PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 CH.VIII: RESONANCE REACTION RATES RESONANCE CROSS SECTIONS • EFFECTIVE CROSS SECTIONS • DOPPLER EFFECT • COMPARISON WITH THE NATURAL PROFILE RESONANCE INTEGRAL RESONANCE INTEGRAL – HOMOGENEOUS THERMAL REACTORS • INFINITE DILUTION • NR AND NRIA APPROXIMATIONS RESONANCE INTEGRAL – HETEROGENEOUS THERMAL REACTORS • GEOMETRIC SELF-PROTECTION • NR AND NRIA APPROXIMATIONS • DOPPLER EFFECT 1 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 VIII.1 RESONANCE CROSS SECTIONS EFFECTIVE CROSS SECTIONS Cross sections (see Chap.I) given as a function of the relative velocity of the n w.r.t. the target nucleus Impact of the thermal motion of the heavy nuclei! No longer considered as immobile (as in chap.II) Proba/u.t. of an interaction between a n and a heavy nucleus: N (| v V |). | v V | where v, V : absolute velocities of the n and nucleus, resp. Reaction rate: R n(v )dv N (| v V |). | v V | P(V )dV v V But P (pdf due to thermal motion) and : f (scalar v) v eff (v) (| v V |). | v V | P(V )dV Effective cross section: V R N eff (v) (v)dv with (v) o 2 vn ( v ) v d 4 2 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Particular cases Let vr v V 1. c / vr (see chap.I, Breit-Wigner profile for E << Eo) eff (v) 1 c c . | v V | P ( V ) d V v V | v V | v Profile in the relative v unchanged in the absolute v 2. slowly variable and velocity above the thermal domain vr v eff (v) 1 (v)vP(V )dV (v) vV Conservation of the relative profiles outside the resonances vr V 3. Energy of the n low compared to the thermal zone 1 c ste eff (v) (V )VP(V )dV vV v indep. of ! Effect of the thermal motion on measurements of at low E 3 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 DOPPLER EFFECT Rem: v eff (v ) = convolution of | v | . (| v |) and P(V ) widening of the resonance peak Doppler profile for a resonance centered in Eo >> kT ? (Eo: energy of the relative motion !) Maxwellian spectrum for the thermal motion: 3/ 2 M P (V )dV .e 2kT MV 2 2 kT dV 3/ 2 M 1 . vr ( vr ) e 2kT v vr eff (v) Effective cross section: 1/ 2 M 1 eff (v) . 2 2kT v o 1/ 2 M ( v vr ) M ( v vr ) 2 vr (vr ) e 2 kT e 2 kT 1 M . 2 2kT v eff (v) 2 o vr2 (vr )e M ( v vr ) 2 2 kT 2 M |v vr |2 2 kT dv r dvr dvr 4 v 2 vr v vr 2vr PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Approximation: Let: mM M m 2 : reduced mass of the n-nucleus system vr 2 ~ v 2 E , Er 2 2 4kTEo : Doppler width of the peak M ~ eff ( E ) Eo . ~ E 1 1 o Er ( E r ) e o ( Er )e ~ ( E Er ) 2 2 Er E o dEr ~ ( E Er ) 2 2 dEr 5 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 COMPARISON WITH THE NATURAL PROFILE ~ E r Eo E Eo and x , y /2 /2 Let: eff ( x) Natural profile a o 2 ( y )e 2 ( x y )2 4 dy Bethe-Placzek fcts Doppler profile 1 1 y2 a eff o 1 s o n si pa ( , x) 2 1 y 2 t o ( : peak width) 1 e 1 y2 2 ( x y )2 4 dy 1 si pa 2 1 y si o pa g J n 1/ 2 pa 4R 2 2y 1 y2 s eff o ( , x) n ( , x) si eff pa t eff o ( , x) si eff pa ( , x) 2 2y e 1 y2 4 o pa g J n 1/ 2 2 ( x y )2 dy si eff ( , x) pa eff 4R2 6 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Properties of the Bethe – Placzek functions 1. (low to) 1 ( , x) 1 x2 Natural profiles 2. 0 (high to) and ( , x) ( , x) 3. 2 .e 2x 1 x2 2 x2 4 ( , x)dx Widening of the peak, but conservation of the total surface below the resonance peak (in this approximation) 7 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 VIII.2 RESONANCE INTEGRAL Absorption rate in a resonance peak: Ra a (u ) (u )du Rés (u ) du By definition, resonance integral: I a (u) as Rés Ra NIas (as: asymptotic flux, i.e. without resonance) I : equivalent cross section Flux depression in the resonance but slowing-down density +/cst on the u of 1 unique resonance If absorption weak or = : q(u ) t (u ) (u ) q Before the resonance: q pas because t p c ste(p : scattering of potential) I a (u) Rés p t (u ) du and Ra q NI p 8 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Resonance escape proba For a set of isolated resonances: NI q Ra p exp q p N i I i p exp p Homogeneous mix Ex: moderator m and absorbing heavy nuclei a p a pa m m Heterogeneous mix V1 Vo Ex: fuel cell V Hyp: asymptotic flux spatially constant too At first no ( scattering are different), but as = result of a large nb of collisions ( in the fuel as well as in m) Homogenization of the cell: p Resonance escape proba o poVo 1 p1V1 V NI Vo p exp V p 9 VIII.3 RESONANCE INTEGRAL – PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 HOMOGENEOUS THERMAL REACTORS INFINITE DILUTION Very few absorbing atoms (u) = as(u) dE I a eff ( E ) 2 Eo E Rés a eff ( y )dy Rés 2 Eo o (resonance integral at dilution) NR AND NRIA APPROXIMATIONS Mix of a moderator m (non-absorbing, scattering of potential m) and of N (/vol.) absorbing heavy nuclei a. a N a t N t m p N pa m 10 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Microscopic cross sections per absorbing atom m m N tot t t m N p p pa m N NR approximation (narrow resonance) Narrow resonance s.t. E ' E m and E ' E a i.e., in terms of moderation, qi >> ures: F (u ) i u u qi eu 'u si (u ' ) (u ' )du ' 1 i u qi i By definition: F (u) t (u) (u) p (u ) (u ) as tot I u NR eu 'u du ' pias pas 1 i a (u ) p du tot (u ) Rés 11 NRIA approximation (narrow resonance, infinite mass PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 absorber) Narrow resonance s.t. E ' E m but E ' E a 0 (resonance large enough to undergo several collisions with the absorbant wide resonance, WR) K (u ) (u ) for the absorbant Thus F (u) t (u) (u) sa (u) (u) mas I NRIA a (u) m Rés a (u) m du Natural profile I * with NR pa m o o * 2 Eo * 1 and NRIA m o 12 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Remarks NR NRIA for ( dilution: I I) I if ([absorbant] ) Resonance self-protection: depression of the flux reduces as the value of I Doppler profile I * with o Eo E * J ( , * ) ( , x) 1 ( , x) dx J ( , ) dx o ( , x) 2 ( , x) Remarks J(,) if (i.e. T ) Fast stabilizing effect linked to the fuel T T I p keff T 13 14 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Choice of the approximation? Practical resonance width: p s.t. B-W>pa To compare with the mean moderation due to the absorbant p < (1 - a) Eo NR p > (1 - a) Eo NRIA Intermediate cases ? We can write m pa o n m pa (u ) as a m pa Goldstein – Cohen method : Intermediate value of from the slowing-down equation with =0 (NRIA),1 (NR) (u ) u eu 'u (u ' ) t (u ) so (u ' ) du ' m u q 1 as o as o 15 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 VIII.4 RESONANCE INTEGRAL – HETEROGENEOUS THERMAL REACTORS GEOMETRIC SELF-PROTECTION Outside resonances (see above): Asymptotic flux spatially uniform q as p with In the resonances: p o poVo 1 p1V1 V V1 Vo V (Rem: fuel partially moderating) o po a pa m m Strong depression of the flux in Vo I Geometric self-protection of the resonance Justification of the use of heterogeneous reactors (see notes) 16 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 NR AND NRIA APPROXIMATIONS Hyp: k(u) spatially cst in zone k; resonance o 1 Let Pk : proba that 1 n appearing uniformly and isotropically at lethargy u in zone k will be absorbed or moderated in the other zone Slowing-down in the fuel ? u Vo to (u )o (u ) (1 Po ) Vo u q K o (u u ' ) so (u ' )o (u ' )du ' o u P1 V1 u q K1 (u u ' ) s1 (u ' )1 (u ' )du ' 1 NR approximation qo, q1 >> u Vo to (u )o (u ) (1 Po )Vo u q K o (u u ' )du ' poas o P1V1 u u q1 K1 (u u ' )du ' p1as Rem: Pk = leakage proba without collision 17 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Reminder chap.II Relation between Po and P1 p1V1P1 = to(u)VoPo 18 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Thus po po to (u ) po o (u ) (1 Po ) Po Po to (u ) to (u ) as to (u ) 1 Wigner approximation for Po : Po 1 to with l : average chord length in the fuel (see appendix) o (u ) po 1 as 1 to * p * t I NR *m m 1 / N N *t * t t m* N * *p p pa m* N * m with a (u ) *p du * t (u ) m Rés NRIA approximation Vo ( a (u ) m ) (u ) (1 Po )Vo u u qm K m (u u ' )du ' mas P1V1 p1as since the absorbant does not moderate 19 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Thus m a (u ) (u ) Po as a (u ) m a (u ) m Pk : leakage proba, with or without collision s If Pc = capture proba for 1 n emitted …, then Po 1 Pc Pc Po t t 1 Pc Po Wigner approx: 1 ( a m ) 1 t m* (u ) as a (u ) m* and I NRIA a (u ) m* du * t (u ) m Rés INR, INRIA formally similar to the homogeneous case Equivalence theorems 20 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 DOPPLER EFFECT IN HETEROGENEOUS MEDIA NR case: without Wigner, with Doppler I NR Rés a (u ) p du t (u ) a (u ) p P o a (u ) t (u ) p t (u ) Rés du t (u ) p du Po ( t (u ) ) a (u ) du t (u ) m t (u ) m Rés Rés Doppler, while neglecting the interference term: t N ( o ( , x) p ) N p (1 ( , x) t (1 ) ( , x) ) with pa m o I NR o o ( ( , x)) 2 J ( , ) Po (t ( x)l ) dx Eo 2 Eo ( , x) o o 1 ( ( , x)) 2 J ( , ) L(t , , ) L(t , , ) Po (t ( ( , x) 1)) Eo Eo NRIA case: same formal result with 2 dx ( , x) m and t N m o 21 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 Appendix: average chord length Let (rs , ) : chord length in volume V from rs direction on S in the V ni .(rs , )dS S with ni : internal normal ( (rs , ) 0 if ni . 0 ) Proportion of chords of length : linked to the corresponding normal cross section: ()d ni .dSd ni . dS ( rs , ) ( rs , ) n .dSd i S (r , )n .dSd Average chord length: o ()d s S i n .dSd i o a Po 4V S S 22 PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016 CH.VIII: RESONANCE REACTION RATES RESONANCE CROSS SECTIONS • EFFECTIVE CROSS SECTIONS • DOPPLER EFFECT • COMPARISON WITH THE NATURAL PROFILE RESONANCE INTEGRAL RESONANCE INTEGRAL – HOMOGENEOUS THERMAL REACTORS • INFINITE DILUTION • NR AND NRIA APPROXIMATIONS RESONANCE INTEGRAL – HETEROGENEOUS THERMAL REACTORS • GEOMETRIC SELF-PROTECTION • NR AND NRIA APPROXIMATIONS • DOPPLER EFFECT 23
© Copyright 2025 Paperzz