Solutions to Problem Set 2 1. Part A: dP 0.08P 2400 dt P(0) 20,000 P(t ) ce 0.08t 30000 P(0) c 30000 20000 c 50000 P(t ) 50000e 0.08t 30000 P(18) 181,034.79 Part B: Note: We will be paying an extra $200 a month, so $2400 a year. After 5.625 years we will have paid back the $13,500. The model for time = [0,5.625] is dP 0.08 P 4800 dt P (0) 6,500 P(t ) ce 0.08t 60000 P(0) c 60000 6500 c 66500 P(t ) 66500e 0.08t 60000 P(5.625) 44,292.76 At 5.625 years the model reverts back to the model in part A. dP 0.08P 2400 dt P(5.625) 44,292.76 P(t ) ce 0.08t 30000 P(0) ce 0.08*5.625 30000 44292.76 c 47371.15 P(t ) 47371.15e 0.08t 30000 P(18) 169,939.24 Part C: The difference is that in part A from the beginning you are accumulating interest on $20,000 (that really adds up). We are cheating our son out of $11,095.55 2. f ( y) 2 y 3 (2 y 2 ) 4 (3 y) 9 is continuous. f (6 y 2 (2 y 2 ) 4 (3 y ) 9 ) 2 y 3 [9(3 y ) 8 (2 y 2 ) 4 8 y (3 y ) 9 (2 y 2 ) 3 ] is y continuous. The conditions of the existence and uniqueness theorem are satisfied. Therefore there exists exactly one solution. There are equilibrium solutions at y=0 & y=3. By uniqueness you cannot cross equilibrium solutions. If we start in between these equilibrium solutions we must stay in between them for all time. This solution satisfies 0 y (t ) 3 for all t and the domain of y (t ) is the whole line. 3. 4. dy y ( y 2 ) . Equilibrium solutions are 0 & . When 0 , there is dt only one equilibrium point (y=0) and when α<0 there are three equilibrium solutions. α=0 is the bifurcation value. Connect the points like a pitchfork for the bifurcation diagram. α<0 α=0 α>0 dS 1000 S S S (0) 5000 dt 50000 1000t 50 t Separate 1 1 dS dt S 50 t ln | S | ln | 50 t | c ln | S | 1 ln | 50 t | c S 1 c(50 t ) 1 S c(50 t ) 1 S (0) 5000 c 250000 50c 1 S (t ) 250000(50 t ) The tank is full after 50 minutes. S=2500 pounds making the concentration S (50) 2500 1 100000 100000 40 5. The bifurcations occur when α = 1 & -1. α creates a shift up or down of f(y). If α is greater than one, there is a shift more than 1 unit up and we have one equilibrium point. If α = 1 there are two equilibrium points. If α is between -1 and 1 then there are 3 equilibrium points. If α = -1 then there are two equilibrium points. If α < -1 then there is one equilibrium point. 6. dy y t 3 cos 3t dt homogeneous solution dy y dt y h (t ) ce dt ce t y p at 3 bt 2 ct d e cos 3t f sin 3t dy p dt dy p dt 3at 2 2bt c 3e sin 3t 3 f cos 3t y p 3at 2 2bt c 3e sin 3t 3e cos 3t at 3 bt 2 ct d e cos 3t f sin 3t t 3 cos 3t at 3 (3a b)t 2 (2b c)t (c d ) (3e f ) sin 3t (e 3 f ) cos 3t t 3 cos 3t a 1 3a b 0 b 3 2b c 0 c 6 3e f 0 e3f 1 1 3 , f 10 10 1 3 y (t ) y h y p ce t t 3 3t 2 6t 6 cos 3t sin 3t 10 10 1 y (0) c 6 c 5.9 10 1 3 y (t ) 5.9e t t 3 3t 2 6t 6 cos 3t sin 3t 10 10 c d 0 d 6 e 7. dy 3 y 2t 3 e 2t dt t The integrating factor: 3 dt t 1 t3 Multiply both sides of the equation by the integrating factor: 1 dy 1 3 1 3 ( y ) 3 2t 3 e 2t 3 t dt t t t Rewrite the LHS: d 1 ( 3 y ) 2e 2 t dt t Integrate both sides and solve for y: 1 y e 2t C 3 t y(t ) t 3 e 2t Ct 3 e 3 e 3 ln t e ln t t 3 y(1) e 2 C 0 C e 2 y(t ) t 3 e 2t e 2 t 3
© Copyright 2025 Paperzz