8.1 Introduction *beam deflections - bending deformation: deflection due to bending moment = dominating deformation of beam - shear deformation: deflection due to shearing force negligible *bending deformation of a beam = deformation of neutral surface - curve of the neutral surface: y y (x ) elastic curve or deflection curve - deflection (y): distance between elastic curve and undeformed position (x-axis) dy tan deflection angle (): dx slope of the elastic curve angle between x-axis and tangential line of elastic curve *methods of deflection analysis - methods using the geometry of elastic curve - methods using strain energy *differential equation for elastic curve: double integration method, moment-area method d2y M : 2nd-order ordinary differential equation 2 dx EI 8.2 Double Integration Method 8.2.1 Differential Equations for Elastic Curve * curvature of elastic curve (Eq. 7.2.5): - Use ds d , dy , dx ds dx 1 M EI 1 d d d 2 y ds dx dx 2 2 - cf (elementary calculus) : 1 d y dx 2 dy 2 1 dx 3/ 2 1 d2y dy 1 dx 2 dx * differential equation for deflection curve - Positive moment causes negative curvature: use negative sign in moment. d2y M : 2nd-order ordinary differential equation 2 dx EI * solution of DE - solution method: double integration - determination of integration constants(2) boundary conditions(BC) or compatibility conditions * interpretation of solution - deflection: positive y (+y) downward - deflection angle: positive (+) clockwise 8.2.2 Boundary and Compatibility Conditions *physical meaning of derivatives y : y = deflection dy = deflection angle y : dx d2y y : EI 2 M bending moment dx d3y dM y : EI 3 V shearing force dx dx d4y dV w load y IV : EI 4 dx dx *boundary conditions at supports - simple support (hinge or roller): y 0 - fixed support: y 0 & y 0 *compatibility conditions: continuity of deflection or slope of elastic curve - continuity on deflection and slope at any beam section: y x0 y x0 - continuity on deflection at internal hinge: y x0 y x0 & dy dy dx x0 dx x0 8.2.3 Examples (1) Cantilever beam – uniform load Identify BCs: fixed support at B ( x L) : y ( L) 0 & y ( L) 0 bending moment: M 12 wx 2 , 0 x L DE for deflection curve: EIy M 12 wx 2 integration of DE: EIy ' 16 wx3 C1 Impose BC: y ( L) 0 C1 16 wL3 deflection angle: EIy ' 16 wx 3 16 wL3 , or, integration & impose BC: EIy wL4 deflection: y 24 EI 1 24 dy wL3 dx 6 EI x 3 1 L wx 4 16 wL3 x C2 [ y ( L) 0 )] C2 81 wL4 x 4 x 4 3 L L maximum deflection and deflection angle at free end, or x 0 : max wL3 , 6 EI ymax wL4 8EI (2) Simple beam – uniform load Identify BCs: simple supports at A ( x 0) and B ( x L) : y (0) 0 & y ( L) 0 bending moment: M 12 w( Lx x 2 ) , 0 x L DE for deflection curve: EIy M 12 w( Lx x 2 ) integration of DE: EIy ' 12 w( 12 Lx 2 13 x 3 C1 ) , EIy 12 w( 16 Lx 3 121 x 4 C1 x C2 ) Impose BC: C2 0 , C1 121 L3 x 3 x 2 4 6 1 L L 4 3 wL4 x x x 2 deflection: y 24 EI L L L deflection angle: dy wL3 dx 24 EI maximum deflection angle at A ( x 0) and B ( x L) : max A B maximum deflection at mid-span, or x 12 L : ymax 5wL4 wL4 384 EI 76.8EI wL3 24 EI (3) Cantilever beam – concentrated load Identify BCs: fixed support at A ( x 0) : y (0) 0 & y (0) 0 bending moment: P( a x ), 0 x a M , axL 0 *piece-wise function continuous DE for deflection curve: EIy M P( a x ), 0 x a , axL 0 1 P(a x ) 2 C1 , 0 x a integration of DE: EIy ' 2 , axL C2 Impose BC: y (0) 0 C1 12 Pa 2 , but C2 cannot be determined yet!!! 1 P(a x )3 12 Pa 2 x C1 , 0 x a integration again: EIy 6 , axL C2 x C4 Impose BC: y (0) 0 C3 16 Pa 3 , but C2 & C4 cannot be determined yet!!! Use compatibility conditions to determine C2 & C4 : y ( a 0) y ( a 0) C2 C1 12 Pa 2 ; y ( a 0) y ( a 0) C4 C3 16 Pa 3 P (a x )2 a 2 , 0 x a dy 2 EI deflection angle: 2 dx Pa , axL 2 EI P 3 2 3 6 EI ( a x ) 3a x a , 0 x a deflection : y P 3a 2 x a 3 , axL 6 EI special case of a L (a concentrated load at the free end) 2 2 3 dy PL2 x x PL3 x x y - slope & deflection : 2 , 3 dx 2 EI L L 6 EI L L PL3 PL2 - maximum values at free end, or x L : max , ymax 3EI 2 EI (4) Simple beam – concentrated load Identify BCs: simple supports at A ( x 0) and B ( x L) : y (0) 0 & y ( L) 0 Compatibility conditions: point of concentrated load: y ( a 0) y (a 0) , y (a 0) y (a 0) Pb x , 0 xa bending moment: M L Pb x P( x a ), a x L L *piece-wise continuous function Pb x , 0 xa DE for deflection curve: EIy M L Pb x P( x a ), a x L L Pb 2 x C1 , 0 xa integration of DE: EIy ' 2 L Pb 2 P x ( x a ) 2 C2 , a x L 2L 2 Compatibility condition: y ( a 0) y (a 0) C1 C2 Pb 3 x C1 x C3 , 0 xa integration again: EIy 6 L Pb 3 P x ( x a ) 3 C1 x C4 , a x L 6 6L Compatibility condition: y (a 0) y (a 0) C3 C4 Impose BC: y (0) 0 C3 C4 0 , y ( L) 0 C2 C1 Pb 2 ( L b2 ) 6L Pb 2 2 2 , 0 xa dy 6 EIL L b 3x deflection angle: Pb 2 P dx x a 2 , a x L L b 2 3x 2 2 EI 6 EIL Pb 2 2 3 , 0 xa 6 EIL L x b x x deflection : y Pb 2 P x a 3 , a x L L x b2 x x 3 6 EI 6 EIL maximum values (in case of a b ) - slope: max B - ymax Pb L2 b2 3 / 2 @ x 9 3EIL * cf: y ( L / 2) Pab (L a) @ x L 6 EIL y ( 12 L) ym a x 1 3 ( L2 b2 ) Pb 3L2 4b 2 48EI ( b 0 ) = 0.974 ; or, 0.974 1 special case of a b 12 L (a concentrated load at the mid-span) 2 PL2 x - slope & deflection 0 x L : 1 4 , 16 EI L 1 2 - maximum values: max A B PL2 @ x0&L ; 16 EI 3 PL3 x x y 3 4 48EI L L ymax PL3 @ x 48EI 1 2 L (5) Simple beam – moment load Identify BCs: simple supports at A & B: y ( 0) 0 & y ( L ) 0 Compatibility conditions: point of concentrated moment: y ( a 0) y ( a 0) , y ( a 0) y ( a 0) bending moment: M0 , 0 xa L x M M 0 ( x L) , a x L L *piece-wise continuous function DE for deflection curve: M0 x , 0 xa EIy M L M 0 ( x L) , a x L L integration of DE and use of BCs & CCs to get deflection angle and deflection: M0 2 2 2 , 0 xa dy 6E I L3x L 3b dx M 0 3( x L) 2 L2 3a 2 , a x L 6E I L M0 3 2 2 , 0 xa 6 EIL x ( L 3b ) x y M 0 ( x L)3 ( L2 3a 2 )( x L) , a x L 6 EIL special case of a 0 & b L [a concentrated moment at the support A ] (6) Simple beam – member-end moment load: M 0 M A (clockwise) - deflection (angle): 2 M AL x 3 1 1 ; 6 EI L - support rotation: A M AL , 3EI B M AL 6 EI y M A L2 6EI x x x L L 1 L 2 8.3 Moment-Area Method 8.3.1 Derivation of Moment-Area Theorems d M dx EI M dx A EI d = area of B M -diagram EI dt xd B t dt xd x A M dx EI = First area-moment of M -diagram EI [Theorem 8.3.1 : The first moment-area theorem] The angle between tangents drawn at A and B on the elastic curve is equal to the area of the corresponding portion of the bending moment diagram, divided by EI. BA AB AM [Theorem 8.3.2 : The second moment-area theorem] The vertical deviation of point B on the elastic curve away from a tangent drawn at A is equal to the moment of the area of the bending moment diagram with respect to B, divided by EI. t tBA xB AM 8.3.2 Application of Moment-Area Theorems – Moment-area method (1) M -diagram: EI BMD modified with EI M dx , x A EI (2) Area and centroid: AM xB xB b (3) Sketch of elastic curve (4) Use of theorems BA AB AM (1st theorem); A B BA t AB aAM , tBA bAM (2nd theorem); A (a b) ( B tBA ) A , (5) Signs B (a b) ( A t AB ) B 8.3.3 Examples Cantilever beam: Use the fact that the tangent at fixed support is the beam axis itself. (1) Cantilever beam – concentrated load at free end AB B 1 PL PL2 L 2 EL 2 EL [clockwise w.r.t l A AB ] AB tBA B 1 PL 2 PL3 tBA L L 2 EL 3 3EL [B is below l A AB ] (2) Cantilever beam – partial uniform load Simple beam: Draw the tangents at both supports and use simple geometry. (3) Simple beam – concentrated load the first moment-area theorem for AB the second moment area theorem for tBA simple geometry: tBA L A t BA L from the first moment-area theorem) A deflection angle: A Ax ( Ax deflection: y x A t xA ( t xA from the second moment-area theorem) 8.4 Beams with Variable Section M due to variable EI EI * Either the double-integration method or the moment-area method may be used. * piece-wise continuous function of [<Example 8.4.1>] Cantilever of step sections (i) double-integration method Px d 2 y EI , - DE: dx 2 Px , EI 0 xa axL - BC & CC: y ( L) 0 , y ( L) 0 & y ( a 0) y ( a 0) , y ( a 0) y ( a 0) - integration of DE and application of BC and CC 2 PL2 x 2 a (1 ) 1 , 0 x a L dy 2EI L 2 2 dx PL x 1 , axL 2EI L PL3 6EI y 3 PL 6EI 2 3 x 3 a x x a 3(1 ) 3 2( 1) 2 , 0 x a L L L L L 3 x x , axL 3 2 L L (ii) moment-area method 8.5 Method of Superposition [<Example 8.5.1>] Simple beam with equally-spaced concentrated loads [<Example 8.5.2>] Cantilever with displacement constraint [<Example 8.5.3>] Simple beam with half-span uniform load [<Example 8.5.4>] Simple beam with partially-loaded uniform load Table 8.5.1 Loads and Deflections of Various Beams Loads on beams – Max moments – Max slope at ends – Deflections – Max deflections
© Copyright 2026 Paperzz