1 . Hence the result follows by induction. 3k 3k 3k 3k 3k 3k 1 3k 1 3k 1 3.3k 1 3k Let C BAB then C BAB B. A B (reversal law) BAB Now if A is symmetric A A and thus C C C is symmetric If A is skew symmetric then A A and then C C C is skew symmetric. 6. x x 0 2 y z 0 AA 2 y y y x y z z z z x y z 2 x2 0 0 If AA I then 2 x 2 1,6 y 2 1,3z 2 1 x 9 0 6 y2 0 0 0 3 z 2 1 1 1 ,y ,z 2 6 3 7. Note that LHS will reduce to 1 1 matrix which will easily yield x 1 . 10. 2.50 10000 2000 18000 A 1.50 6000 20000 8000 23 1.00 31 1000 2.50 2000 1.50 18000 1.00 6000 2.50 20000 1.50 8000 1.0 2 10000 2000 18000 B 1 6000 20000 8000 1 2 46000 Total revenue in market I 53000 Total revenue in market II 31000 36000 15000 17000 Profits are given by the matrix A B 11. Let X be n 2 (Number of columns in X has to be 2 why?) Also n 2 2 3 must become n 3 a b n should also be 2 . Thus we may take X c d a b 1 2 3 7 8 9 c d 4 5 6 2 4 6 Now a 4b 2a 5b 3a 6b 7 8 9 c 4d 2c 5d 3c 6d 2 4 6 1 2 . 2 0 On comparing we will easily get the values of a, b, c, d and will finally get X 12.(i) To prove AB n B n A , The result is true for n 1 since AB BA Let ABk Bk A for some k then AB k 1 AB k .B B k AB (ii) AB k B k A B k BA AB BA B k 1 A n n To prove AB A B for n N . The result is true for n 1 n 10 Let AB Ak .B k then AB k 13. k 1 AB . AB (From first part B k A AB k ) Ak AB k B A2 2 0 2 1 If A2 I If A A, A A then A A 15. I A I A I A I 2A A I A 3 I A I 3 A I A 3 0 2 2 A 0 A 0 A is a zero matrix. I 2 IA AI A2 A2 A, AI IA A I 3A I 2 4 AI 3 A I 7 A Ak 1Bk 1 c is correct. 14. 2 Ak .B k AB (By induction hypothesis) k 7A I I 2 3IA AI 3 A2 AI A C is correct EXERCISE 4.2 x a 1. D y b z c xa y b , Applying C1 C1 C2 xa a xa D y b b y b zc zc z c which is equal to zero since Ist and 3rd columns are identical. 0 bc ca 2. Applying C1 C1 C2 C3 , D 0 c a a b 0 0 a b b c 2 7 5 3. Applying C3 C3 10C2 , D 3 8 5 5 9 4 11 c 2 5 5 Again applying C2 C2 C1 D 3 5 5 5 4 4 2 5 5 3 5 5 0 IInd and IIIrd column are identical). 5 4 4 4. 5. Apply C3 C3 C2 , After which ab bc ac is common from IIIrd column. bc qr yz D ca r p z x applying R1 R1 R2 R3 ab pq x y 2c 2r 2z D ca r p zx ab pq x y r z 2 ca r p zx ab pq x y c r z c r z 2 a p x p pq xz R2 R2 R1 2 a p x R3 R3 R2 y ab a p x a p x 2 c r z 2 1 p q y RHS p q y r z 0 a b 0 6. c Let D a b c a b 0 c then D a c q c (Interchanging rows and columns) 0 b c 0 0 0 a b a 0 c (-common from IIIrd row) b c 0 0 a b a 0 c (-common from Ist and second row) b c 0 12 Thus D D giving D 0 . 7. Taking a, b, c common from R1 , R, R3 a b c 0 0 2c D abc a b c abc a b c a b c a c b R1 R2 abc 2c ab ab 8.(i) R2 R1 , R3 R1 , b a , c a become common (ii) C2 C1 , C3 C1 , b a , c a become common. 9. x x2 y y 2 zx z z2 xy x2 x2 yz xyz 2 y xyz 2 z 1 1 1 . . y2 x y z 2 z z x 2 xyz z3 xyz y y 3 1 (Taking xyz common from C3 ) z3 1 x3 y x xyz 3 x3 1 x2 2 x3 3 0 y x z x y x 2 0 zx 2 y x 2 z x 3 3 x2 1 x2 x3 y x z x y x zy 2 z 2 x 2 zx 0 0 R3 R2 2 z zx y xy 0 2 2 z y z y x z y Now z 2 zx y 2 xy z 2 y 2 zx xy x2 1 y x xy 0 2 1 y x xy 2 x3 D y x z x z y y x x3 1 y x xy 0 2 2 z yx 1 0 y x z x z y y x z y x y 2 x 2 xy 13 4a 2b 2 c 2 . 2 x y y z z x z y x y x y 2 x 2 xy x y y z z x xy yz zx 10. (i) You may start with operation C1 C1 C2 C3 to get 5x y common (ii) 11.(i) You may start with operation C1 C1 C2 C3 Let us be strategic. Since we have to bring a b c several times. We try to create a b c . Applying C1 C1 C2 , C3 C3 C2 a b c D abc 2a 0 bca abc 2c a b c 0 (You can not apply C1 C1 C2 , C3 C3 C1 simultaneously) Taking ( a b c ) common from first and third column 1 D a b c 1 2 0 2a 0 bca 1 2c 1 a b c 1 b c a 2c 2a 1 2 a b c b c a 2c a b c 2 (ii) 12. 3 Start with C1 C1 C2 C3 to take x y z common. Start with C1 C1 C2 C3 to take 1 x x 2 common. Note that 1 x3 1 x 1 x x 2 After which two zeros can be easily created along first column. 13. 1 a 2 b2 0 2ab 1 a b Applying C2 C2 aC3 , D 2 2a 2a a 1 a 2 b 2 1 a 2 b 2 2b 2b 2 Nothing that 2a a 1 a 2 b 2 a 1 a 2 b 2 14 D 1 a b 2 D 1 a b 2 2 2 1 a 2 b2 0 2b 2ab 1 2a 2b a 1 a 2 b 2 1 a 2 b2 0 b 1 a b 2 1 a b 2 2 2 2 1 0 2b 0 1 2a ,Applying C1 C1 C3 0 2b 1 2a a 1 a 2 b 2 b a 1 a 2 b 2 1 a 2 b2 1 a 2 b2 2a 2 2b b 2 1 a 2 b2 3 14. Taking a, b, c common from first row, second row and third row a D abc 1 a b a b a b c 1 b c c 1 c Multiplying a, b, c , in the first, second and third columns (Note) a2 1 b2 c2 a2 b2 1 c2 D a 1 D a 2 0 15. a1 A a2 a 3 2 b 1 2 0 b 1 c2 2 1 b1 b2 b3 ,Now apply R1 R1 R2 , R3 R3 R2 c 1 2 b 2 1 c 2 1 a 2 0 a 2 b2 c2 1 1 c1 c2 c3 det A A a1b2c3 a2b3c1 a3b1c2 a1b3c2 a3b2c1 a2b1c3 15 ka1 Now kA ka2 ka 3 kb1 kb2 kb3 kc1 kc2 kc3 det kA ka1 kb2 kc3 ka2 kb3 kc1 ...... k 3 a1b2c3 a2b3c1 ....... k3 A EXERCISE 4.5 17. A AdjA det A I3 det A AdjA det A det I 3 (From Q.16 of 4.2) 3 Now det I 3 1 and det AB det A det B 18. det A det AdjA det A det AA1 det I 3 3 det A det A1 1 det AdjA det A 2 det A1 det A 1 B B MISCELLANEOUS EXERCISE 1. Directly expanding D x x 2 1 sin x sin c cos cos sin x cos x x 2 1 x sin 2 sin cos sin cos x cos 2 x x 2 1 x x 3 a2 2. 1 1 1 1 2 b Take , , common from R1 , R2 and R3 respectively then D a b c abc 2 c a3 abc b 3 abc c 3 abc Now take abc common from third column. Then C2 C3 and finally C1 C2 . 3. Taking cos common from first row, sin common from second row and sin common from third row. cos D cos sin sin 1 cos sin tan cot 0 sin cot 16 , Applying R3 R3 R2 cos D cos sin sin 1 sin tan cot 0 0 cot tan 0 Expanding along third row D cos sin sin cot tan cos cot sin cos sin sin 1 cos sin cos2 sin 2 sin 1 1 ca ab 4. Applying C1 C1 C2 C3 , D 2 a b c 1 a b bc 1 bc ca 1 ca ab 2a b c 0 b c c a 0 b a c b 2 a b c b c c a b a 2 a b c 2a 2 2b 2 2c 2 2ab 2ac 2bc 2 2 2 a b c a b b c c a Since a, b, c are real numbers the bracketed expression is zero only when a b c . 1 5. R1 R1 R2 R3 3x a 1 x x xa x x xa 1 1 x 6. 0 x a 0 0 3x a a2 0 .Since a 0, x a 3 0 0 a 3x a 0 Taking a, b, c common from first, second and third column respectively a D abc a b b c ac b a bc c , Applying R2 R2 R1 R3 17 c ac a c ac 2c 2c abc 2c 0 1 1 a D abc 0 b bc b bc c 2abc 2 a c b c b c a c ( 2c common from R2 ) c (Expanding along first column) 4a 2b 2 c 2 7. AB 9. 2 x 2 y can be taken common after C1 C1 C2 C3 . 10. Two zeros can be brought along first columns by R2 R1 , R3 R1 11. C3 C3 C1 1 B 1 A1 8. Lengthy question. Be non lethargic. 2 D 2 2 2 1 2 1 2 1 1 2 1 2 1 2 Now create zeros at a21 , a31 positions etc. 12. By splitting property, 1 x 1 y 1 z x2 x x 2 1 px3 y y 2 1 py 3 y z z2 1 x x2 y 2 pxyz 1 y z2 1 z x 1 pz 3 z x2 1 x x2 px 3 y2 1 y y2 py 3 z2 1 z2 pz 3 z 1 x y 2 (Give details) 1 pxyz 1 y z2 1 z a b c a b a c 13. C1 C1 C2 C3 , D a b c x2 y 2 etc. z2 1 a b a c b c a b c 1 3b a b c c b 3c 1 c b Now create zeros at a21 and a31 positions by R2 R2 R1 , R3 R3 R1 1 14. 1 p Applying R3 R3 R1 R2 , D 2 3 2 p 0 1 p q 4 3 p 2q 52p 2 18 3b b c 3c 1 1 p D 2 3 2 p 1 p 2q Applying C3 C3 C2 0 Applying R2 R2 2 R1 3 2p 2 1 1 p 15. q q D 0 1 1 p 0 2 3 2p 1 3 2 p 2 2 p 1 sin cos cos cos sin sin D sin cos cos cos sin sin ,Apply C3 C3 sin C1 cos cos C2 sin cos cos cos sin sin sin cos 0 D sin cos 0 0 sin cos 0 1 1 1 u , v, w x y z 16. Put 17. Since 2b a b, to create zero at a23 position we apply C2 C2 x2 D x 3 x3 1 C1 C2 , then 2 x 2a 1 1 1 x 2 x 4 x 4 x 3 x 3 x 2b x 2a x 2b 2 2 2 x4 x5 x 2c x 2 x 3 x 2a 0 0 0 0 x 4 x 5 x 2c 18. We can easily notice that cofactor of elements in a11 , a22 , a23 positions are yz, zx and xy respectively. Cofactors of other elements are zero. Also det A xyz . yz 1 1 Thus A 0 xyz 0 19. 0 zx 0 0 x 1 0 0 xy 0 0 y 1 0 0 0 z 1 Just expanding detA 1 1 sin 2 sin sin sin 1 sin 2 1 19 2 1 sin 2 .Now 1 sin 2 lies between 1 and 2 . 2 1 sin 2 lies from 2 to 4 det A 2, 4 D is correct. PAST YEARS CBSE BOARD QUESTIONS UP TO 2013 cos15 sin15 1 x 3 4 Find the minor of the element of second row and third column in the following determinant 6 1 If 3. 2 3 2. x Evaluate sin 75 cos 75 . x 1. 1 2 , write positive value of x. 5 0 4 . 5 7 4 a bc 2 4. What is the value of 4 b c a ? 4 c ab 6. If A 7. For what value of x, the matrix 8. If A 5. 4 Write value of 5 6 8 . 6 x 9 x 12 x 1 2 , then find k, if | 2 A | k | A | . 4 2 3 1 2 3 5 x x 1 2 4 , then find | adjA | . 9. If is singular matrix? x 1 x 1 4 1 , then write the value of x. x3 x 2 1 3 2 3 10. 3 If Aij is the cofactor of the element aij of the determinant 6 1 5 0 4 , then write the value of 5 7 a32 A32 . 11. Let A be a square matrix of order 3 3. Write the value of |2A|where,|A|=4.Ans: 32 5 3 8 12. If 2 0 1 , write the minor of the element a23 . 1 2 3 20 102 18 36 13. Write the value of the determinant 1 17 3 4 . 3 6 14. If the determinant of matrix A of order 3 3 is of value 4, write the value of |3A|. 15 For what value of x, A 16. If A is a non-singular matrix of order 3 and | adjA || A |k , then what is value of k? 17. Evaluate 18. a b 2a c 1 5 Find the value of a, if . 2a b 3c d 0 13 19. 9 1 4 1 2 1 A If , then find the matrix A. 2 1 3 0 4 9 20. 1 1 If matrix A and A2 kA, then write the value of k. 1 1 21. 0 1 2 For what value of x, is the matrix A 1 0 3 a skew-symmetric matrix? x 3 0 22. cos θ sin θ sin θ sin θ Simplify cos θ sin θ cos θ cos θ 23. x Find the value of y-x from following equation 2 7 24. cos α sin α If A , then for what value of α , A is an identity matrix? sin α cos α 25. 1 2 3 1 7 11 If , then write the value of k. 3 4 2 5 k 23 a ib c id c id a ib 2( x 1) 2x x x2 is a singular matrix? . cos θ sin θ 21 5 3 4 7 6 . y 3 1 2 15 14 26. If A is a matrix of order 3 4 and B is a matrix of order 4 3 , find order of matrix (AB). 27. 3 If A 1 0 28. 1 2 If A , find A A. 3 4 29. 3 4 If A , find A A where A =transpose of A. 2 3 30. If matrix A 1 2 3, write A A . 31. 2 0 1 If A 2 1 3 , find value of A2 3 A 2I3 1 1 0 32. Express the following matrix as a sum of a symmetric and a skew-symmetric matrix and verify T 4 1 2 1 , then find AT BT . 2 and B 1 2 3 1 3 2 4 your result for 3 2 5 . 1 1 2 33. Using elementary transformation, find inverse of following matrices (i) 6 5 5 4 . 3 2 2 5 . (iii) A (ii) . 7 5 1 3 1 1 2 (iv). 1 2 3 3 1 1 2 0 1 (v). 5 1 0 0 1 3 1 3 2 (vi). 3 0 1 2 1 0 34. 4 4 4 Determine the product of matrices 7 1 3 and 5 3 1 1 1 1 1 2 2 and then use the result 2 1 3 to solve the system of equations x y z 4, x 2 y 2 z 9 and 2 x y 3z 1. 22 1 35. 2 3 1 Find A , where A 2 3 2 . Hence solve the system of equations, x 2 y 3z 4, 3 3 4 2 x 3 y 2 z 2 and 3x 3 y 4 z 11. 36. 37. 2 1 1 If A 3 0 1 , find A1 using A1 solve the following of equations 2 x y z 3, 3x z 0 2 6 0 and 2 x 6 y 2 0. Using properties of determinants, prove the following x y x z 3x (i) (ii). (iii). x y 3y xz yz z y 3( x y z )( xy yz zx). 3z a 2 (b c)2 b 2 (c a ) 2 c 2 ( a b) 2 a2 b2 c2 x y x 2 y 2 x 3 y 3 bc ca (a b)(b c)(c a )(a b c )(a 2 b 2 c 2 ). ab z x2 2x 3 3x 4 2 z xyz ( x y )( y z )( z x ). (iv). x4 2x 9 3x 16 0. 3 x 8 2 x 27 3x 64 z ax ax ax (v) a x a x a x 0. (vi). ax ax ax (vii). a b 2 2 a b xa x x x xa x x x xa 0. c c 2 (a b)(b c)(c a)(ab bc ca). bc ca ab (viii). α β γ α β γ2 2 2 (α β )( β γ)(α β γ ). βγ αγ α β (ix). 1 x 1 1 1 y 1 1 x y 1 1 xyz xy yz zx. (x). 1 z 5x 4 y x x 4 x 2 x x3. 10 x 8 y 8 x 3x 23 a (xi). b c a b b c c a a 3 b3 c3 3abc. bc ca ab (xii). x Show that if x y z and y z x 2 1 x3 y 2 1 y 3 0, then 1 xyz 0. z 2 1 z3 ANSWERS 1. 0 2. 2 3. 13 7. x3 8. 11 9. x2 13. 0 14. 108 15 x 2 18. a 1 19. 8 3 5 2 3 6 α 0 24. 10. 16. k2 k 17 26. 0 5. 0 6. k4 110 11. 32 12. 7 k2 17. a 2 b2 c 2 d 2 21. x2 22. 27. 4 3 3 0 28. 1 2 3 3 23. 7 29. 6 6 6 6 33. Using elementary transformation, find inverse of following matrices (i). 4 5 5 6 (iv) 1 1 1 8 7 5 5 4 3 34. x 3, y 2 and z 1 35. 30. (ii) 14 25. 20. 4. 31. 5 2 7 3 (v) unit matrix 2 5 5 8 1 1 1 3 3 4 3 2 0 (iii) 3 5 1 2 1 1 3 15 6 5 5 2 2 (vi) x 3, y 2 and z 1 24 1 2 3 2 4 7 3 5 9 36. 1 1 3 x , y ,z 2 2 2
© Copyright 2026 Paperzz